DATA516/CSEDS516
Scalable Data Systems and Algorithms

Lecture 7
Column-store DBMSs

DATA516/CSEDS16 - Fall 2023

Announcements: General

* No reading for next week

 Project Milestones: Friday, November 25

« HW2 Due: Tuesday, November 28t

Project Milestone

Hard deadline: Friday night!
Preliminary draft of your final report
2-3 pages.

Include Title and Author!

Suggested structure/topics
— Section 1: Goal and questions you want to ask
— Section 2: Describe the system(s) and the data

— Section 3: Briefly report what you have tried
— Section 4: What do you need to do until 12/87

Announcements: Project Dates

* Project Presentations:
— December 5%

— In person (contact me for exceptions)

* For groups that've already reached out, please
send another email to track

* Final Paper due Friday December 8th

Project Presentation

Project presentations:
* You have 5 minutes (4 + 1 for questions)

* Prepare 4 - 5 slides in Google Slides. Suggestions:
— Slide 1: Title slide: project title, your name,
— Slide 2: Question: What question did you investigate?
— Slide 3: Method: How did you go about answering it?
— Slide 4: Results: What did you find?

* | will ask you to place your google slides on a shared
drive; details TBD

Today's Lecture

abel0]g

Jeuwn|on

Column-Oriented Storage

C-store ideas and research since 1970’s
Circa 2000: PAX (will discuss...)

2004: C-store research prototype at MIT
— Started by Mike Stonebraker
— Lead graduate student Daniel Abadi
— 2005: Vertica founded by M. Stonebraker & A. Palmer
— 2011: Vertica acquired by HP

— 2012: As of VLDB’12 paper, 500 production deployments of
Vertica, three over a PB in size

2013: All major DB vendors include some column-store
Implementation

2016: PAX adopted by Snowflake

DBMS Architecture

Admission Control Parser
Connection Mgr Query Rewrite
9 Memory Mgr
Optimizer
Disk Space Mgr
Executor
Replication Services
Process Manager | | Query Processor
Admin Utilities
Access Methods Buffer Manager Shared UtI|ItIeS
Lock Manager Log Manager [Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.
Storage Manager Red Book. 4ed]

Review: Data Storage in a Row Store

Consider a relation storing tweets:

Tweets (tid, user, time, content)

How should we store it on disk?

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMS uses disk directly, with “files” inside

* The OS (or DBMS) provides an API of the form
— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes

File

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMS uses disk directly, with “files” inside

* The OS (or DBMS) provides an API of the form
— Seek to some position (or “skip” over B bytes)

— Read/Write B bytes
Seek

File

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMS uses disk directly, with “files” inside

* The OS (or DBMS) provides an API of the form

— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes

Seek Read

A
File A

Working with Pages

« Reading/writing to/from disk
— Seeking takes a long time!
— Reading sequentially is fast
— Read/write entire blocks

* 1 block = typically 4, 8, or 16 KB

« Buffer manager:
— Caches a set of blocks in main memory
— Blocks in MM are called pages
— 1 page = 1 block

DATA516/CSEDS16 - Fall 2023 13

Working with Main Memory

* The Central Processing Unit (CPU)
reads/writes data from/to main memory

— Read/write entire bytes (= 8 bits)
— Typically: 1 or 2 or 4 or 8 bytes

« CPU much faster than MM

» Solution: CPU cache
— A very fast, associative memory
— Cache line = aka cache block
— Typically: 1 cache line = 64 bytes

Summary so far...

Two bottlenecks:

 The disk I/O bottleneck:

— Disk is much slower than main memory
— Read/write one block at a time (8KB-16KB)
— Buffer pool in main memory: 1page=1block

Summary so far...

Two bottlenecks:

* The disk I/O bottleneck:
— Disk is much slower than main memory
— Read/write one block at a time (8KB-16KB)
— Buffer pool in main memory: 1page=1block

* The main memory bottleneck
— MM is much slower than CPU

— Read/write one byte at a time (or 2/4/8)
— CPU cache: 1 cache line = 64 bytes

Continuing our Design

Key question:
 How should we organize tuples on a page?

Design Exercise 1

 Think how you would store tuples on a page
— Fixed length tuples
— Variable length tuples

 Requirements
— Insert a new tuple
— Look up a tuple given a RID (= Record ID)
— Remove a tuple given a RID
— Modify a tuple
— Enumerate all tuples

Page Formats

Issues to consider:
* 1 page = 1 disk block = fixed size (e.g. 8KB)
 Records:

— Fixed length
— Variable length

 Record id = RID
— Typically RID = (PagelD, SlotNumber)

Why do we need RID’s in a relational DBMS ?

19

Page Formats

Issues to consider:
* 1 page = 1 disk block = fixed size (e.g. 8KB)
 Records:

— Fixed length
— Variable length

 Record id = RID
— Typically RID = (PagelD, SlotNumber)

Why do we need RID’s in a relational DBMS ?
For indexes, and for transactions

20

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

Slot, Slot, Sloty

| Freespace [N

How do we insert a new record? Number of records

DATA516/CSEDS16 - Fall 2023 21

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

Slot, Slot, Sloty, Sloty, 1

[FreeSp. [N

How do we insert a new record? Number of records

DATA516/CSEDS16 - Fall 2023 22

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

Slot, Slot, Sloty, Sloty, 1

[FreeSp. [N

How do we insert a new record? Number of records

How do we delete a record?

DATA516/CSEDS16 - Fall 2023 23

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

Slot, Slot, Sloty, Sloty, 1

[FreeSp. [N

How do we insert a new record? Number of records

How do we delete a record? Cannot remove record (why?)

24

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

Slot, Slot, Sloty, Sloty, 1

[FreeSp. [N

How do we insert a new record? Number of records

How do we delete a record? Cannot remove record (why?)

How do we handle variable-length records?

25

Page Format Approach 2

Record ID (RID) for each tuple is (PagelD,SlotNb)

e

Free space 4| F

\ J
Y

Slot directory

Header contains slot directory
+ Need to keep track of nb of slots
+ Also need to keep track of free space (F)

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 . e Field K

Information about field lengths and types is in the catalog

Variable length records

Record Formats

—

Field 1

Field 2

Field K

\

)
y

Record header

Remark: NULLS require no space at all (why ?)

Summary so far...

* Page format:
— Page header
— Record
— Record

 Record format:
— Record header
— Field
— Field

From Row-Store to Column-Store

Rows stored
contiguously on disk
(+ tuple headers)

DATA516/CSEDS16 - Fall 2023 30

From Row-Store to Column-Store

SN

Rows stored Columns stored
contiguously on disk contiguously on disk
(+ tuple headers) (no tuple headers needed)

DATA516/CSEDS16 - Fall 2023 31

Two Options

Column Store:
* 1 column = 1 file
* Requires a complete rewrite of query engine

« Potential for major performance gain for some queries,
but need need a lot of work to get there (will see this)

Two Options

Column Store:
* 1 column = 1 file
* Requires a complete rewrite of query engine

« Potential for major performance gain for some queries,
but need need a lot of work to get there (will see this)

PAX:

« Split the table into blocks (original PAX) or chunks
(Snowflake)

* Inside each chunk, store the attribute column-wise

« Obtain most of the performance gain, with very little
update to the query engine

An Intermediate Format: PAX

« PAX = Partition Attributes Across

* Addresses memory access bottleneck (not
the disk bottleneck)

From Row to Column Storage

(Initial Designs - 1985)

Ll

- = = "
PAGE HEADER | RH1| 0962
Jane | 30 | RH2| 7658 | John
45 | RH3| 3589 [Jim zoj RH4
5525 | Susan|'52
¥ /
\ \
\ \
\ \ d
/
\
A
N-ary v O\
Storage LA
Model ¢|o]|8 e
NSM Page

PAGE HEADER

11 0962] |+

21765813

3859

4

3523

PAGE HEADER

I|Jane |},

2|l John|3

Jim

4

Susan

PAGE HEADER

1130 |2} |+

45

3

20

4

52

DSM Pages

sub-relation R1

sub-relation R2

sub-relation R3

Decomposition
Storage Model

Figure 2.1: Storage models for storing database records inside disk pages: NSM
(row-store) and DSM (a predecessor to column-stores). Figure taken from [5].

DATA516/CSEDS16 - Fall 2023

35

Current Scheme: Slotted Pages

Formal name: NSM (N-ary Storage Model)

|
R PAGE HEADER |RH1 |1237] |
|
Jane |30|RH2 [4322| John
RID | SSN | Name | Age : :
1 1237 | Jane 30 45 | RH3 156‘3 Jim |20 | RH4 | |
A Y
2 | 4322 | John 45 765§\ Susan \ 52 I’ :
) N \
3 | 1563 | Jim 20 N . ! |
4 | 7658 Susan | 52 \ v ! |
N \/ |
5 | 2534 | Leon 43 N A I
\ I\
6 |8791| Dan | 37 N !
— |
\ \ o | el

o Records are stored sequentially
Offsets to start of each record at end of page

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 1237

4322 John

RH4

25%4]Leon

CACHE

select ...
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 1237

e

RH3|1563| Jim RH4

7658| Susan 2534

Jane

block 1

4322 John

CACHE

select ...
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 1237

'RHE 4322 John
Jim 20| RH4

block 1

RH3|1563] block 2

CACHE

select ...
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 1237

'RHE (4322 John

block 1

RH3|1563] block 2

Jim RH4 block 3

CACHE

select ...
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237
block 1
'RHE (4322 John
block 4
CACHE

select ...
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Need New Data Page Layout

* Eliminates unnecessary memory accesses
* Improves inter-record locality

» Keeps a record'’s fields together

* Does not affect I/O performance

and, most importantly, is...

low-implementation-cost, high-impact

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER |RH1(1237 PAGE HEADER (1237|4322
Jane |30|RH214322| John 1563|7658
45|RH3(1563| Jim |20 |RH4
7/658| Susan |52 Jane | John | Jim | Susan
30152(145|20

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
RH1[1237 1237]4322
Jane [30|RH2(4322| John 1563|7658
45 |RH3|1563| Jim |20 |RH4
7658| Susan |52 Jane | John | Jim | Susan

30(5245|20

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

Jane | John | Jim | Susan

30152|45|20

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER PAGE HEADER |1237(4322
RH2 (4322 1563|7658
20| RH4 B

30

52

45

20

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

PAGE HEADER |RH1|{1237 PAGE HEADER (1237|4322

RH24322| John 1563|7658

RH3|1563| Jim RH4

7/658| Susan Jane | John | Jim | Susan

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Partition Attributes Across (PAX)

NSM PAGE

PAX PAGE

PAGE HEADER

12374322

1563

7658

7/658| Susan

Jane

John

Jim

Susan

30

52

45

20

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using PAX

PAGE HEADER |1237|4322
1563|7658

HEER

BBnn CACHE
select ...

EEEE from R

where age > 50

Fewer cache misses, low reconstruction cost

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

Predicate Evaluation using PAX

PAGE HEADER [1237(4322

HEER

BBnn CACHE
select ...

EEEE from R

where age > 50

Fewer cache misses, low reconstruction cost

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

A Real NSM Record

HEADER | FIXED-LENGTH VALUES [e|e|s|¢| VARIABLE-LENGITH VALUE$

null bitmap, offsets to variable-
record length, etc length fields

NSM: All fields of record stored together + slots

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

PAX: Detailed Design

records free space

attribute
attributes sizes
L 1 | T ﬂ\

pid (LA 32 alv]a]r Page Header

}
1237 | 4322
F - Minipage
presence np

-------- bits - - -
- Jane | John
V - Minipage
v-offsets
L)
- | 30 | 45
F - Minipage
presence np
bits

PAX: Group fields + amortizes record headers

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

PAX - Summary

* Improves processor cache locality

* Does not affect I/O behavior
— Same disk accesses for NSM or PAX storage
— No need to change the buffer manager

* Today:
— Most (all?) commercial engines use a PAX layout
of the disk

— Beyond disk: Snowflake partitions tables
horizontally into files, then uses column-store
inside each file (hence, PAX)

Column-Store

o Store an entire attribute in a different file

* While the idea had been around before
PAX, getting all the detalls right in order to
extract the extra performance took a long
time

C-Store lllustration

Row-based

(4 pages)

Page {

OO LW > > > >

AIBEBRDNINDNIN—

Column-based

(4 pages)
A 1 C-Store also
A 2 avoids large
A 2 tuple headers
A 2
B| [2]
B 4
C 4 ~ Page
C 4 |

Column-Oriented Databases

 Main idea:

— Physical storage: complete vertical partition;
each column stored separately: R.A, R.B, R.A

— Logical schema: remains the same R(A,B,C)

* Main advantage:

— Improved transfer rate: disk to memory,
memory to CPU, better cache locality

Basic Trade-Off

* Row stores
— Quick to update entire tuple (1 page 10)
— Quick to access a single tuple

» Column stores
— Avoid reading unnecessary columns
— Better compression

* Entire system needs a different design
— Not only storage manager
— To achieve high performance

DATA516/CSEDS16 - Fall 2023

S7

From Row to Column Storage
(Modern Designs)

Sales Sales Sales
saleid prodid date region saleid prodid date region saleid prodid date region
1 1 1 1 1 1
2 2 2 2 > 2
3 3 3 3 3 3
4 4 4 4 7 -
5 5 5 5 5 °
6 6 6 6 6 B
7 7 7 7 7 ¥
8 8) 8 8 8
9 9 9 9 9 9
10 10 10 10 10 10
(a) Column Store with Virtual Ids (b) Column Store with Explicit Ids (c) Row Store

Figure 1.1: Physical layout of column-oriented vs row-oriented databases.

Basic tradeoffs:
 Reading all attributes of one records, v.s.
 Reading some attributes of many records

58

Fig. 1.2

Performance of Column-Oriented Optimizations

B
(%))

~ —Late
Materialization

BN
o
|

I b
|

w
u
|

& —Compression

o
|

—Join Optimization

W ~Tuple-at-a-time

=
o
|

“ Baseline

(%2}
|

Column Store Row Store

Figure 1.2: Performance of C-Store versus a commercial database system on the
SSBM benchmark, with different column-oriented optimizations enabled.

Key Architectural Trends (Sec.1)

* Virtual IDs
» Block-oriented and vectorized processing
» Late materialization

» Column-specific compression

Key Architectural Trends (Sec.1)

* Virtual IDs
— Offsets (arrays) instead of keys

» Block-oriented and vectorized processing
— lterator model: one tuple->one block of tuples

» Late materialization
— Postpone tuple reconstruction in query plan

» Column-specific compression
— Much better than row-compression (why?)

Vectorized Processing

Review:

» Volcano-style iterator model

— Next() method

— Pipelining
* Materialization of all intermediate results
* Discuss in class:

select avg(A) from R where A< 100

Vectorized Processing

* Vectorized processing:

— Next() returns a block of tuples (e.g. N=1000)
instead of single tuple

* Pros:
— No more large intermediate results
— Tight inner loop for selection and/or avg

* Discuss in class:
select avg(A) from R where A< 100

Compression (Sec. 4)

* What is the advantage of compression in
databases?

* Main column-at-a-time compression
techniques

Compression (Sec. 4)

* What is the advantage of compression in
databases?

* Main column-at-a-time compression
techniques
— Run-length encoding: F,F,F,F,M,M—>4F 2M
— Bit-vector (see also bit-map indexes)
— Dictionary. More generally: Ziv-Lempel

Compression (Sec. 4)

Row-based
(4 pages)

Page {

OO LW > > > >

AIBEBRDNINDNIN—

Column-based

(4 pages)
Al |1
Al |2
Al |2
Al [2
B| | 2
B | | 4
C |4
C| |4

Compressed
(2 pages)
4 XA 1X1
2XB 4X2
2XC 5X4
~ Page

Late Materialization (Sec. 4)

 Whatis it?
* Discuss Ng(05-2 A p=¢(R(A,B,C,D,...))

Late Materialization (Sec. 4)

 What is it?
* Discuss Ng(05-2 A p=¢(R(A,B,C,D,...))
« Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...

Late Materialization (Sec. 4)

« Whatis it?
* Discuss Ng(05-2 A p=¢(R(A,B,C,D,...))
« Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...

— Retrieve those values in column D: X, ‘'d, 'y, ‘d’, ‘d,...

Late Materialization (Sec. 4)

« Whatis it?

* Discuss Ng(05-2 A p=¢(R(A,B,C,D,...))

« Early materialization:
— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d, 'y, ‘d’, ‘d,...
— Retain only positions with ‘d’: 4.9, ...

Late Materialization (Sec. 4)

« Whatis it?

* Discuss Ng(05-2 A p=¢(R(A,B,C,D,...))

« Early materialization:
— Retrieve positions with ‘a’ in column A: 2,4
— Retrieve those values in column D: X, ‘'d’,
— Retain only positions with ‘d’: 4.9, ...
— Lookup values in column B: B[4], B[9], ...

Late Materialization (Sec. 4)

What is it?
Discuss [5(0x-4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d, 'y, ‘d’, ‘d,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late materialization
— Retrieve positions with ‘a’ in column A: 2,4, 5,9, 25...

Late Materialization (Sec. 4)

What is it?

Discuss [5(0x-4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2, 4,
— Retrieve those values in column D: X, ‘'d, 'y, ‘d’, ‘d,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...
Late materialization

— Retrieve positions with ‘a’ in column A: 2
— Retrieve positions with ‘'d" in column D: 3,4, 7, 9,12,..

Late Materialization (Sec. 4)

What is it?

Discuss [5(0x-4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2, 4,
— Retrieve those values in column D: X, ‘'d, 'y, ‘d’, ‘d,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...
Late materialization

— Retrieve positions with ‘a’ in column A: 2
— Retrieve positions with ‘'d" in column D: 3,4, 7, 9,12,..
— Intersect: 4, 9, ...

Late Materialization (Sec. 4)

What is it?

Discuss [5(0x-4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2, 4,
— Retrieve those values in column D: X, 'd’, 'y, 'd’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...
Late materialization

— Retrieve positions with ‘a’ in column A: 2
— Retrieve positions with ‘'d" in column D: 3,4, 7, 9,12,..
— Intersect: 4, 9, ...

— Lookup values in column B: B[4], B[9], ...

Late Materialization (Sec. 4)

EX: SELECT R.b from R where R.a=X and R.d=Y

Early materialization Late materialization

Extract values
T
n %
o

DATA516/CSEDS16 - Fall 2023 a b C d

Jive Join (Sec. 4)

SELECT emp.ape, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id

42 3%
36 19
42| K 16
44 36
38

DATA516/CSEDS16 - Fall 2023

Jive Join (Sec. 4)

SELECT emp.ape, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id .
Tuple positions

;é 38 1| |32
42 2| |4

421 M =

1 46 3| |2
36 5| |1

38

DATA516/CSEDS16 - Fall 2023

FROM emp, dept

Jive Join (Sec. 4)

SELECT emp.ape, dept.name

WHERE emp.dept_id = dept.id

42

36

38

42

42

44

46

38

36

L B2 B | ==

= | o | W | B

emp.dept_id dept.id .
Tuple positions

One column will
be out of order

DATA516/CSEDS16 - Fall 2023

79

Jive Join (Sec. 4)

SELECT emp.age, dept.name

FROM emp, dept

WHERE emp.dept_id = dept.id

42

36

42

44

38

= | o | W | B

38 1

42 2

46 3

36 2
—

21

4|2

213

1|4

emp.dept_id dept.id .
Tuple positions

One column will
be out of order

Add new indexes DATA516/CSED516 - Fall 2023

80

Jive Join (Sec. 4)

SELECT emp.age, dept.name

FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id .
Tuple positions

;é 38 1| |2
42 2 |4
42 M =
46 3 |2
44 36 =l 7 One column will
38 ; be out of order
e//////
211 114
412 211
23 2(3
1[4 1[92

Add new indexes DATA516/CSED516 - Fall 2023

81

Jive Join (Sec. 4)

SELECT emp.ape, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

42

36

42

44

38

emp.dept_id dept.id .
Tuple positions

38 1| (2
” 42/ 12| |4
o 2| |2 One column will
3 3 1 be out of order
—
2(1 114
4|2 211
213 9203
114 109 Fetch

“dept.name”
Add new indexes DATA516/CSED516 - Fall 2023

Smith

Johnson

Johnson

= | b | B =

o | G| b= f

Jones

82

Jive Join (Sec. 4)

SELECT emp.ape, dept.name

FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id .
Tuple positions

;é 38 1| |2

42 2 |4
421 M ==

46 3 |2
44 36 =l 7 One column will
38 ; be out of order

e//////

211 114

412 211

23 2(3

114 ne Fetch

“dept.name”
Add new indexes DATA516/CSED516 - Fall 2023

Johnson

Jones

Johnson

| b | e | B2
e | a3 | Bl | =

Smith

Smith

Johnson

Johnson

= | b | B

o | G| b= f

Jones

83

ate Materialization

select sum(R.a) from R, S
where R.c =S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

Initial Status

Relation R Relation S
Ra RbD Rc Sa Sb
3 12 12 17 11

16 | | 34 34 49 | | 35
56 | | 75 53 58 | | 62
9 45 23 99 | | 44
11 49 78 64 | | 29
27 || 58 65 37 || 78
8 97 33 53 19
41 75 21 61 81
19 || 42 29 32 || 26
35 || 55 0 50 | | 23

ate Materialization

select sum(R.a) from R, S
where R.c =S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

_select(Ra,5,20) _

. Ba intert :
| 3 EIN
L |16 ' 4 5
. |56 _>:5: :
V|9 V70
11 9.

[27 1
8 :

' |41 :
19 \
35 ;
(1),

ate Materialization

select sum(R.a) from R, S
where R.c =S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

_select(Ra,5,20) | reconstruct(Rb,inter1)
- Ba intert :iintert Rb - interz
|3 (27 1 T2 12 2 {34
' |16 .:4:!::41\34—>i4 45 |
| |56 :555::5:\75 ' 5 {49 ||
| 9 :7;:::7\45 7 {97 |
| 11 (8 i (9 49 (91421
27 \ 58 e
|8 1 97 :
' |41 i 75 :
' |19 ¥ 42 :
' |35 + 55 |

ate Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

40,50

e A A e e &
WS ey -
%..m_459" _

U~ S i
g = _
| !

| i

1

N[TVLO N~ |
m_r34494 |
2 o I
e.m_‘ lllllllll \ '
o =Sl N~O! .

" "

|||||||||||||||||||||||||| e

N
S

reconstruct(Rb,inter1)

- ol - - - -

L L L L e T R e

S ———

lllllllllll

select(Ra,5,20)

ate Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

40,50

P e e e e e e e e e e e WS T SR S s e e e e e

0 4"
"t_ g
| S| Mo |
T AN~ |
_nq llllll "
' &
- I ! I
. .mpudhl_.nlulnulu\. :
m" lm I
L :
o) !
T, |
g . _
o o W [
2 g(v338R888R0|
4 |
m" \ |
]
]
|
! |
1 Tl _ |
[<t D O
§ihdoi "
e i |
T o
)"m\ ||||||| tl\"
%..m_459" _
e\, |
w,. -— '
| I
' | I
N |
@, "
N~ :
m_ MEE R R R "
2 o '
e.m\ 1
=l N~N® !
| SSeeccccccocws "
N P S e P S e s~
eeeeEsasasssEesnESseese-. =
| St
o N~N [
nnuﬁ%4494 !
“m\ |
~ SNt ON® "
%! e [
m_ * "
L |
’—
£ |
|
e N AW
T IITIE
]
B "
17} !
3 !
o !
| |
]
m_ =4 ey \ :
L Qg o~ o) !
i]
§ IR Seeewawnnn I
| |
s s on o on o0 oo on oo G5 &5 S5 S5 WS S5 Gn SS D b Gn Ee . oe on e es
.......................... —
™ e o
s \
m",24579"

select(Ra,5,20)

ate Materialization

select sum(R.a) from R, S
where R.c =S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

27?7

select(Sa,55,65)

ate Materialization

select sum(R.a) from R, S
where R.c =S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

27?7
__select(Sa,55,65) reconstruct(Sb,interd)
. Sa inter4 ' Eme4 Sb inter5 E
1 S ™ Iy r"‘I R = |
(17 :g:l::g'\ﬁ '3 {62]|
149 | B 35 '5 {29 |
|58 T T oo |~ P79
' 199 :80: :: :180: 44 ' 8 | 81 :
\ |64 10 1 (100 : .
. e 29 ‘_19' 23 :
| |37 N -8 —
|98 = 19 :
|61 = 81 :
' 132 : : 26 -
(%0 N 23 :

ate Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

2?77

select(Sa,55;

reconstruct(Sb,inter4)

_s -

" T S S \ W"

S o~ 9 |

_p- h 2l | (]

- = -

! = o DM "

5 | © - O & .

€. 8 :

ﬁ. I

| (]

P .

Q' _

> ! .

WM N — M '

- O AN ~oOAN "

“.m\ 0. "
‘l—

" _,35781“ |

" .

e e e e e . e e e -]

||||||||||||||||||||||||]

e,

]

o (o)) ™ |

%ﬁ6%1m2g "

.m\ \ !

—'own~o 2! _

] —]

:

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

)_

-

ate Materialization

select sum(R.a) from R, S
where R.c=S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40 joingoin_input Rjoin_input S) _voidTailjoin res R_S)
E join_input_R join_ mP_ut S join_res_R_S : E join_res_R_S inter6
. i4f2s 62 | 3 | aftor B Tafiol gy 4
' 15178 29 5:—}:9[5’: F 'g !5, '9 |
19129 19fp7: oohes '
L 81 |8 ! 1
] S R . 1 S e

reconstruct(Ra,inter6) sum(inter7)
" inter6 Ra inter7 | | inter7 result |
G (o) (2] 2] e @)]
19 16 E | : :
: 56 : : |
i 9 | i
- 1 ; : :
: 27 ! :
: 8 b :
: 41 b :
i 19 E :

More Detalls

» Sort columns according to some criterion
— Helps with range queries on that column
— Helps compressing that column
— But need to sort all the other columns the

Same way

» Create additional (redundant) "views”",
called “projections”, by sorting on different
columns

Final Thoughts

Simulating a Column-Store in a Row-Store DBMS:

* Vertical partitioning
— Two-column tables: (key, attribute)

* Index-only plans
— Create a B+ tree index on each attribute

— Answer queries using indexes only, without reading actual
data

« Materialized views
— Each view contains a subset of columns

References

 Ailamaki et al. Weaving Relations for Cache
Performance, VLDB’2001

* The Design and Implementation of Modern
Column-Oriented Database Systems Daniel
Abadi, et al., Foundations and Trends in
Databases

 Also:

— C-Store: A Column-oriented DBMS. Stonebraker et al.
VLDB’05

— The Vertica Analytic Database: CStore 7 Years Later.
Lamb et. al. VLDB’12

