
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 7

Column-store DBMSs

1DATA516/CSED516 - Fall 2023

Announcements: General

• No reading for next week

• Project Milestones: Friday, November 25th

• HW2 Due: Tuesday, November 28th

2

Project Milestone

• Hard deadline: Friday night!
• Preliminary draft of your final report
• 2-3 pages.
• Include Title and Author!
• Suggested structure/topics

– Section 1: Goal and questions you want to ask
– Section 2: Describe the system(s) and the data
– Section 3: Briefly report what you have tried
– Section 4: What do you need to do until 12/8?

3

Announcements: Project Dates

• Project Presentations:
– December 5th

– In person (contact me for exceptions)
• For groups that’ve already reached out, please

send another email to track

• Final Paper due Friday December 8th

4

Project Presentation

Project presentations:

• You have 5 minutes (4 + 1 for questions)

• Prepare 4 - 5 slides in Google Slides. Suggestions:
– Slide 1: Title slide: project title, your name,

– Slide 2: Question: What question did you investigate?

– Slide 3: Method: How did you go about answering it?

– Slide 4: Results: What did you find?

• I will ask you to place your google slides on a shared
drive; details TBD

5

Today’s Lecture

6

Column-Oriented Storage
• C-store ideas and research since 1970’s
• Circa 2000: PAX (will discuss…)
• 2004: C-store research prototype at MIT

– Started by Mike Stonebraker
– Lead graduate student Daniel Abadi
– 2005: Vertica founded by M. Stonebraker & A. Palmer
– 2011: Vertica acquired by HP
– 2012: As of VLDB’12 paper, 500 production deployments of

Vertica, three over a PB in size

• 2013: All major DB vendors include some column-store
implementation

• 2016: PAX adopted by Snowflake

DATA516/CSED516 - Fall 2023 7

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

8DATA516/CSED516 - Fall 2023

Review: Data Storage in a Row Store

Consider a relation storing tweets:
Tweets(tid, user, time, content)

How should we store it on disk?

DATA516/CSED516 - Fall 2023 9

Design Exercise
• Design choice: One OS file for each relation

– Option 1: DBMS creates one big file with “files” inside

– Option 2: DBMS uses disk directly, with “files” inside

• The OS (or DBMS) provides an API of the form
– Seek to some position (or “skip” over B bytes)

– Read/Write B bytes

DATA516/CSED516 - Fall 2023 10

File

Design Exercise
• Design choice: One OS file for each relation

– Option 1: DBMS creates one big file with “files” inside

– Option 2: DBMS uses disk directly, with “files” inside

• The OS (or DBMS) provides an API of the form
– Seek to some position (or “skip” over B bytes)

– Read/Write B bytes

DATA516/CSED516 - Fall 2023 11

Seek

File

Design Exercise
• Design choice: One OS file for each relation

– Option 1: DBMS creates one big file with “files” inside

– Option 2: DBMS uses disk directly, with “files” inside

• The OS (or DBMS) provides an API of the form
– Seek to some position (or “skip” over B bytes)

– Read/Write B bytes

DATA516/CSED516 - Fall 2023 12

Seek Read

File

Working with Pages
• Reading/writing to/from disk

– Seeking takes a long time!
– Reading sequentially is fast
– Read/write entire blocks

• 1 block = typically 4, 8, or 16 KB

• Buffer manager:
– Caches a set of blocks in main memory
– Blocks in MM are called pages
– 1 page = 1 block

13DATA516/CSED516 - Fall 2023

Working with Main Memory

• The Central Processing Unit (CPU)
reads/writes data from/to main memory
– Read/write entire bytes (= 8 bits)
– Typically: 1 or 2 or 4 or 8 bytes

• CPU much faster than MM
• Solution: CPU cache

– A very fast, associative memory
– Cache line = aka cache block
– Typically: 1 cache line = 64 bytes

14

Summary so far…

Two bottlenecks:
• The disk I/O bottleneck:

– Disk is much slower than main memory
– Read/write one block at a time (8KB-16KB)
– Buffer pool in main memory: 1page=1block

• The main memory bottleneck
– MM is much slower than CPU
– Read/write one byte at a time (or 2/4/8)
– CPU cache: 1 cache line = 64 bytes

15

Summary so far…

Two bottlenecks:
• The disk I/O bottleneck:

– Disk is much slower than main memory
– Read/write one block at a time (8KB-16KB)
– Buffer pool in main memory: 1page=1block

• The main memory bottleneck
– MM is much slower than CPU
– Read/write one byte at a time (or 2/4/8)
– CPU cache: 1 cache line = 64 bytes

16

Continuing our Design

Key question:

• How should we organize tuples on a page?

17DATA516/CSED516 - Fall 2023

Design Exercise 1

• Think how you would store tuples on a page
– Fixed length tuples

– Variable length tuples

• Requirements
– Insert a new tuple

– Look up a tuple given a RID (= Record ID)

– Remove a tuple given a RID

– Modify a tuple

– Enumerate all tuples

DATA516/CSED516 - Fall 2023 18

Page Formats

Issues to consider:

• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

19

Why do we need RID’s in a relational DBMS ?

Page Formats

Issues to consider:

• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

20

Why do we need RID’s in a relational DBMS ?

For indexes, and for transactions

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

SlotNSlot2Slot1

NFree space

Number of records

21

How do we insert a new record?

DATA516/CSED516 - Fall 2023

Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records

22DATA516/CSED516 - Fall 2023

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records

23DATA516/CSED516 - Fall 2023

How do we delete a record?

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records

24

How do we delete a record? Cannot remove record (why?)

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records

25
How do we handle variable-length records?

How do we delete a record? Cannot remove record (why?)

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

DATA516/CSED516 - Fall 2023

Page Format Approach 2

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Slot directory

26

Header contains slot directory
+ Need to keep track of nb of slots
+ Also need to keep track of free space (F)

F4Free space

Record ID (RID) for each tuple is (PageID,SlotNb)

DATA516/CSED516 - Fall 2023

Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field K.Field 2Field 1

Information about field lengths and types is in the catalog

27

DATA516/CSED516 - Fall 2023

Record Formats

Variable length records

Remark: NULLS require no space at all (why ?)

28

Field K.Field 2Field 1

Record header

Summary so far…

• Page format:
– Page header
– Record
– Record
– …

• Record format:
– Record header
– Field
– Field
– …

29

From Row-Store to Column-Store

Rows stored
contiguously on disk

(+ tuple headers)

30DATA516/CSED516 - Fall 2023

From Row-Store to Column-Store

Rows stored
contiguously on disk

(+ tuple headers)

Columns stored
contiguously on disk

(no tuple headers needed)

31DATA516/CSED516 - Fall 2023

Two Options

Column Store:
• 1 column = 1 file
• Requires a complete rewrite of query engine
• Potential for major performance gain for some queries,

but need need a lot of work to get there (will see this)

PAX:
• Split the table into blocks (original PAX) or chunks

(Snowflake)
• Inside each chunk, store the attribute column-wise
• Obtain most of the performance gain, with very little

update to the query engine

32

Two Options

Column Store:
• 1 column = 1 file
• Requires a complete rewrite of query engine
• Potential for major performance gain for some queries,

but need need a lot of work to get there (will see this)

PAX:
• Split the table into blocks (original PAX) or chunks

(Snowflake)
• Inside each chunk, store the attribute column-wise
• Obtain most of the performance gain, with very little

update to the query engine

33

An Intermediate Format: PAX

• PAX = Partition Attributes Across

• Addresses memory access bottleneck (not
the disk bottleneck)

DATA516/CSED516 - Fall 2023 34

From Row to Column Storage
(Initial Designs - 1985)

DATA516/CSED516 - Fall 2023 35

N-ary
Storage
Model

Decomposition
Storage Model

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 Susan 52

1563

AgeNameSSNRID

30Jane12371

45John43222

20Jim15633

52Susan76584

43Leon25345

37Dan87916

R

 Records are stored sequentially
 Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 52

1563

select …
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 52

1563

block 130Jane RH

select …
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 52

1563

block 130Jane RH

45 RH3 1563 block 2

select …
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 52

1563

block 130Jane RH

Jim 20 RH4 block 3

45 RH3 1563 block 2

select …
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

RH4

7658 52

1563

block 130Jane RH

52 2534 Leon block 4

Jim 20 RH4 block 3

45 RH3 1563 block 2

select …
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Need New Data Page Layout

• Eliminates unnecessary memory accesses

• Improves inter-record locality

• Keeps a record’s fields together

• Does not affect I/O performance

and, most importantly, is…

low-implementation-cost, high-impact
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

RH4

7658 Susan 52

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052

MAIN MEMORY

select …
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052

block 130 45 2052

MAIN MEMORY

select …
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

FIXED-LENGTH VALUES VARIABLE-LENGTH VALUESHEADER

offsets to variable-
length fields

null bitmap,
record length, etc

NSM: All fields of record stored together + slots

A Real NSM Record

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

pid 3 2 4v4

43221237

Jane John

1 1

30 45

1 1

f } Page Header

attribute
sizes

free space# records

attributes

F - Minipage

presence
bits

presence
bits

v-offsets

F - Minipage

V - Minipage

PAX: Detailed Design

PAX: Group fields + amortizes record headers
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

PAX - Summary

• Improves processor cache locality
• Does not affect I/O behavior

– Same disk accesses for NSM or PAX storage
– No need to change the buffer manager

• Today:
– Most (all?) commercial engines use a PAX layout

of the disk
– Beyond disk: Snowflake partitions tables

horizontally into files, then uses column-store
inside each file (hence, PAX)

53

Column-Store

• Store an entire attribute in a different file

• While the idea had been around before
PAX, getting all the details right in order to
extract the extra performance took a long
time

54

C-Store Illustration

DATA516/CSED516 - Fall 2023

Row-based
(4 pages)

A 1
A 2

A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page
C

2

C

4
4
4

B

2

B

2

C-Store also
avoids large
tuple headers

55

Column-Oriented Databases

• Main idea:
– Physical storage: complete vertical partition;

each column stored separately: R.A, R.B, R.A

– Logical schema: remains the same R(A,B,C)

• Main advantage:
– Improved transfer rate: disk to memory,

memory to CPU, better cache locality

DATA516/CSED516 - Fall 2023 56

Basic Trade-Off

• Row stores
– Quick to update entire tuple (1 page IO)
– Quick to access a single tuple

• Column stores
– Avoid reading unnecessary columns
– Better compression

• Entire system needs a different design
– Not only storage manager
– To achieve high performance

DATA516/CSED516 - Fall 2023 57

From Row to Column Storage
(Modern Designs)

58

Basic tradeoffs:
• Reading all attributes of one records, v.s.
• Reading some attributes of many records

Fig. 1.2

Key Architectural Trends (Sec.1)

• Virtual IDs

• Block-oriented and vectorized processing

• Late materialization

• Column-specific compression

DATA516/CSED516 - Fall 2023 60

Key Architectural Trends (Sec.1)

• Virtual IDs
– Offsets (arrays) instead of keys

• Block-oriented and vectorized processing
– Iterator model: one tupleone block of tuples

• Late materialization
– Postpone tuple reconstruction in query plan

• Column-specific compression
– Much better than row-compression (why?)

DATA516/CSED516 - Fall 2023 61

Vectorized Processing

Review:

• Volcano-style iterator model
– Next() method

– Pipelining

• Materialization of all intermediate results

• Discuss in class:

DATA516/CSED516 - Fall 2023 62

select avg(A) from R where A < 100

Vectorized Processing

• Vectorized processing:
– Next() returns a block of tuples (e.g. N=1000)

instead of single tuple

• Pros:
– No more large intermediate results

– Tight inner loop for selection and/or avg

• Discuss in class:

DATA516/CSED516 - Fall 2023 63

select avg(A) from R where A < 100

Compression (Sec. 4)

• What is the advantage of compression in
databases?

• Main column-at-a-time compression
techniques

DATA516/CSED516 - Fall 2023 64

Compression (Sec. 4)

• What is the advantage of compression in
databases?

• Main column-at-a-time compression
techniques
– Run-length encoding: F,F,F,F,M,M4F,2M

– Bit-vector (see also bit-map indexes)

– Dictionary. More generally: Ziv-Lempel

DATA516/CSED516 - Fall 2023 65

Compression (Sec. 4)

DATA516/CSED516 - Fall 2023

Row-based
(4 pages)

A 1
A 2

A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page
C

2

C

4
4
4

B

2

B

2

Compressed
(2 pages)

4XA
2XB
2XC

1X1
4X2
5X4

66

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

Ex: SELECT R.b from R where R.a=X and R.d=Y

a b c d

R

s

p

Early materialization

a b c d

R

s

Late materialization

s

1
1
0

0
1

1
0
0
1
0

∩

Extract values

76DATA516/CSED516 - Fall 2023

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 77

emp.dept_id dept.id

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 78

Tuple positions
emp.dept_id dept.id

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 79

Tuple positions

One column will
be out of order

emp.dept_id dept.id

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 80

Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 81

Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

sort

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 82

Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

Fetch
“dept.name”

sort

Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 83

Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

Fetch
“dept.name”

sort

re-sort

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

???

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

???

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

???

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

More Details

• Sort columns according to some criterion
– Helps with range queries on that column

– Helps compressing that column

– But need to sort all the other columns the
same way

• Create additional (redundant) ”views”,
called “projections”, by sorting on different
columns

93

Final Thoughts

Simulating a Column-Store in a Row-Store DBMS:

• Vertical partitioning
– Two-column tables: (key, attribute)

• Index-only plans
– Create a B+ tree index on each attribute
– Answer queries using indexes only, without reading actual

data

• Materialized views
– Each view contains a subset of columns

DATA516/CSED516 - Fall 2023 106

References

• Ailamaki et al. Weaving Relations for Cache
Performance, VLDB’2001

• The Design and Implementation of Modern
Column-Oriented Database Systems Daniel
Abadi, et al., Foundations and Trends in
Databases

• Also:
– C-Store: A Column-oriented DBMS. Stonebraker et al.

VLDB’05
– The Vertica Analytic Database: CStore 7 Years Later.

Lamb et. al. VLDB’12

107DATA516/CSED516 - Fall 2023

