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Announcements: General

• No reading for next week 

• Project Milestones: Friday, November 25th

• HW2 Due: Tuesday, November 28th
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Project Milestone

• Hard deadline: Friday night!
• Preliminary draft of your final report
• 2-3 pages.
• Include Title and Author!
• Suggested structure/topics

– Section 1: Goal and questions you want to ask
– Section 2: Describe the system(s) and the data
– Section 3: Briefly report what you have tried
– Section 4: What do you need to do until 12/8?
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Announcements: Project Dates

• Project Presentations: 
– December 5th

– In person (contact me for exceptions)
• For groups that’ve already reached out, please 

send another email to track

• Final Paper due Friday December 8th

4



Project Presentation

Project presentations: 

• You have 5 minutes (4 + 1 for questions)

• Prepare 4 - 5 slides in Google Slides. Suggestions:
– Slide 1: Title slide: project title, your name, 

– Slide 2: Question: What question did you investigate?

– Slide 3: Method: How did you go about answering it?

– Slide 4: Results: What did you find? 

• I will ask you to place your google slides on a shared 
drive; details TBD
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Today’s Lecture
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Column-Oriented Storage
• C-store ideas and research since 1970’s
• Circa 2000: PAX (will discuss…)
• 2004: C-store research prototype at MIT

– Started by Mike Stonebraker
– Lead graduate student Daniel Abadi
– 2005: Vertica founded by M. Stonebraker & A. Palmer
– 2011: Vertica acquired by HP
– 2012: As of VLDB’12 paper, 500 production deployments of 

Vertica, three over a PB in size

• 2013: All major DB vendors include some column-store 
implementation

• 2016: PAX adopted by Snowflake
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DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.  
J. Hellerstein & M. Stonebraker. 
Red Book. 4ed.]

8DATA516/CSED516 - Fall 2023



Review: Data Storage in a Row Store

Consider a relation storing tweets:
Tweets(tid, user, time, content)

How should we store it on disk?
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Design Exercise
• Design choice: One OS file for each relation

– Option 1: DBMS creates one big file with “files” inside

– Option 2: DBMS uses disk directly, with “files” inside

• The OS (or DBMS) provides an API of the form
– Seek to some position (or “skip” over B bytes)

– Read/Write B bytes
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Working with Pages
• Reading/writing to/from disk

– Seeking takes a long time!
– Reading sequentially is fast
– Read/write entire blocks

• 1 block = typically 4, 8, or 16 KB

• Buffer manager:
– Caches a set of blocks in main memory
– Blocks in MM are called pages
– 1 page = 1 block
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Working with Main Memory

• The Central Processing Unit (CPU) 
reads/writes data from/to main memory
– Read/write entire bytes (= 8 bits)
– Typically: 1 or 2 or 4 or 8 bytes

• CPU much faster than MM
• Solution: CPU cache

– A very fast, associative memory
– Cache line = aka cache block
– Typically: 1 cache line = 64 bytes
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Summary so far…

Two bottlenecks:
• The disk I/O bottleneck:

– Disk is much slower than main memory
– Read/write one block at a time (8KB-16KB)
– Buffer pool in main memory: 1page=1block

• The main memory bottleneck
– MM is much slower than CPU
– Read/write one byte at a time (or 2/4/8)
– CPU cache: 1 cache line = 64 bytes
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Continuing our Design

Key question:

• How should we organize tuples on a page?
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Design Exercise 1

• Think how you would store tuples on a page
– Fixed length tuples

– Variable length tuples

• Requirements
– Insert a new tuple

– Look up a tuple given a RID (= Record ID)

– Remove a tuple given a RID

– Modify a tuple

– Enumerate all tuples
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Page Formats

Issues to consider:

• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)
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Why do we need RID’s in a relational DBMS ?



Page Formats

Issues to consider:

• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)
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Why do we need RID’s in a relational DBMS ?

For indexes, and for transactions



Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

SlotNSlot2Slot1

NFree space

Number of records

21

How do we insert a new record?
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Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records
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How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)



Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records
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How do we delete a record?

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)



Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records
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How do we delete a record?  Cannot remove record (why?)

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)



Page Format Approach 1

SlotN+1SlotNSlot2Slot1

NFree Sp.

Number of records
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How do we handle variable-length records?

How do we delete a record?  Cannot remove record (why?)

How do we insert a new record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)
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Page Format Approach 2

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Slot directory
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Header contains slot directory
+ Need to keep track of nb of slots
+ Also need to keep track of free space (F)

F4Free space

Record ID (RID) for each tuple is (PageID,SlotNb)
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Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field K. . .. . .Field 2Field 1

Information about field lengths and types is in the catalog
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Record Formats

Variable length records

Remark: NULLS require no space at all (why ?)
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Field K. . .. . .Field 2Field 1

Record header



Summary so far…

• Page format:
– Page header
– Record
– Record
– …

• Record format:
– Record header
– Field
– Field
– …
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From Row-Store to Column-Store

Rows stored 
contiguously on disk

(+ tuple headers)
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From Row-Store to Column-Store

Rows stored 
contiguously on disk

(+ tuple headers)

Columns stored 
contiguously on disk

(no tuple headers needed)
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Two Options

Column Store:
• 1 column = 1 file
• Requires a complete rewrite of query engine
• Potential for major performance gain for some queries, 

but need need a lot of work to get there (will see this)

PAX:
• Split the table into blocks (original PAX) or chunks 

(Snowflake)
• Inside each chunk, store the attribute column-wise
• Obtain most of the performance gain, with very little 

update to the query engine
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An Intermediate Format: PAX

• PAX = Partition Attributes Across

• Addresses memory access bottleneck (not 
the disk bottleneck)

DATA516/CSED516 - Fall 2023 34



From Row to Column Storage
(Initial Designs - 1985)
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N-ary
Storage
Model

Decomposition
Storage Model
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R

 Records are stored sequentially
 Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages
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Need New Data Page Layout

• Eliminates unnecessary memory accesses

• Improves inter-record locality

• Keeps a record’s fields together

• Does not affect I/O performance

and, most importantly, is…

low-implementation-cost, high-impact
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt
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CACHE

1563
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select …
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Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX
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1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052

 

block 130 45 2052

MAIN MEMORY

select …
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Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX
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FIXED-LENGTH VALUES VARIABLE-LENGTH VALUESHEADER

offsets to variable-
length fields

null bitmap,
record length, etc

NSM: All fields of record stored together + slots

A Real NSM Record

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt



pid 3 2 4v4

43221237

Jane John



1 1

30 45

1 1

f } Page Header

attribute 
sizes

free space# records
# 

attributes

F - Minipage

presence 
bits

presence 
bits

v-offsets

F - Minipage

V - Minipage

PAX: Detailed Design

PAX: Group fields + amortizes record headers
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt



PAX - Summary

• Improves processor cache locality
• Does not affect I/O behavior

– Same disk accesses for NSM or PAX storage
– No need to change the buffer manager

• Today:
– Most (all?) commercial engines use a PAX layout 

of the disk
– Beyond disk: Snowflake partitions tables 

horizontally into files, then uses column-store 
inside each file (hence, PAX)
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Column-Store

• Store an entire attribute in a different file

• While the idea had been around before 
PAX, getting all the details right in order to 
extract the extra performance took a long 
time
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C-Store Illustration
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Row-based
(4 pages)

A 1
A 2

A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page
C

2

C

4
4
4

B

2

B

2

C-Store also
avoids large
tuple headers
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Column-Oriented Databases

• Main idea:
– Physical storage: complete vertical partition; 

each column stored separately: R.A, R.B, R.A

– Logical schema: remains the same R(A,B,C)

• Main advantage:
– Improved transfer rate: disk to memory, 

memory to CPU, better cache locality
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Basic Trade-Off

• Row stores
– Quick to update entire tuple (1 page IO)
– Quick to access a single tuple

• Column stores
– Avoid reading unnecessary columns
– Better compression

• Entire system needs a different design
– Not only storage manager
– To achieve high performance
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From Row to Column Storage
(Modern Designs)

58

Basic tradeoffs:
• Reading all attributes of one records, v.s.
• Reading some attributes of many records



Fig. 1.2



Key Architectural Trends (Sec.1)

• Virtual IDs

• Block-oriented and vectorized processing

• Late materialization

• Column-specific compression
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Key Architectural Trends (Sec.1)

• Virtual IDs
– Offsets (arrays) instead of keys

• Block-oriented and vectorized processing
– Iterator model: one tupleone block of tuples

• Late materialization
– Postpone tuple reconstruction in query plan

• Column-specific compression
– Much better than row-compression (why?)
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Vectorized Processing

Review:

• Volcano-style iterator model
– Next() method

– Pipelining

• Materialization of all intermediate results

• Discuss in class:
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select avg(A) from R where A < 100



Vectorized Processing

• Vectorized processing:
– Next() returns a block of tuples (e.g. N=1000) 

instead of single tuple

• Pros:
– No more large intermediate results

– Tight inner loop for selection and/or avg

• Discuss in class:
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Compression (Sec. 4)

• What is the advantage of compression in 
databases?

• Main column-at-a-time compression 
techniques
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Compression (Sec. 4)

• What is the advantage of compression in 
databases?

• Main column-at-a-time compression 
techniques
– Run-length encoding: F,F,F,F,M,M4F,2M

– Bit-vector (see also bit-map indexes)

– Dictionary.  More generally: Ziv-Lempel
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Compression (Sec. 4)
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Row-based
(4 pages)

A 1
A 2

A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page
C

2

C

4
4
4

B

2

B

2

Compressed
(2 pages)

4XA
2XB
2XC

1X1
4X2
5X4
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Late Materialization (Sec. 4)

• What is it?
• Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
• Early materialization:

– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …
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– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
– Lookup values in column B: B[4], B[9], …
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– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
– Retain only positions with ‘d’: 4, 9, ...
– Lookup values in column B: B[4], B[9], …

• Late materialization
– Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
– Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
– Intersect: 4, 9, …
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Late Materialization (Sec. 4)

Ex: SELECT R.b from R where R.a=X and R.d=Y

a b c d

R

s

p

Early materialization

a b c d

R

s

Late materialization

s

1
1
0

0
1

1
0
0
1
0

∩

Extract values
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Jive Join (Sec. 4)
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Tuple positions
emp.dept_id dept.id
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One column will
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sort
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Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

Fetch
“dept.name”

sort



Jive Join (Sec. 4)

DATA516/CSED516 - Fall 2023 83

Tuple positions

One column will
be out of order

Add new indexes

emp.dept_id dept.id

Fetch
“dept.name”

sort

re-sort



Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40
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Late Materialization
select sum(R.a) from R, S
where R.c = S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40



More Details

• Sort columns according to some criterion
– Helps with range queries on that column

– Helps compressing that column

– But need to sort all the other columns the 
same way

• Create additional (redundant) ”views”, 
called “projections”, by sorting on different 
columns
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Final Thoughts

Simulating a Column-Store in a Row-Store DBMS:

• Vertical partitioning
– Two-column tables: (key, attribute)

• Index-only plans
– Create a B+ tree index on each attribute
– Answer queries using indexes only, without reading actual 

data

• Materialized views
– Each view contains a subset of columns
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