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Intro to Parallel Processing



Announcements

• Project proposals were due Friday
– If you have not submitted, staff will reach out

• HW2 (Spark) due on Monday 11/13
– Released later today/early tomorrow

– Pull upstream for new assignment

• Let us know when grades/late policy don’t 
reflect prior arrangements
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Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases (Start Today) 3



Spark
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Review: Single Client

5

E.g. data analytics



Review: Client-Server

6

Connection:

ODBC, JDBC

E.g. accounting, banking, …



Review: Three-tier

connection

(ODBC, JDBC)

http

E.g. Web commerce



Review: Distributed Database

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database

Spark, Snowflake



Distributed or Parallel Query 
Processing

• Clusters:
– More servers  more in main memory
– More servers  more computing power
– Clusters are now cheaply available in the cloud
– Distributed query processing

• Multicores:
– The end of Moore’s law
– Parallel query processing
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Motivation

• Limitations of relational database systems:
– Single server (at least traditionally)
– SQL is a limited language (eg no iteration)

• Spark:
– Distributed system
– Functional language (Python/R) good for ML

• Implementation:
– Extension of MapReduce
– Distributed physical operators
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Programming in Spark

• A Spark program consists of:
– Transformations (map, reduce, join…).  Lazy
– Actions (count, reduce, save...).  Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree



Collections in Spark

RDD<T> = an RDD collection of type T

• Distributed on many servers, not nested

• Operations are done in parallel

• Recoverable via lineage; more later

Seq<T> = a sequence

• Local to one server, may be nested

• Operations are done sequentially



Example from paper, new syntax

// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()   

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS



// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()   

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…



// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()   

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program



errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions



Example
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Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

Error…Error…Error…Error…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

Error…Error…Error…Error…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



More on Programming Interface

Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey, 

reduceByKey, union, join, cogroup, crossProduct, 
…

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations
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Transformations:

RDD<T> -> RDD<U>map(f : T -> U):

RDD<T> -> RDD<U>flatMap(f: T -> Seq(U)):

RDD<T> -> RDD<T>filter(f:T->Bool):

RDD<(K,V)> -> RDD<(K,Seq[V])>groupByKey():

RDD<(K,V)> -> RDD<(K,V)>reduceByKey(F:(V,V)-> V):

(RDD<T>,RDD<T>) -> RDD<T>union():

(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>join():

(RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>cogroup():

(RDD<T>,RDD<U>) -> RDD<(T,U)>crossProduct():

Actions:

RDD<T> -> Longcount():

RDD<T> -> Seq<T>collect():

RDD<T> -> Treduce(f:(T,T)->T):

Outputs RDD to a storage system e.g., HDFSsave(path:String):



What Am I?
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What Am I?
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Logistic 
Regression!!



Spark Ecosystem Growth
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Image from: http://spark.apache.org/

Now Called 
Structured 
Streaming



Spark SQL vs Functional Prog. API

• Spark’s original functional programming API
– General

– But limited opportunities for automatic optimization

• Spark SQL simultaneously 
– Makes Spark accessible to more users

– Improves opportunities for automatic optimizations
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Three Java-Spark APIs

• RDDs: Syntax: JavaRDD<T>
– T = anything, basically untyped

• Data frames:  Dataset<Row>
– <Row> = a record, dynamically typed

• Datasets: Dataset<Person>
– <Person> = user defined type

– Not in Python/R
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DataFrames

• Like RDD: immutable distributed collection

• Organized into named columns
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame



Datasets

• Like DataFrames, but elements must be typed

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of 
Spark 2.0)



Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run 
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar? 



Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)
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MapReduce: References

• Jeffrey Dean and Sanjay Ghemawat, 
MapReduce: Simplified Data Processing on 
Large Clusters. OSDI’04

• D. DeWitt and M. Stonebraker. Mapreduce –
a major step backward. In Database Column 
(Blog), 2008.



MapReduce

• Google:
– Started around 2000
– Paper published 2004
– Discontinued September 2019

• Free variant: Hadoop

• MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing
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Distributed File System (DFS)

• For very large files: TBs, PBs

• Each file partitioned into chunks (64MB)

• Each chunk replicated (≥3 times) – why?

• Implementations:
– Google’s DFS:  GFS, proprietary
– Hadoop’s DFS:  HDFS, open source
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MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput:  bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
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MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput:  bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
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MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput:  bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
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MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput:  bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
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Step 1: the MAP Phase

User provides the MAP-function:

• Input: (input key, value)

• Ouput:  bag of (intermediate key, value)

System applies the map function in parallel to all 
(input key, value) pairs in input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of values)

• Output: bag of output (values)

System groups all pairs with the same intermediate 
key, and passes the bag of values to the REDUCE 
function
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Example

• Counting the number of occurrences of each 
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)
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Example

• Counting the number of occurrences of each 
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
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Example

• Counting the number of occurrences of each 
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
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reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));



Think “Relational”!

DATA516/CSED516 - Fall 2023 44

Documents:

Hive – A Petabyte Scale Data Warehouse Using 
Hadoop 

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu 
and Raghotham Murthy 

Facebook Data Infrastructure Team 

 
Abstract— The size of data sets being collected and analyzed in 
the industry for business intelligence is growing rapidly, making 
traditional warehousing solutions prohibitively expensive. 
Hadoop [1] is a popular open-source map-reduce implementation 
which is being used in companies like Yahoo, Facebook etc. to 
store and process extremely large data sets on commodity 
hardware. However, the map-reduce programming model is very 
low level and requires developers to write custom programs 
which are hard to maintain and reuse. In this paper, we present 
Hive, an open-source data warehousing solution built on top of 
Hadoop. Hive supports queries expressed in a SQL-like 
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL 
enables users to plug in custom map-reduce scripts into queries. 
The language includes a type system with support for tables 
containing primitive types, collections like arrays and maps, and 
nested compositions of the same. The underlying IO libraries can 
be extended to query data in custom formats. Hive also includes 
a system catalog - Metastore – that contains schemas and 
statistics, which are useful in data exploration, query 
optimization and query compilation. In Facebook, the Hive 
warehouse contains tens of thousands of tables and stores over 
700TB of data and is being used extensively for both reporting 
and ad-hoc analyses by more than 200 users per month. 

I. INTRODUCTION 

Scalable analysis on large data sets has been core to the 
functions of a number of teams at Facebook - both 
engineering and non-engineering. Apart from ad hoc analysis 
and business intelligence applications used by analysts across 
the company, a number of Facebook products are also based 
on analytics. These products range from simple reporting 
applications like Insights for the Facebook Ad Network, to 
more advanced kind such as Facebook's Lexicon product [2]. 
As a result a flexible infrastructure that caters to the needs of 
these diverse applications and users and that also scales up in 
a cost effective manner with the ever increasing amounts of 
data being generated on Facebook, is critical. Hive and 
Hadoop are the technologies that we have used to address 
these requirements at Facebook. 

The entire data processing infrastructure in Facebook prior 
to 2008 was built around a data warehouse built using a 
commercial RDBMS. The data that we were generating was 
growing very fast - as an example we grew from a 15TB data 
set in 2007 to a 700TB data set today. The infrastructure at 
that time was so inadequate that some daily data processing 
jobs were taking more than a day to process and the situation 
was just getting worse with every passing day. We had an 
urgent need for infrastructure that could scale along with our 

data. As a result we started exploring Hadoop as a technology 
to address our scaling needs. The fact that Hadoop was 
already an open source project that was being used at petabyte 
scale and provided scalability using commodity hardware was 
a very compelling proposition for us. The same jobs that had 
taken more than a day to complete could now be completed 
within a few hours using Hadoop. 

However, using Hadoop was not easy for end users, 
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for 
simple tasks like getting raw counts or averages. Hadoop 
lacked the expressiveness of popular query languages like 
SQL and as a result users ended up spending hours (if not 
days) to write programs for even simple analysis. It was very 
clear to us that in order to really empower the company to 
analyze this data more productively, we had to improve the 
query capabilities of Hadoop. Bringing this data closer to 
users is what inspired us to build Hive in January 2007. Our 
vision was to bring the familiar concepts of tables, columns, 
partitions and a subset of SQL to the unstructured world of 
Hadoop, while still maintaining the extensibility and 
flexibility that Hadoop enjoyed. Hive was open sourced in 
August 2008 and since then has been used and explored by a 
number of Hadoop users for their data processing needs. 

Right from the start, Hive was very popular with all users 
within Facebook. Today, we regularly run thousands of jobs 
on the Hadoop/Hive cluster with hundreds of users for a wide 
variety of applications starting from simple summarization 
jobs to business intelligence, machine learning applications 
and to also support Facebook product features. 

In the following sections, we provide more details about 
Hive architecture and capabilities. Section II describes the 
data model, the type systems and the HiveQL. Section III 
details how data in Hive tables is stored in the underlying 
distributed file system – HDFS(Hadoop file system). Section 
IV describes the system architecture and various components 
of Hive . In Section V we highlight the usage statistics of Hive 
at Facebook and provide related work in Section VI. We 
conclude with future work in Section VII. 

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE 

Hive structures data into the well-understood database 
concepts like tables, columns, rows, and partitions. It supports 
all the major primitive types – integers, floats, doubles and 
strings – as well as complex types such as maps, lists and 
structs. The latter can be nested arbitrarily to construct more 
complex types. In addition, Hive allows users to extend the 

did1
system with their own types and functions. The query 
language is very similar to SQL and therefore can be easily 
understood by anyone familiar with SQL. There are some 
nuances in the data model, type system and HiveQL that are 
different from traditional databases and that have been 
motivated by the experiences gained at Facebook. We will 
highlight these and other details in this section. 

A. Data Model and Type System 

Similar to traditional databases, Hive stores data in tables, 
where each table consists of a number of rows, and each row 
consists of a specified number of columns. Each column has 
an associated type. The type is either a primitive type or a 
complex type. Currently, the following primitive types are 
supported:  

· Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes), 
tinyint(1 byte). All integer types are signed. 

· Floating point numbers – float(single precision), 
double(double precision) 

· String 
 
Hive also natively supports the following complex types: 

· Associative arrays – map<key-type, value-type> 
· Lists – list<element-type> 
· Structs – struct<file-name: field-type, ... > 

 
These complex types are templated and can be composed to 
generate types of arbitrary complexity. For example, 
list<map<string, struct<p1:int, p2:int>> represents a list of 
associative arrays that map strings to structs that in turn 
contain two integer fields named p1 and p2. These can all be 
put together in a create table statement to create tables with 
the desired schema. For example, the following statement 
creates a table t1 with a complex schema. 
 
CREATE TABLE t1(st string, fl float, li list<map<string, 
struct<p1:int, p2:int>>); 
 
Query expressions can access fields within the structs using a 
'.' operator. Values in the associative arrays and lists can be 
accessed using '[]' operator. In the previous example, t1.li[0] 
gives the first element of the list and t1.li[0]['key'] gives the 
struct associated with 'key' in that associative array. Finally 
the p2 field of this struct can be accessed by t1.li[0]['key'].p2. 
With these constructs Hive is able to support structures of 
arbitrary complexity. 

The tables created in the manner describe above are 
serialized and deserialized using default serializers and 
deserializers already present in Hive. However, there are 
instances where the data for a table is prepared by some other 
programs or may even be legacy data. Hive provides the 
flexibility to incorporate that data into a table without having 
to transform the data, which can save substantial amount of 
time for large data sets. As we will describe in the later 
sections, this can be achieved by providing a jar that 
implements the SerDe java interface to Hive. In such 
situations the type information can also be provided by that jar 
by providing a corresponding implementation of the 

ObjectInspector java interface and exposing that 
implementation through the getObjectInspector method 
present in the SerDe interface. More details on these interfaces 
can be found on the Hive wiki [3], but the basic takeaway here 
is that any arbitrary data format and types encoded therein can 
be plugged into Hive by providing a jar that contains the 
implementations for the SerDe and ObjectInspector interfaces. 
All the native SerDes and complex types supported in Hive 
are also implementations of these interfaces. As a result once 
the proper associations have been made between the table and 
the jar, the query layer treats these on par with the native types 
and formats. As an example, the following statement adds a 
jar containing the SerDe and ObjectInspector interfaces to the 
distributed cache([4]) so that it is available to Hadoop and 
then proceeds to create the table with the custom serde. 

 
add jar /jars/myformat.jar; 
CREATE TABLE t2 
ROW FORMAT SERDE 'com.myformat.MySerDe'; 

 
Note that, if possible, the table schema could also be provided 
by composing the complex and primitive types. 

 

B. Query Language 

The Hive query language(HiveQL) comprises of a subset of 
SQL and some extensions that we have found useful in our 
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer 
and outer joins, cartesian products, group bys and 
aggregations, union all, create table as select and many useful 
functions on primitive and complex types make the language 
very SQL like. In fact for many of the constructs mentioned 
before it is exactly like SQL. This enables anyone familiar 
with SQL to start a hive cli(command line interface) and begin 
querying the system right away. Useful metadata browsing 
capabilities like show tables and describe are also present and 
so are explain plan capabilities to inspect query plans (though 
the plans look very different from what you would see in a 
traditional RDBMS). There are some limitations e.g. only 
equality predicates are supported in a join predicate and the 
joins have to be specified using the ANSI join syntax such as 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1 JOIN t2 ON (t1.a2 = t2.b2); 
 
instead of the more traditional 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1, t2 
WHERE t1.a2 = t2.b2; 
 
Another limitation is in how inserts are done. Hive currently 
does not support inserting into an existing table or data 
partition and all inserts overwrite the existing data. 
Accordingly, we make this explicit in our syntax as follows: 
 
INSERT OVERWRITE TABLE t1  

did2
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Relation



Think “Relational”!
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Abstract— The size of data sets being collected and analyzed in 
the industry for business intelligence is growing rapidly, making 
traditional warehousing solutions prohibitively expensive. 
Hadoop [1] is a popular open-source map-reduce implementation 
which is being used in companies like Yahoo, Facebook etc. to 
store and process extremely large data sets on commodity 
hardware. However, the map-reduce programming model is very 
low level and requires developers to write custom programs 
which are hard to maintain and reuse. In this paper, we present 
Hive, an open-source data warehousing solution built on top of 
Hadoop. Hive supports queries expressed in a SQL-like 
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL 
enables users to plug in custom map-reduce scripts into queries. 
The language includes a type system with support for tables 
containing primitive types, collections like arrays and maps, and 
nested compositions of the same. The underlying IO libraries can 
be extended to query data in custom formats. Hive also includes 
a system catalog - Metastore – that contains schemas and 
statistics, which are useful in data exploration, query 
optimization and query compilation. In Facebook, the Hive 
warehouse contains tens of thousands of tables and stores over 
700TB of data and is being used extensively for both reporting 
and ad-hoc analyses by more than 200 users per month. 

I. INTRODUCTION 

Scalable analysis on large data sets has been core to the 
functions of a number of teams at Facebook - both 
engineering and non-engineering. Apart from ad hoc analysis 
and business intelligence applications used by analysts across 
the company, a number of Facebook products are also based 
on analytics. These products range from simple reporting 
applications like Insights for the Facebook Ad Network, to 
more advanced kind such as Facebook's Lexicon product [2]. 
As a result a flexible infrastructure that caters to the needs of 
these diverse applications and users and that also scales up in 
a cost effective manner with the ever increasing amounts of 
data being generated on Facebook, is critical. Hive and 
Hadoop are the technologies that we have used to address 
these requirements at Facebook. 

The entire data processing infrastructure in Facebook prior 
to 2008 was built around a data warehouse built using a 
commercial RDBMS. The data that we were generating was 
growing very fast - as an example we grew from a 15TB data 
set in 2007 to a 700TB data set today. The infrastructure at 
that time was so inadequate that some daily data processing 
jobs were taking more than a day to process and the situation 
was just getting worse with every passing day. We had an 
urgent need for infrastructure that could scale along with our 

data. As a result we started exploring Hadoop as a technology 
to address our scaling needs. The fact that Hadoop was 
already an open source project that was being used at petabyte 
scale and provided scalability using commodity hardware was 
a very compelling proposition for us. The same jobs that had 
taken more than a day to complete could now be completed 
within a few hours using Hadoop. 

However, using Hadoop was not easy for end users, 
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for 
simple tasks like getting raw counts or averages. Hadoop 
lacked the expressiveness of popular query languages like 
SQL and as a result users ended up spending hours (if not 
days) to write programs for even simple analysis. It was very 
clear to us that in order to really empower the company to 
analyze this data more productively, we had to improve the 
query capabilities of Hadoop. Bringing this data closer to 
users is what inspired us to build Hive in January 2007. Our 
vision was to bring the familiar concepts of tables, columns, 
partitions and a subset of SQL to the unstructured world of 
Hadoop, while still maintaining the extensibility and 
flexibility that Hadoop enjoyed. Hive was open sourced in 
August 2008 and since then has been used and explored by a 
number of Hadoop users for their data processing needs. 

Right from the start, Hive was very popular with all users 
within Facebook. Today, we regularly run thousands of jobs 
on the Hadoop/Hive cluster with hundreds of users for a wide 
variety of applications starting from simple summarization 
jobs to business intelligence, machine learning applications 
and to also support Facebook product features. 

In the following sections, we provide more details about 
Hive architecture and capabilities. Section II describes the 
data model, the type systems and the HiveQL. Section III 
details how data in Hive tables is stored in the underlying 
distributed file system – HDFS(Hadoop file system). Section 
IV describes the system architecture and various components 
of Hive . In Section V we highlight the usage statistics of Hive 
at Facebook and provide related work in Section VI. We 
conclude with future work in Section VII. 

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE 

Hive structures data into the well-understood database 
concepts like tables, columns, rows, and partitions. It supports 
all the major primitive types – integers, floats, doubles and 
strings – as well as complex types such as maps, lists and 
structs. The latter can be nested arbitrarily to construct more 
complex types. In addition, Hive allows users to extend the 

did1
system with their own types and functions. The query 
language is very similar to SQL and therefore can be easily 
understood by anyone familiar with SQL. There are some 
nuances in the data model, type system and HiveQL that are 
different from traditional databases and that have been 
motivated by the experiences gained at Facebook. We will 
highlight these and other details in this section. 

A. Data Model and Type System 

Similar to traditional databases, Hive stores data in tables, 
where each table consists of a number of rows, and each row 
consists of a specified number of columns. Each column has 
an associated type. The type is either a primitive type or a 
complex type. Currently, the following primitive types are 
supported:  

· Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes), 
tinyint(1 byte). All integer types are signed. 

· Floating point numbers – float(single precision), 
double(double precision) 

· String 
 
Hive also natively supports the following complex types: 

· Associative arrays – map<key-type, value-type> 
· Lists – list<element-type> 
· Structs – struct<file-name: field-type, ... > 

 
These complex types are templated and can be composed to 
generate types of arbitrary complexity. For example, 
list<map<string, struct<p1:int, p2:int>> represents a list of 
associative arrays that map strings to structs that in turn 
contain two integer fields named p1 and p2. These can all be 
put together in a create table statement to create tables with 
the desired schema. For example, the following statement 
creates a table t1 with a complex schema. 
 
CREATE TABLE t1(st string, fl float, li list<map<string, 
struct<p1:int, p2:int>>); 
 
Query expressions can access fields within the structs using a 
'.' operator. Values in the associative arrays and lists can be 
accessed using '[]' operator. In the previous example, t1.li[0] 
gives the first element of the list and t1.li[0]['key'] gives the 
struct associated with 'key' in that associative array. Finally 
the p2 field of this struct can be accessed by t1.li[0]['key'].p2. 
With these constructs Hive is able to support structures of 
arbitrary complexity. 

The tables created in the manner describe above are 
serialized and deserialized using default serializers and 
deserializers already present in Hive. However, there are 
instances where the data for a table is prepared by some other 
programs or may even be legacy data. Hive provides the 
flexibility to incorporate that data into a table without having 
to transform the data, which can save substantial amount of 
time for large data sets. As we will describe in the later 
sections, this can be achieved by providing a jar that 
implements the SerDe java interface to Hive. In such 
situations the type information can also be provided by that jar 
by providing a corresponding implementation of the 

ObjectInspector java interface and exposing that 
implementation through the getObjectInspector method 
present in the SerDe interface. More details on these interfaces 
can be found on the Hive wiki [3], but the basic takeaway here 
is that any arbitrary data format and types encoded therein can 
be plugged into Hive by providing a jar that contains the 
implementations for the SerDe and ObjectInspector interfaces. 
All the native SerDes and complex types supported in Hive 
are also implementations of these interfaces. As a result once 
the proper associations have been made between the table and 
the jar, the query layer treats these on par with the native types 
and formats. As an example, the following statement adds a 
jar containing the SerDe and ObjectInspector interfaces to the 
distributed cache([4]) so that it is available to Hadoop and 
then proceeds to create the table with the custom serde. 

 
add jar /jars/myformat.jar; 
CREATE TABLE t2 
ROW FORMAT SERDE 'com.myformat.MySerDe'; 

 
Note that, if possible, the table schema could also be provided 
by composing the complex and primitive types. 

 

B. Query Language 

The Hive query language(HiveQL) comprises of a subset of 
SQL and some extensions that we have found useful in our 
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer 
and outer joins, cartesian products, group bys and 
aggregations, union all, create table as select and many useful 
functions on primitive and complex types make the language 
very SQL like. In fact for many of the constructs mentioned 
before it is exactly like SQL. This enables anyone familiar 
with SQL to start a hive cli(command line interface) and begin 
querying the system right away. Useful metadata browsing 
capabilities like show tables and describe are also present and 
so are explain plan capabilities to inspect query plans (though 
the plans look very different from what you would see in a 
traditional RDBMS). There are some limitations e.g. only 
equality predicates are supported in a join predicate and the 
joins have to be specified using the ANSI join syntax such as 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1 JOIN t2 ON (t1.a2 = t2.b2); 
 
instead of the more traditional 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1, t2 
WHERE t1.a2 = t2.b2; 
 
Another limitation is in how inserts are done. Hive currently 
does not support inserting into an existing table or data 
partition and all inserts overwrite the existing data. 
Accordingly, we make this explicit in our syntax as follows: 
 
INSERT OVERWRITE TABLE t1  
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Think “Relational”!
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select word, count(*)
from Data
group by word

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…



Think “Relational”!
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select word, count(*)
from Data
group by word

map = group by

reduce = count(…) (or sum(…) or…)

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…



Think “Relational”!
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select word, count(*)
from Data
group by word

map = group by

reduce = count(…) (or sum(…) or…)

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…

MapReduce = Group-by-aggregate



MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle
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Examples from the paper

Discuss in class how to implement in MR

• Distributed grep

• Count URL access frequency: (URL, count)

• Reverse web-link graph: (URL, (list of URLs))

• Inverted index: (word, (list of URLs)) 50



Jobs v.s. Tasks

• A MapReduce Job
– One simple “query”, e.g. count words in docs

– Complex queries may require many jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, to be scheduled on a single worker
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Workers

• A worker is a process that executes one task 
at a time

• Typically, there is one worker per processor, 
hence 4 or 8 per node
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Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in 
less than one hour

• MapReduce handles fault tolerance by writing 
intermediate files to disk:
– Mappers write file to disk
– Reducers read the files (=reshuffling); if the server 

fails, the reduce task is restarted on another 
server
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MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle
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Choosing Parameters in MR

• Number of map tasks (M):
– Default: one map task per chunk
– E.g. data = 64TB, chunk = 64MB  M = 106

• Number of reduce tasks (R):
– No good default; set manually R << M
– E.g. R = 500 or 5000

• In general, MapReduce had very many 
parameters that required expertise to tune
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MapReduce Execution Details
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Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local  disk:
M × R files (why?)

Output to
GFS or HDFS

File system:
GFS or HDFS

Task

Task



Discussion

Why doesn’t MR determine the number of 
reduce tasks R dynamically, after all map tasks 
finish?

57



Discussion

Why doesn’t MR determine the number of 
reduce tasks R dynamically, after all map tasks 
finish?

Because each map tasks needs to write its 
output into R file; so R must be known before 
the map tasks start
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Local storage`̀

MapReduce Phases
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Riddle

• The combiner function 
performs an optimization that 
you already know

• Which one?
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Riddle

• The combiner function 
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you already know

• Which one?

• Pushing aggregates down
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Riddle

• The combiner function 
performs an optimization that 
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word
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Temp=
select server, word, count(*) as c
from Data
group by server, word



Riddle

• The combiner function 
performs an optimization that 
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word

– Reducers perform final group-by

63

Temp=
select server, word, count(*) as c
from Data
group by server, word

Output =
select word, sum(c)
from Temp
group by word



Implementation
• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M map 
tasks, keeps track of their progress

• Workers write their output to local disk, partition 
into R regions

• Master assigns workers to the R reduce tasks

• Reduce workers read regions from the map 
workers’ local disks 
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)

• The M * R problem – what is it?
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)

• The M * R problem – what is it?

• “Parallel databases uses push (to sockets) 
instead of pull” – what’s the point?

70



Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)
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Fault Tolerance
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Fault Tolerance

• Traditional RDBMs:
– Major concern: recover after failure

• Massively distributed systems:
– Probability of failure increases w/ no. of workers 

and length of job
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Fault Tolerance
Example: 

• if a server fails once/year…

• … a job with 10000 servers fails once/hour
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Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed: 
this is possible because the map tasks still have 
intermediate data on their local disks

• Spark: will discuss next
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Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed: 
this is possible because the map tasks still have 
intermediate data on their local disks

• Spark: will discuss next
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Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed

• Spark: will discuss next
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Approach
New abstraction: Resilient Distributed Datasets

RDD properties

• Parallel data structure

• Can be persisted in memory

• Fault-tolerant

• Users can manipulate RDDs with rich set of 
operators
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Resilient Distributed Datasets
• RDD = Resilient Distributed Dataset

– Distributed, immutable.

– Records lineage = expression that says how that 
relation was computed = a relational algebra plan

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory 
is lost.  However, the driver (=master node) 
knows the lineage, and will simply recompute
the lost partition of the RDD
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Example

80

SELECT count(*)  FROM R, S
WHERE R.B > 200 and S.C < 100  and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting 
in memory
or on disk



Example

81

SELECT count(*)  FROM R, S
WHERE R.B > 200 and S.C < 100  and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200);
SC = S.filter(t -> t.c < 100);
J = RB.join(SC);
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations



RDD Details

• An RDD is a partitioned collection of records
– RDD’s are typed: RDD[Int] is an RDD of integers
– Records are Java/Python objects 

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join
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RDD Materialization

• Users control persistence and partitioning

• Persistence
– Materialize this RDD in memory

• Partitioning
– Users can specify key for partitioning an RDD
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Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)
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Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering
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Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering
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Discussion

• Parallel database systems: since the 80s

• MapReduce: around 2000

• Hive: built on MapReuce

• Spark: “better” MapReduce around 2010

• Snowflake, Aurora: cloud, parallel databases; 
around 2015 

Quick comparison (next slides)
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MapReduce v.s. Spark

• Job = Map+Reduce

• Language = Java

• Data = untyped

• Optimization = no

• Job = any query

• Language ≈ RA

• Data = has schema

• Optimization = yes
but limited: missing 
stats on base data
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Spark v.s. RDBMS

• Query language = its 
own proprietary

• Optimizer = limited

• Runtime = its own 
proprietary

• External functions = 
yes; very useful in ML

• Query language = 
SQL

• Optimizer = full scale

• Runtime = efficient 
SQL query engine

• External functions = 
no

94



Outline

• Spark Review

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases (Start Today) 95



Parallel Databases

96



Outline

• Basic notions

• Distributed query processing algorithms 
(Start)

• Skew (will continue next lecture)
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Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory

• SMP = 
symmetric multiprocessor

• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs 
on a single machine and can 
leverage many threads to 
speed up a query

• Easy to use and program
• Expensive to scale

99

Interconnection 
Network

P P P

Global Shared 
Memory

D D D



Shared Disk

• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

100

Interconnection 
Network

P P P

D D D

M M M



Shared Nothing

• Cluster of commodity machines

• Called "clusters" or "blade servers”

• Each machine: own memory & disk

• Up to x1000-x10000 nodes

• Example: redshift, spark, snowflake

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on a 
single physical machine.

• Easy to maintain and scale

• Most difficult to administer and tune.

Interconnection 
Network

P P P

D D D

M M M



Performance Metrics
Nodes = processors = computers

• Speed Up: 
– More nodes, same data  higher speed

• Scale Up:
– More nodes, more data  same speed

Disclaimer: Scale Up is often mis-used as Speed Up



Linear v.s. Non-linear Speedup
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# nodes (=P)

Speedup

×1 ×5 ×10 ×15



Linear v.s. Non-linear Scaleup
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# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal



Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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“Scalability but at what cost?”
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# nodes (=P)

Speedup

×1 ×5 ×10 ×15

Best single-server
algorithm



Discussion

Parallel/distributed data processing:

• Scales up* to more data:
– More servers can hold more data

• Speedup w/ number of nodes:
– Harder to achieve

– But can get there in with more nodes/future 
research

107* “Scale up” is often used informally, like here



Outline

• Basic notions

• Distributed query processing algorithms

• Skew (will continue next lecture)
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Distributed Query Processing 
Algorithms
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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……namesid ……namesid

……namesid

……namesid

Table

fragment
chunk

partition

R

R1

R2

R3

…



Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin: 
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Notations

114

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

p = number of servers (nodes) that hold the chunks



Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

115
We design algorithms for uniform load, discuss skew later



Parallel Algorithm

• Selection σ

• Join 

• Group by  ɣ

116



Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan
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Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan
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Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

DATA516/CSED516 - Fall 2023 120



Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K
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R1 R2 RP

.  .  .



Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K
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R1 R2 RP
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Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk

– Worse than main memory
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This is done in one
communication step

Can you think
of an optimization?
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j … Tp,j
Answerj =  γA, sum(B) (Rj’)
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Pushing Aggregates Past Union

Which other rules can we push past union?

• Sum?

• Count?

• Avg?

• Max?

• Median?
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HolisticAlgebraicDistributive

median(B)avg(B) = 
sum(B)/count(B)

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))
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Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)
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