DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 4 Spark, MapReduce, Hive Intro to Parallel Processing

Announcements

- Project proposals were due Friday
 - If you have not submitted, staff will reach out
- HW2 (Spark) due on Monday 11/13
 - Released later today/early tomorrow
 - Pull upstream for new assignment
- Let us know when grades/late policy don't reflect prior arrangements

DATA516/CSED516 - Fall 2023

Outline

- Spark
- MapReduce and critique
- Fault Tolerance
- Hive (short)

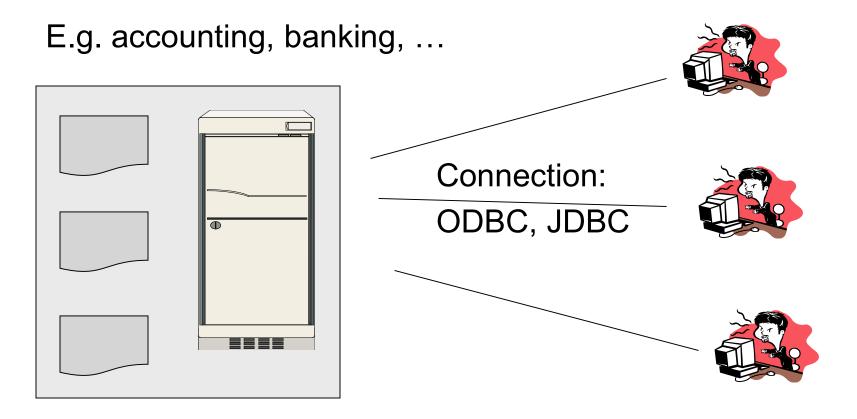
Next lecture: Parallel databases (Start Today) 3

Spark

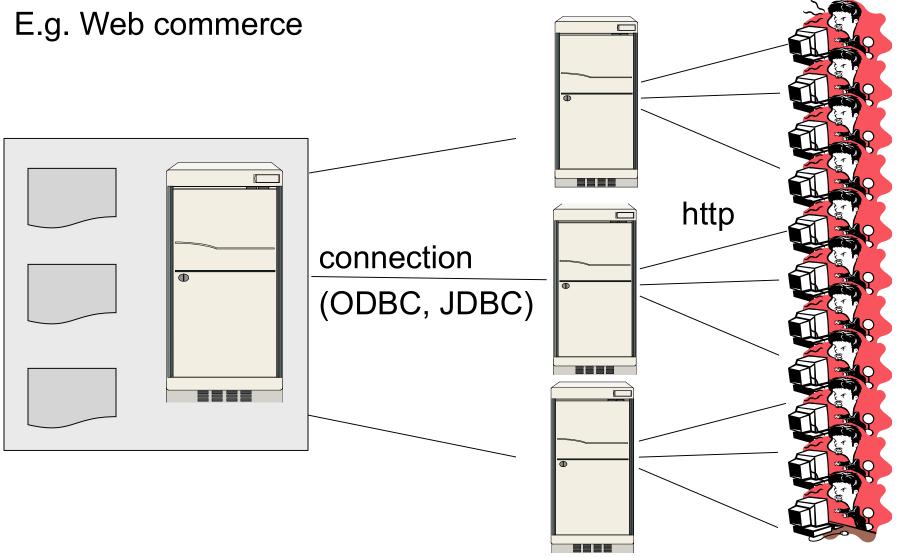
Review: Single Client

E.g. data analytics

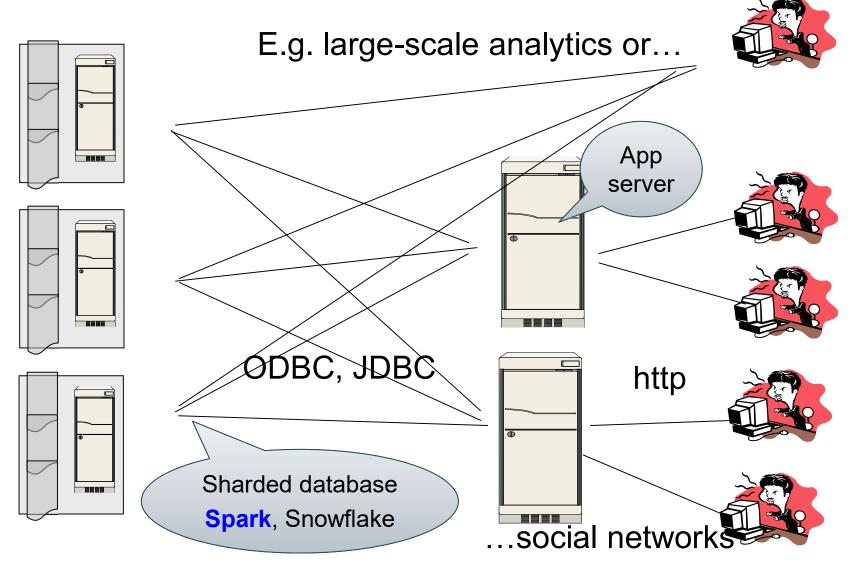
Review: Client-Server



Review: Three-tier



Review: Distributed Database



Distributed or Parallel Query Processing

- Clusters:
 - More servers \rightarrow more in main memory
 - More servers \rightarrow more computing power
 - Clusters are now cheaply available in the cloud
 - <u>Distributed</u> query processing
- Multicores:
 - The end of Moore's law
 - <u>Parallel</u> query processing

Motivation

- Limitations of relational database systems:
 - Single server (at least traditionally)
 - SQL is a limited language (eg no iteration)
- Spark:
 - Distributed system
 - Functional language (Python/R) good for ML
- Implementation:
 - Extension of MapReduce
 - Distributed physical operators

Programming in Spark

- A Spark program consists of:
 - Transformations (map, reduce, join...). Lazy
 - Actions (count, reduce, save...). Eager
- Eager: operators are executed immediately
- Lazy: operators are not executed immediately
 - A operator tree is constructed in memory instead
 - Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T

- Distributed on many servers, not nested
- Operations are done in parallel
- Recoverable via lineage; more later

Seq<T> = a sequence

- Local to one server, may be nested
- Operations are done sequentially

Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
```

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))

```
// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()
```

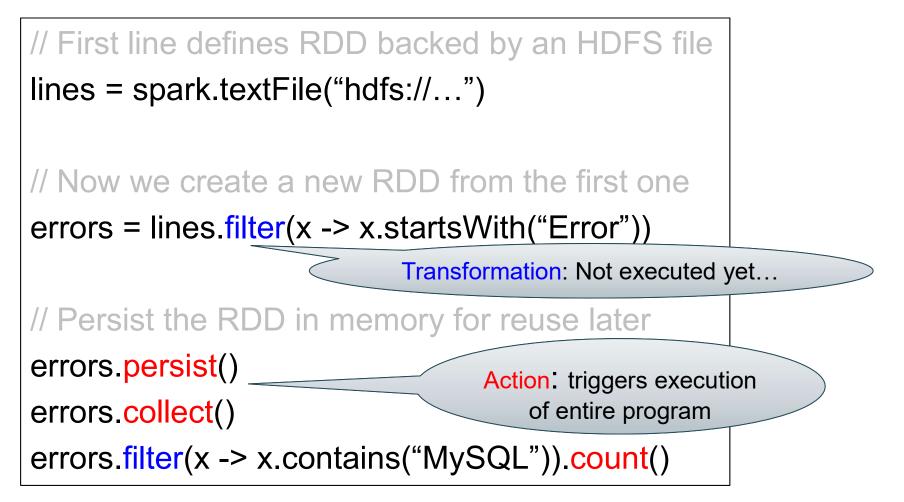
Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))
                            Transformation: Not executed yet...
// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()
```

Example from paper, new syntax

Search logs stored in HDFS



Anonymous Functions

A.k.a. lambda expressions, starting in Java 8

errors = lines.filter(x -> x.startsWith("Error"))

The RDD s:

Error Warning Error Abort Abort	Error	Error	Warning	Error	
---------------------------------	-------	-------	---------	-------	--

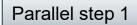
sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

DATA516/CSED516 - Fall 2023

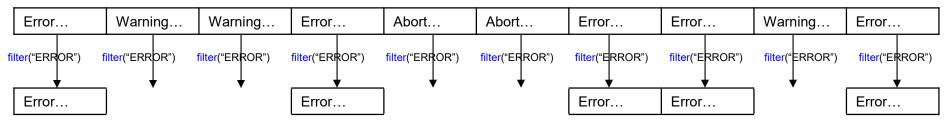
The RDD s:

	Error	Warning	Warning	Error	Abort	Abort	Error	Error	Warning	Error
fil	ter("ERROR")	filter("ERROR")								
	+	+	. ↓	+	+	. ↓	+	+	. ↓	. ↓

sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();

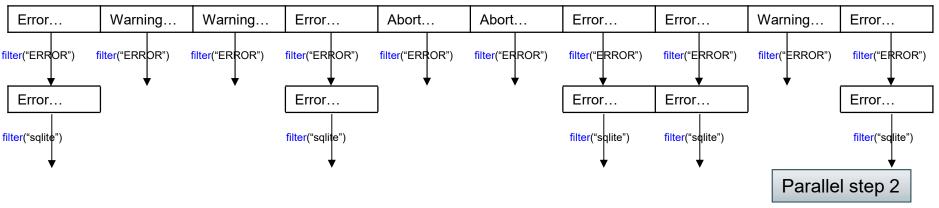


The RDD s:



sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();





sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();

More on Programming Interface

Large set of pre-defined transformations:

 Map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, crossProduct,

Small set of pre-defined actions:

• Count, collect, reduce, lookup, and save

Programming interface includes iterations

Transformations:			
<pre>map(f : T -> U):</pre>	RDD <t> -> RDD<u></u></t>		
<pre>flatMap(f: T -> Seq(U)):</pre>	RDD <t> -> RDD<u></u></t>		
<pre>filter(f:T->Bool):</pre>	RDD <t> -> RDD<t></t></t>		
<pre>groupByKey():</pre>	RDD<(K,V)> -> RDD<(K,Seq[V])>		
<pre>reduceByKey(F:(V,V)-> V):</pre>	RDD<(K,V)> -> RDD<(K,V)>		
<pre>union():</pre>	(RDD <t>,RDD<t>) -> RDD<t></t></t></t>		
join():	(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>		
<pre>cogroup():</pre>	(RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq <v>,Seq<w>))></w></v>		
<pre>crossProduct():</pre>	(RDD <t>,RDD<u>) -> RDD<(T,U)></u></t>		

Actions:			
<pre>count():</pre>	RDD <t> -> Long</t>		
<pre>collect():</pre>	RDD <t> -> Seq<t></t></t>		
<pre>reduce(f:(T,T)->T):</pre>	RDD <t> -> T</t>		
<pre>save(path:String):</pre>	Outputs RDD to a storage system e.g., HDFS		

What Am I?

```
val points = spark.textFile(...)
                      .map(parsePoint).persist()
var w = // random initial vector
for (i <- 1 to ITERATIONS) {
   val gradient = points.map{ p =>
        p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
        }.reduce((a,b) => a+b)
   w -= gradient
}
```

What Am I?

```
val points = spark.textFile(...)
                   .map(parsePoint).persist()
var w = // random initial vector
for (i <- 1 to ITERATIONS) {
  val gradient = points.map{ p =>
    p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
  \frac{(a,b)}{\Rightarrow} = a+b
 w -= gradient
}
                             Logistic
                             Regression!!
```

[From Zaharia12]

Spark Ecosystem Growth

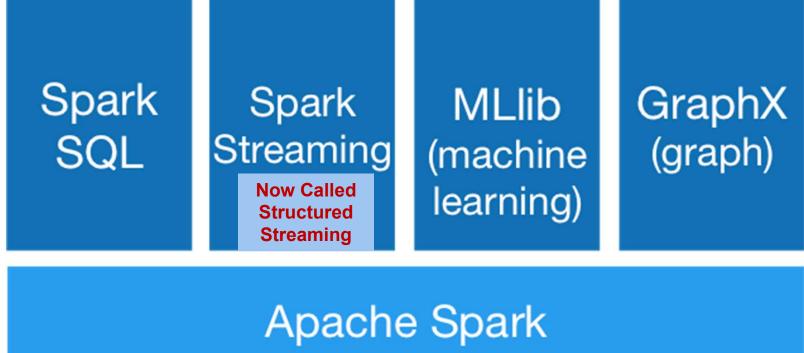


Image from: http://spark.apache.org/

DATA516/CSED516 - Fall 2023

Spark SQL vs Functional Prog. API

- Spark's original functional programming API
 - General
 - But limited opportunities for automatic optimization
- Spark SQL simultaneously
 - Makes Spark accessible to more users
 - Improves opportunities for automatic optimizations

Three Java-Spark APIs

- RDDs: Syntax: JavaRDD<T>
 - T = anything, basically untyped
- Data frames: Dataset<Row>
 - <Row> = a record, dynamically typed
- Datasets: Dataset<Person>
 - <Person> = user defined type
 - Not in Python/R

DataFrames

- Like RDD: immutable distributed collection
- Organized into *named columns*
 - Just like a relation
 - Elements are untyped objects called Row's
- Similar API as RDDs with additional methods
 - people = spark.read().textFile(...);
 ageCol = people.col("age");
 ageCol.plus(10); // creates a new DataFrame

Datasets

- Like DataFrames, but elements must be typed
- E.g.: Dataset<People> rather than Dataset<Row>
- Can detect errors during compilation time
- DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

Datasets API: Sample Methods

- Functional API
 - <u>agg(Column</u> expr, <u>Column</u>... exprs)
 Aggregates on the entire Dataset without groups.
 - <u>groupBy</u>(String col1, String... cols)
 Groups the Dataset using the specified columns, so that we can run aggregation on them.
 - join(Dataset<?> right)
 Join with another DataFrame.
 - orderBy(Column... sortExprs)
 Returns a new Dataset sorted by the given expressions.
 - <u>select</u>(<u>Column</u>... cols)
 Selects a set of column based expressions.
- "SQL" API
 - SparkSession.sql("select * from R");
- Look familiar?

Outline

- Spark
- MapReduce and critique
- Fault Tolerance
- Hive (short)

MapReduce: References

- Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on Large Clusters. OSDI'04
- D. DeWitt and M. Stonebraker. Mapreduce a major step backward. In Database Column (Blog), 2008.

MapReduce

- Google:
 - Started around 2000
 - Paper published 2004
 - Discontinued September 2019
- Free variant: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing

Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file partitioned into *chunks* (64MB)
- Each chunk replicated (≥3 times) why?
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source

MapReduce

• Describe the **input** and **output** to map reduce

• Describe the **Map** function

Describe the Reduce function

MapReduce

- Describe the **input** and **output** to map reduce
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs
- Describe the Map function

Describe the Reduce function

MapReduce

- Describe the **input** and **output** to map reduce
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs
- Describe the Map function
 - Input: (input key, value)
 - Ouput: bag of (intermediate key, value)
- Describe the **Reduce** function

MapReduce

- Describe the **input** and **output** to map reduce
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs
- Describe the Map function
 - Input: (input key, value)
 - Ouput: bag of (intermediate key, value)
- Describe the Reduce function
 - Input: (intermediate key, bag of values)
 - Output: bag of output (values)

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in input file

Step 2: the REDUCE Phase

User provides the **REDUCE** function:

- Input: (intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

```
e):

v, "1");

DATA516/CSED51

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));
```

Documents:

Relation

Documents:

Relation

did1		did2	
Hive – A Petabyte Scale Had		language is vary similar to NQL and describes can be easily understood by anyone themilar with NQL. These are same manaxes in the data model, type vysion and HordQL that are different from institution distribution, and that have been	Openhappeter jess interfase and respong that implementation through for prOdpy-trapester sector protein for half's interfase. Here details no fract interfases note found on the lower/add/ juit the interior interfases in that any arbitrary data forms and types method formers on by plenged in this lower by providing a juit due statistics the implementations for the faction and Upps desputies infractant. All for a static half and Higher desputs or infractant.
<text><section-header><section-header><text><text></text></text></section-header></section-header></text>	• align on the solution of th	<pre>setup the the setup term term term term term term term term</pre>	<text><text><text><text><text><text></text></text></text></text></text></text>

Did	Word
did1	Scalable
did1	analysis
did1	on
did1	large
did1	
did2	system
did2	with

DATA516/CSED516 - Fall 2023

selectword, count(*)fromDatagroup byword

Relation

Did	Word	
did1	Scalable	
did1	analysis	
did1	on	
did1	large	
did1		
did2	system	
did2	with	

select	word, count(*)
from	Data
group by	word

map = group by
reduce = count(...) (or sum(...) or...)

Relation

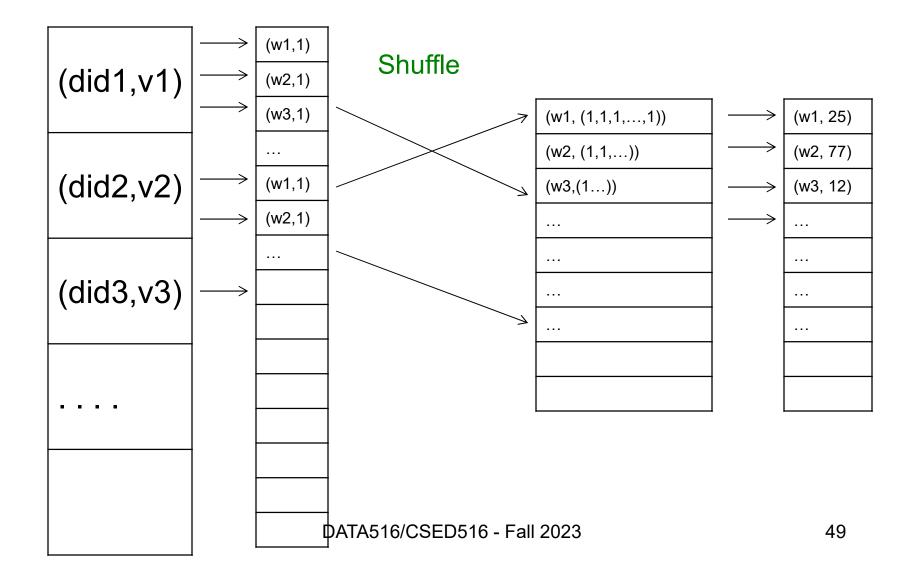
Did	Word	
did1	Scalable	
did1	analysis	
did1	on	
did1	large	
did1		
did2	system	
did2	with	

select	lect word, count(*)		Relation	
from	Data	Did	Word	
group by	word	did1	Scalable	
5 5		did1	analysis	
		did1	on	
		did1	large	
		did1		
map = group by		did2	system	
<pre>reduce = count() (or sum() or)</pre>		did2	with	

MapReduce = Group-by-aggregate

MAP

REDUCE



Examples from the paper

Discuss in class how to implement in MR

- Distributed grep
- Count URL access frequency: (URL, count)
- Reverse web-link graph: (URL, (list of URLs))

50

Inverted index: (word, (list of URLs))

Jobs v.s. Tasks

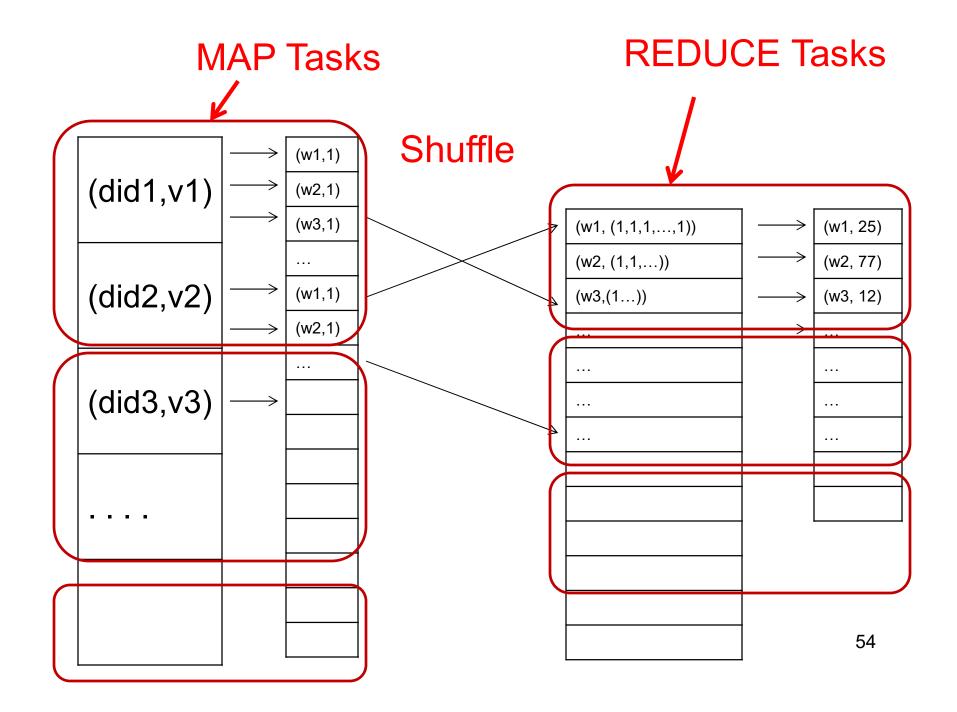
- A MapReduce Job
 - One simple "query", e.g. count words in docs
 - Complex queries may require many jobs
- A Map <u>Task</u>, or a Reduce <u>Task</u>
 - A group of instantiations of the map-, or reducefunction, to be scheduled on a single worker

Workers

- A worker is a process that executes one task at a time
- Typically, there is one worker per processor, hence 4 or 8 per node

Fault Tolerance

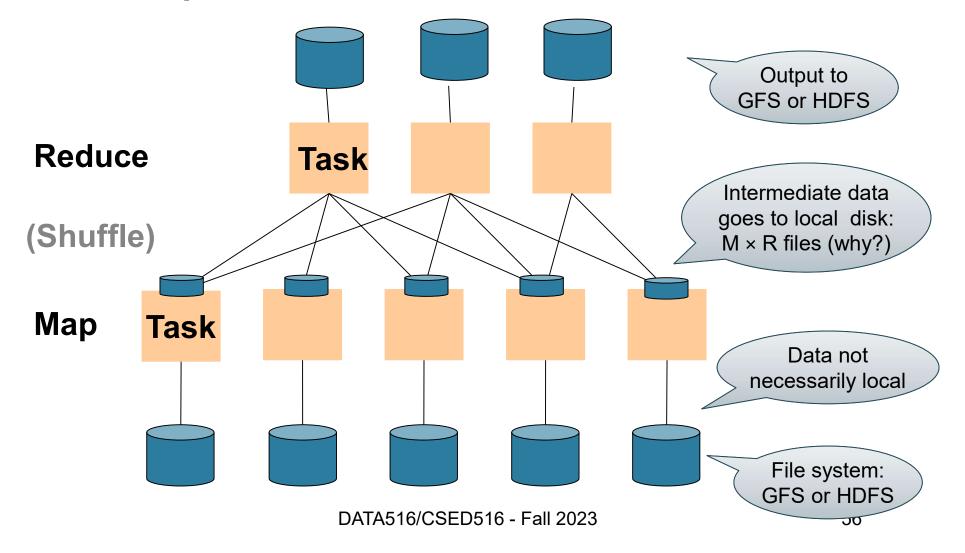
- If one server fails once every year...
 ... then a job with 10,000 servers will fail in less than one hour
- MapReduce handles fault tolerance by writing intermediate files to disk:
 - Mappers write file to disk
 - Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server



Choosing Parameters in MR

- Number of map tasks (M):
 - Default: one map task per chunk
 - E.g. data = 64TB, chunk = 64MB → M = 10⁶
- Number of reduce tasks (R):
 - No good default; set manually R << M</p>
 - E.g. R = 500 or 5000
- In general, MapReduce had very many parameters that required expertise to tune

MapReduce Execution Details



Discussion

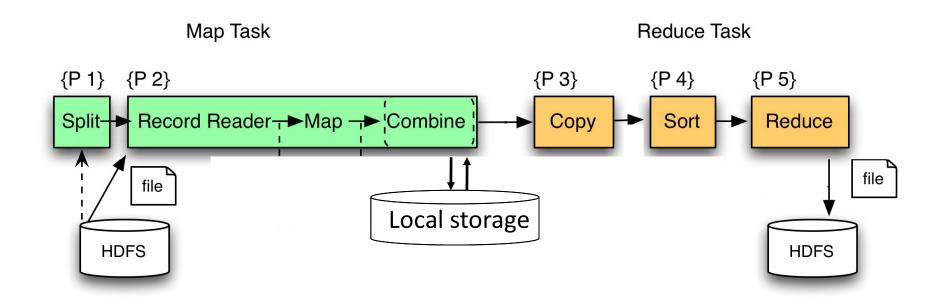
Why doesn't MR determine the number of reduce tasks R dynamically, after all map tasks finish?

Discussion

Why doesn't MR determine the number of reduce tasks R dynamically, after all map tasks finish?

Because each map tasks needs to write its output into R file; so R must be known before the map tasks start

MapReduce Phases



- The combiner function performs an optimization that you already know
- Which one?

- The combiner function performs an optimization that you already know
- Which one?
- Pushing aggregates down

- The combiner function performs an optimization that you already know Temp=
- Which one?

select server, word, count(*) as c from **Data** group by server, word

- Pushing aggregates down:
 - Each mapper groups by word

- The combiner function performs an optimization that you already know Temp=
- Which one?

select server, word, count(*) as c from **Data** group by server, word

- Pushing aggregates down:
 - Each mapper groups by word
 - Reducers perform final group-by

Output = select word, sum(c) from **Temp** group by word

Implementation

- There is one master node
- Master partitions input file into *M* splits, by key
- Master assigns *workers* (=servers) to the *M map* tasks, keeps track of their progress
- Workers write their output to local disk, partition into *R regions*
- Master assigns workers to the *R reduce tasks*
- Reduce workers read regions from the map workers' local disks

Blog by DeWitt and Stonebraker

• "Schemas are good"

- "Schemas are good"
- "Indexes"

- "Schemas are good"
- "Indexes"
- "Skew" (MR mitigates it somewhat, how?)

- "Schemas are good"
- "Indexes"
- "Skew" (MR mitigates it somewhat, how?)
- The M * R problem what is it?

- "Schemas are good"
- "Indexes"
- "Skew" (MR mitigates it somewhat, how?)
- The M * R problem what is it?
- "Parallel databases uses push (to sockets) instead of pull" – what's the point?

Outline

- Spark
- MapReduce and critique
- Fault Tolerance
- Hive (short)

Fault Tolerance

DATA516/CSED516 - Fall 2023

- Traditional RDBMs:
 - Major concern: recover after failure
- Massively distributed systems:
 - Probability of failure increases w/ no. of workers and length of job

Example:

- if a server fails once/year...
- ... a job with 10000 servers fails once/hour

How is fault tolerance handled in each system?

• **MapReduce**: if a worker fails then

• Spark:

DATA516/CSED516 - Fall 2023

How is fault tolerance handled in each system?

- MapReduce: if a worker fails then
 - All its completed map tasks need re-executed
 - Its in-progress reduce task needs re-executed

• Spark:

How is fault tolerance handled in each system?

- MapReduce: if a worker fails then
 - All its completed map tasks need re-executed
 - Its in-progress reduce task needs re-executed

• Spark: will discuss next

Approach

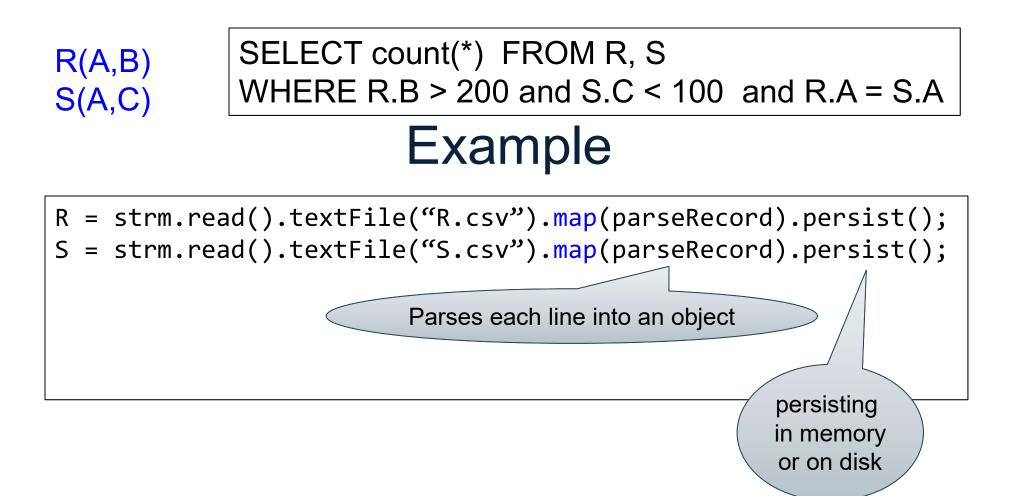
New abstraction: Resilient Distributed Datasets

RDD properties

- Parallel data structure
- Can be persisted in memory
- Fault-tolerant
- Users can manipulate RDDs with rich set of operators

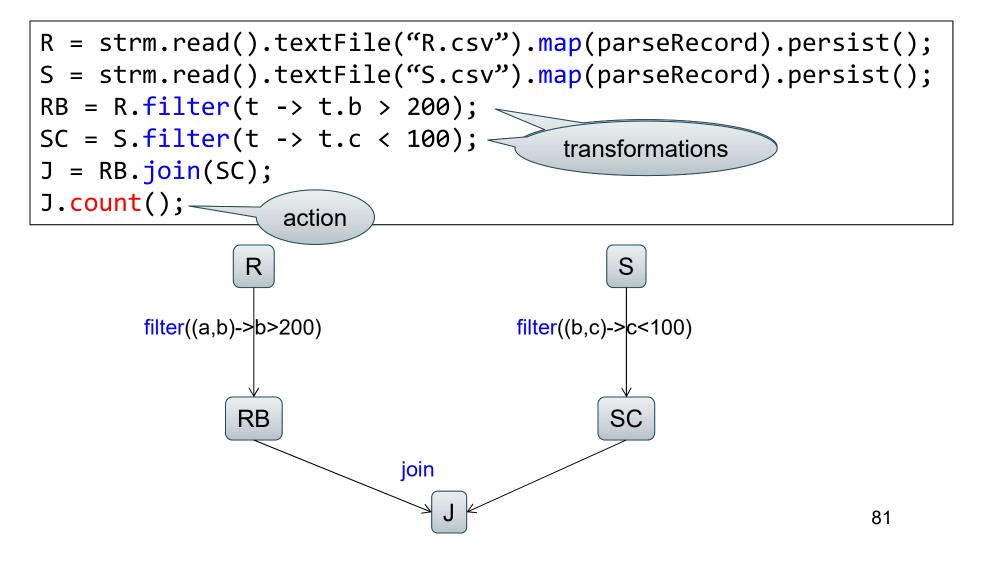
Resilient Distributed Datasets

- RDD = Resilient Distributed Dataset
 - Distributed, immutable.
 - Records lineage = expression that says how that relation was computed = a relational algebra plan
- Spark stores intermediate results as RDD
- If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply recompute the lost partition of the RDD



SELECT count(*) FROM R, S WHERE R.B > 200 and S.C < 100 and R.A = S.A

Example



RDD Details

- An RDD is a partitioned collection of records
 - RDD's are typed: RDD[Int] is an RDD of integers
 - Records are Java/Python objects
- An RDD is read only
 - This means no updates to individual records
 - This is to contrast with in-memory key-value stores
- To create an RDD
 - Execute a deterministic operation on another RDD
 - Or on data in stable storage
 - Example operations: map, filter, and join

RDD Materialization

Users control persistence and partitioning

• Persistence

Materialize this RDD in memory

• Partitioning

- Users can specify key for partitioning an RDD

Outline

- Spark
- MapReduce and critique
- Fault Tolerance
- Hive (short)

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:
 - Column pruning

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:
 - Column pruning
 - Predicate push-down

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:
 - Column pruning
 - Predicate push-down
 - Partition pruning

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:
 - Column pruning
 - Predicate push-down
 - Partition pruning
 - Map-side join = "broadcast join" (discuss in class)

- Facebook's implementation of SQL over MR
- Supports subset of SQL
- Uses MapReduce runtime (pros/cons?)
 - Note: this is similar to Google's FlumeJava
- Optimizations:
 - Column pruning
 - Predicate push-down
 - Partition pruning
 - Map-side join = "broadcast join" (discuss in class)
 - Join reordering

Discussion

- Parallel database systems: since the 80s
- MapReduce: around 2000
- Hive: built on MapReuce
- Spark: "better" MapReduce around 2010
- Snowflake, Aurora: cloud, parallel databases; around 2015

Quick comparison (next slides)

MapReduce v.s. Spark

- Job = Map+Reduce
 - Job = any query
- Language = Java
- Language ≈ RA

- Data = untyped
- Optimization = no

- Data = has schema
- Optimization = yes but limited: missing stats on base data

Spark v.s. RDBMS

- Query language = its own proprietary
- Optimizer = limited
- Runtime = its own proprietary
- External functions = yes; very useful in ML

- Query language = SQL
- Optimizer = full scale
- Runtime = efficient SQL query engine
- External functions = no

Outline

- Spark Review
- MapReduce and critique
- Fault Tolerance
- Hive (short)

Next lecture: Parallel databases (Start Today) 95

Parallel Databases

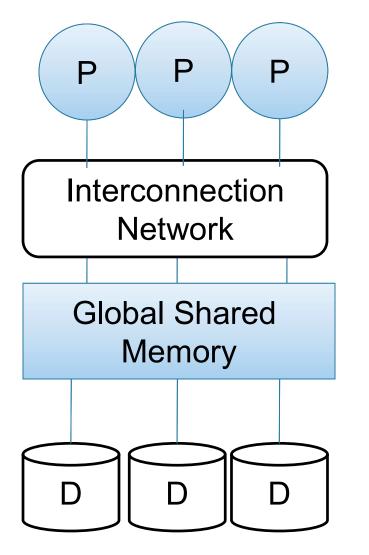
Outline

- Basic notions
- Distributed query processing algorithms (Start)
- Skew (will continue next lecture)

Architectures for Parallel Databases

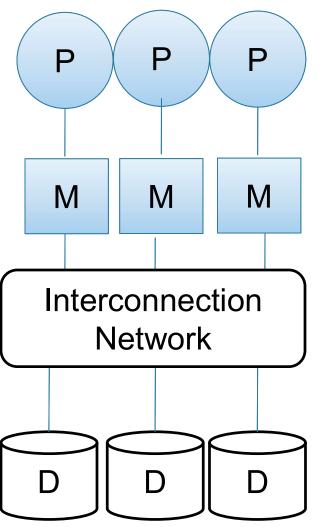
- Shared memory
- Shared disk
- Shared nothing

Shared Memory



- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x ... 100x processors
- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- Easy to use and program
- Expensive to scale

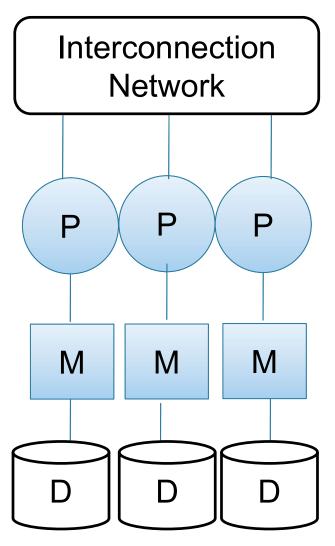
Shared Disk



- All nodes access same disks
- 10x processors
- Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale

Shared Nothing



- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory & disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

Performance Metrics

Nodes = processors = computers

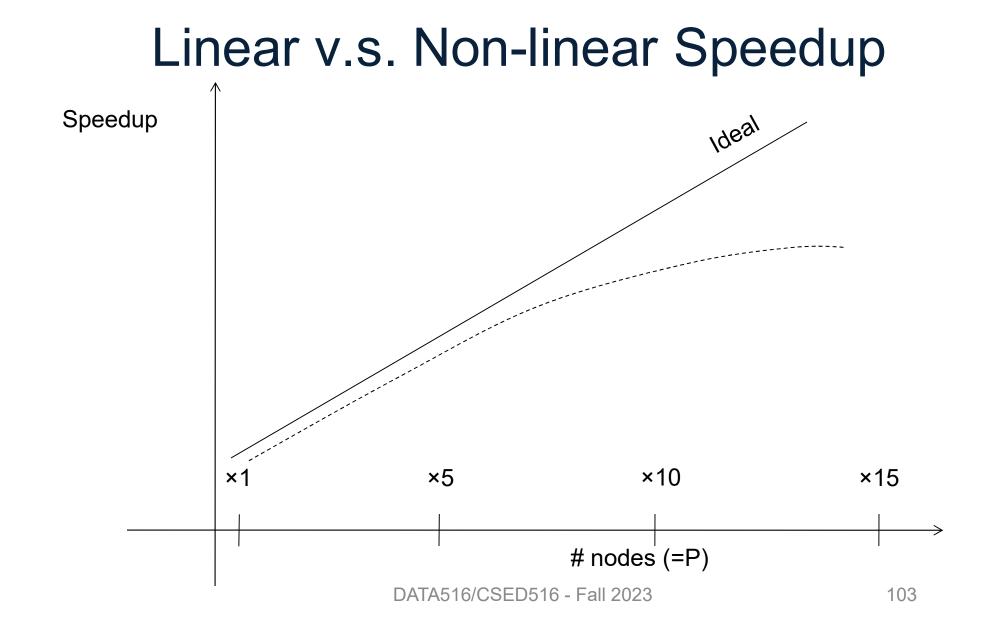
• Speed Up:

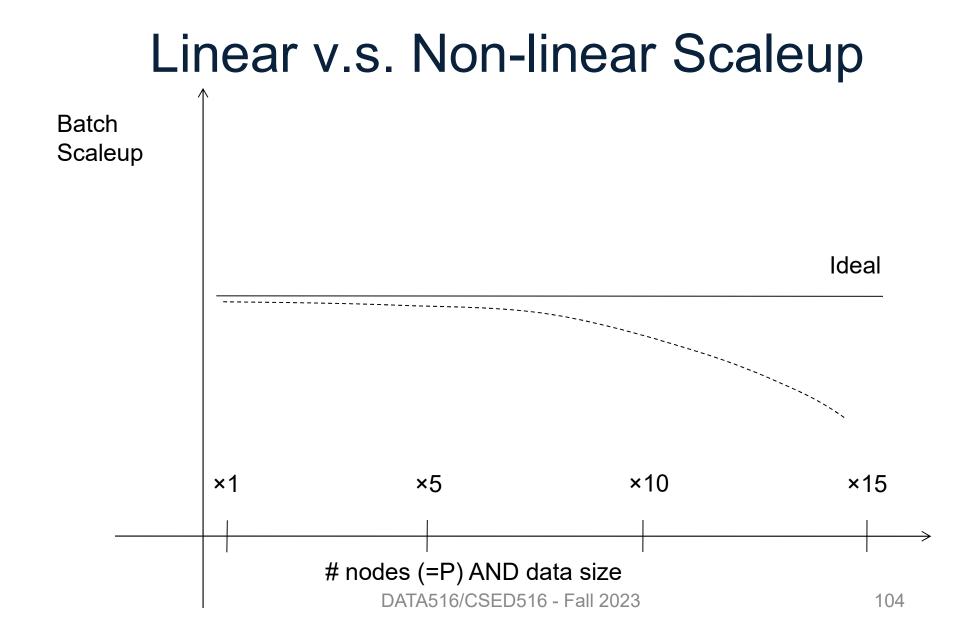
- More nodes, same data \rightarrow higher speed

• Scale Up:

- More nodes, more data \rightarrow same speed

Disclaimer: Scale Up is often mis-used as Speed Up





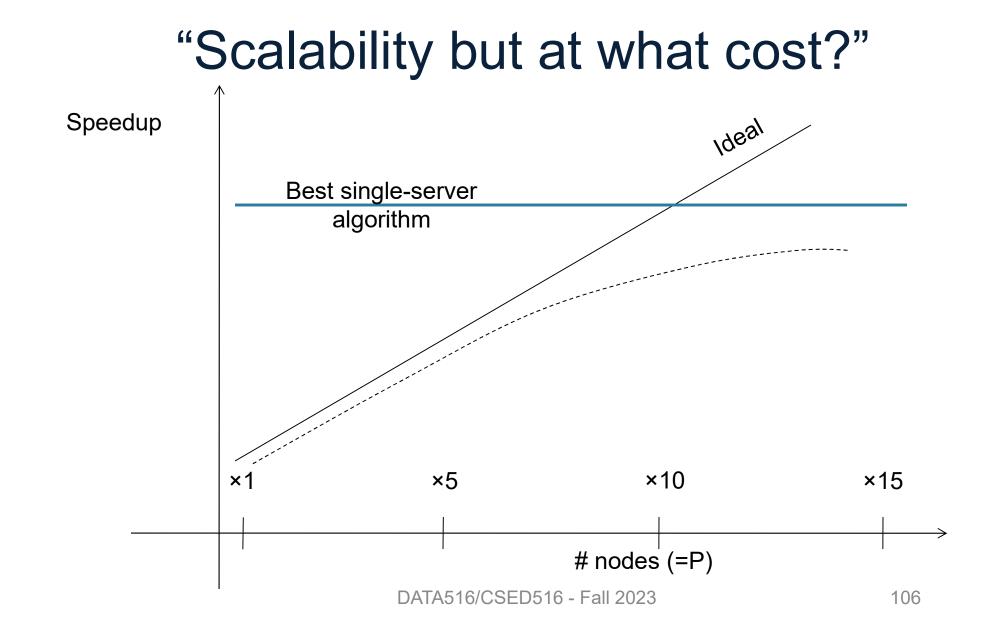
Why Sub-linear?

• Startup cost

Cost of starting an operation on many nodes

- Interference
 - Contention for resources between nodes
- Skew

Slowest node becomes the bottleneck



Discussion

Parallel/distributed data processing:

- Scales up* to more data:
 - More servers can hold more data
- Speedup w/ number of nodes:
 - Harder to achieve
 - But can get there in with more nodes/future research

Outline

- Basic notions
- Distributed query processing algorithms
- Skew (will continue next lecture)

Distributed Query Processing Algorithms

R

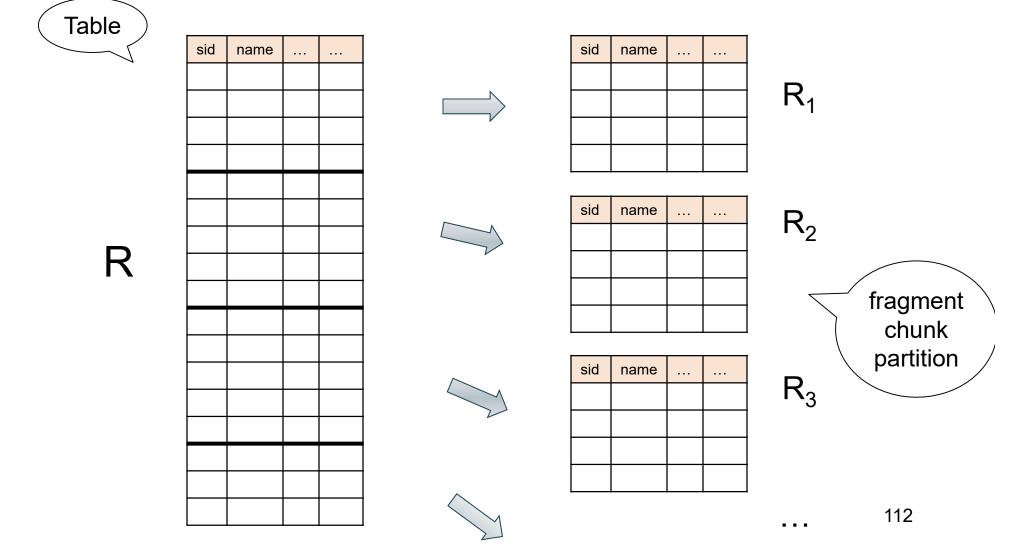
sid	name	

110

R

sid	name	

111



• Block Partition, a.k.a. Round Robin:

− Partition tuples arbitrarily s.t. size(R_1) ≈ ... ≈ size(R_P)

- Hash partitioned on attribute A:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

113

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:

Here R_1 is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

Uniform Load and Skew

- $|\mathbf{R}| = \mathbf{N}$ tuples, then $|\mathbf{R}_1| + |\mathbf{R}_2| + ... + |\mathbf{R}_p| = \mathbf{N}$
- We say the load is uniform when:
 |R₁| ≈ |R₂| ≈ ... ≈ |R_p| ≈ N/p
- Skew means that some load is much larger: max_i |R_i| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⋈

• Group by γ

Data: $R(\underline{K}, A, B, C)$ Query: $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

- Block partitioned:
- Hash partitioned:

• Range partitioned:

Data: $R(\underline{K}, A, B, C)$ Query: $\sigma_{A=v}(R)$, or $\sigma_{v1<A<v2}(R)$

- Block partitioned:
 - All servers need to scan
- Hash partitioned:

• Range partitioned:

Data: $R(\underline{K}, A, B, C)$ Query: $\sigma_{A=v}(R)$, or $\sigma_{v1<A<v2}(R)$

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:

Data: $R(\underline{K}, A, B, C)$ Query: $\sigma_{A=v}(R)$, or $\sigma_{v1<A<v2}(R)$

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:
 - Only some servers need to scan

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K

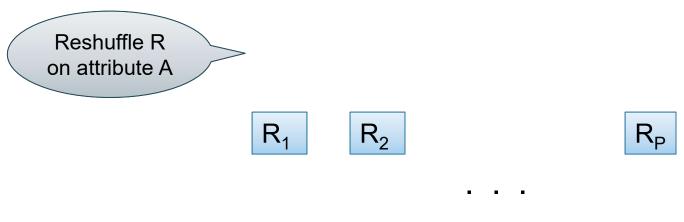
Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

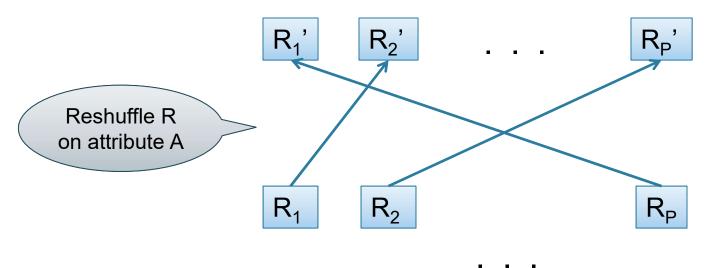
- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
 - Need to reshuffle data on A first (next slide)
 - Then compute locally $\gamma_{A,sum(C)}(R_i)$

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

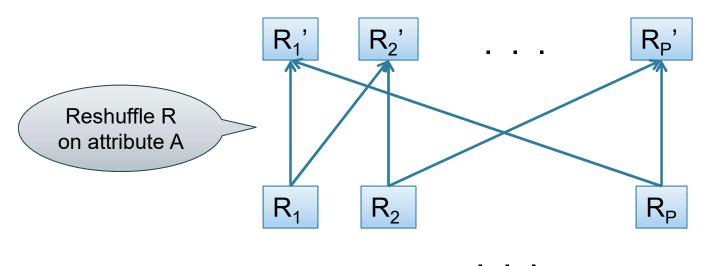
- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



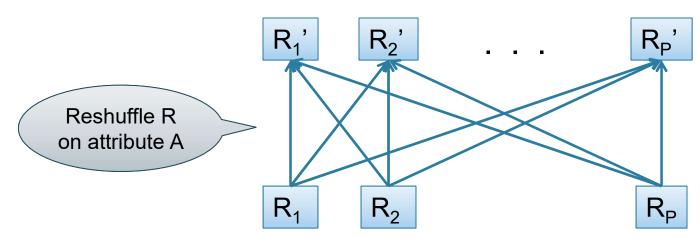
- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



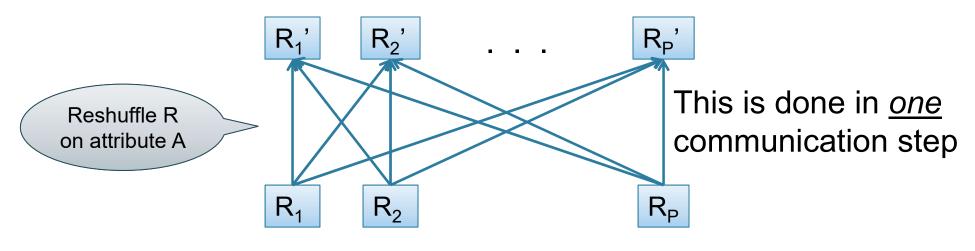
- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



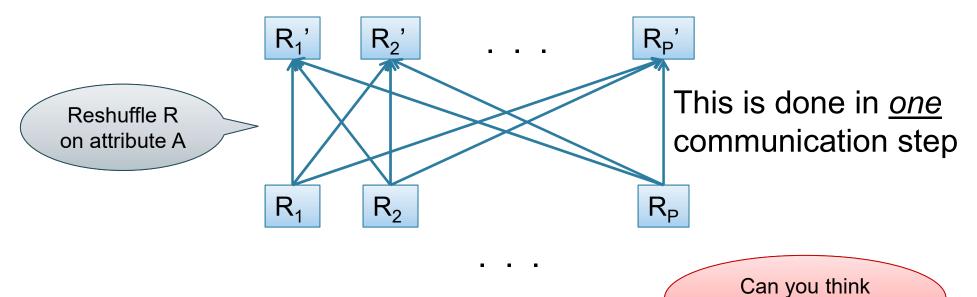
- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



Reshuffling

- Nodes send data over the network
- Many-many communications possible
- Throughput:
 - Better than disk
 - Worse than main memory

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



DATA516/CSED516 - Fall 2023

of an optimization?

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

city	 qant
Seattle	66
LA	77
NY	88
LA	99

SELECT city, sum(quant)

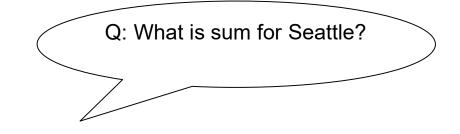
FROM R

GROUP BY city

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

city	 qant
Seattle	66
LA	77
NY	88
LA	99



SELECT city, sum(quant) FROM R GROUP BY city

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

city	 qant
Seattle	66
LA	77
NY	88
LA	99

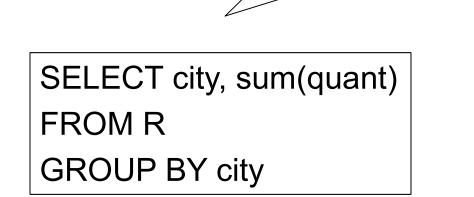
Q: What is sum for Seattle? A: 106

SELECT city, sum(quant) FROM R GROUP BY city

Sum here = 40

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

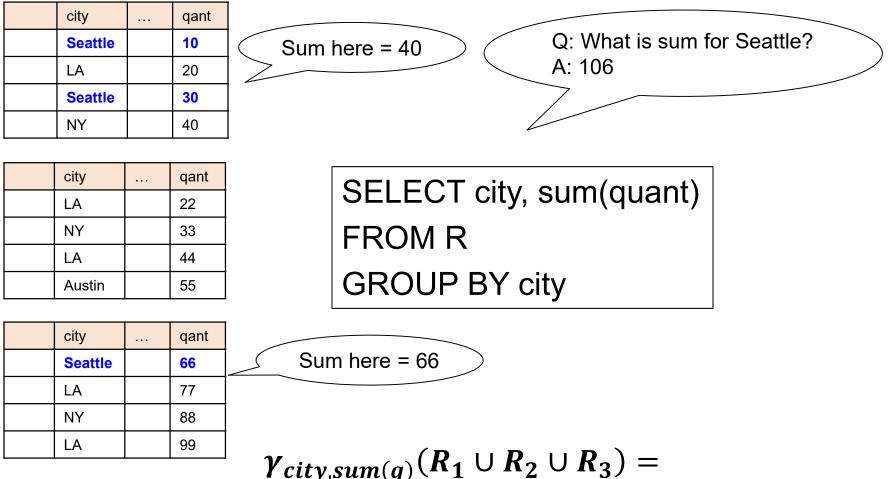
city	 qant
LA	22
NY	33
LA	44
Austin	55

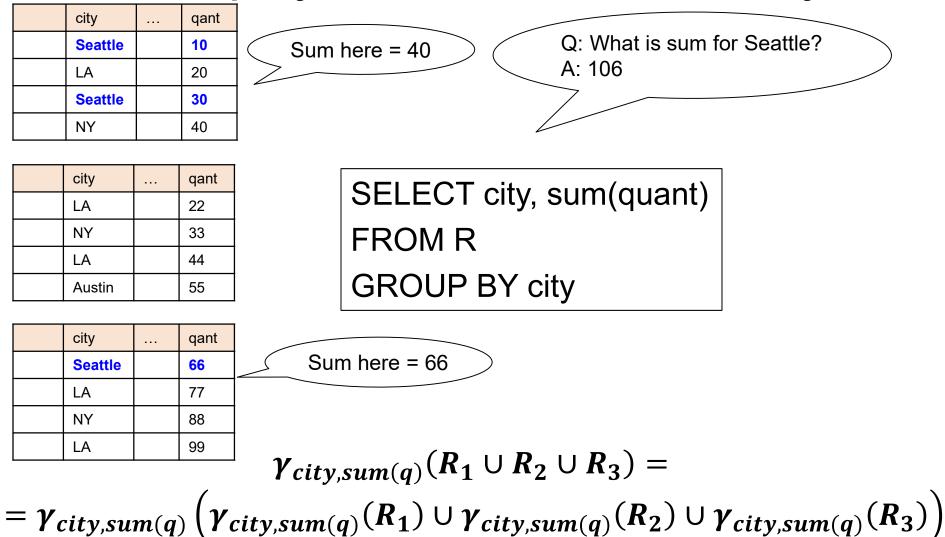


A: 106

Q: What is sum for Seattle?

	city	 qant	
	Seattle	66	Sum here = 66
	LA	77	
	NY	88	
	LA	99	





Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): T_{i,1}, T_{i,2}, ..., T_{i,p} then send fragment T_{i,j} to server j

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,j}$ to server j

Step 2: receive fragments, union them, then group-by $R_{j}' = T_{1,j} \cup ... \cup T_{p,j}$ Answer_j = $\gamma_{A, sum(C)} (R_{j}')$

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

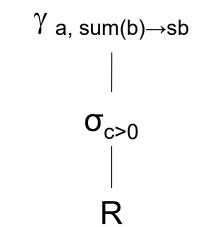
Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
$sum(a_1+a_2++a_9)=$ $sum(sum(a_1+a_2+a_3)+$ $sum(a_4+a_5+a_6)+$ $sum(a_7+a_8+a_9))$	avg(B) = sum(B)/count(B)	median(B)

Example Query with Group By

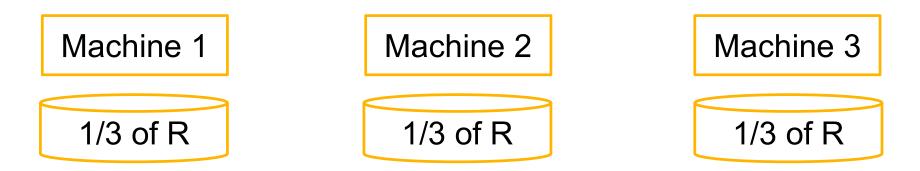
Example Query with Group By

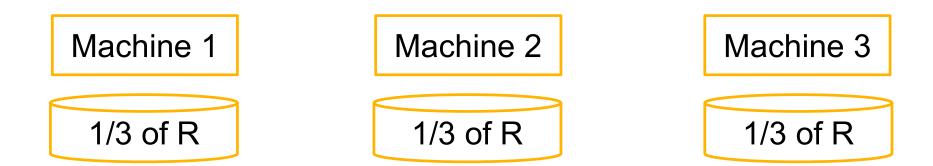


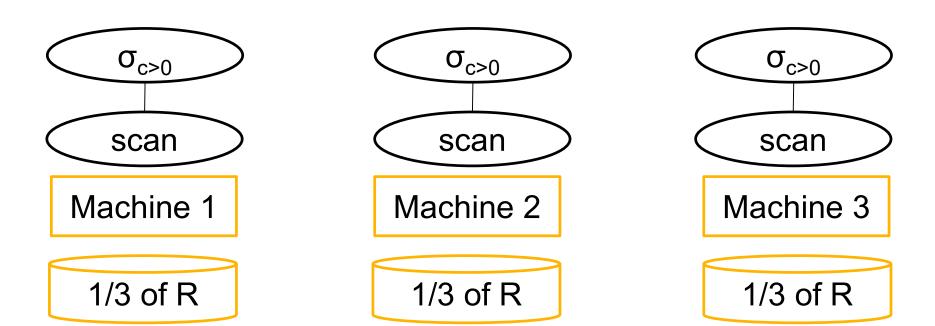
Example Query with Group By

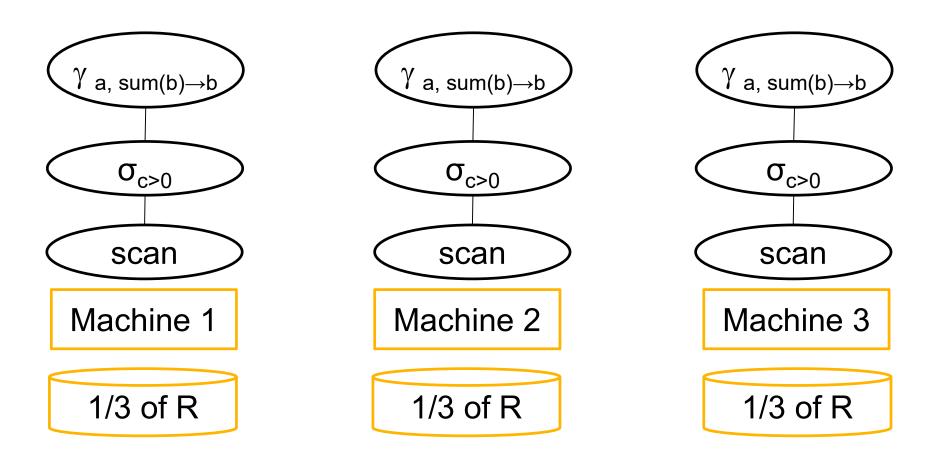
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

γ a, sum(b)→sb | σ_{c>0} | R

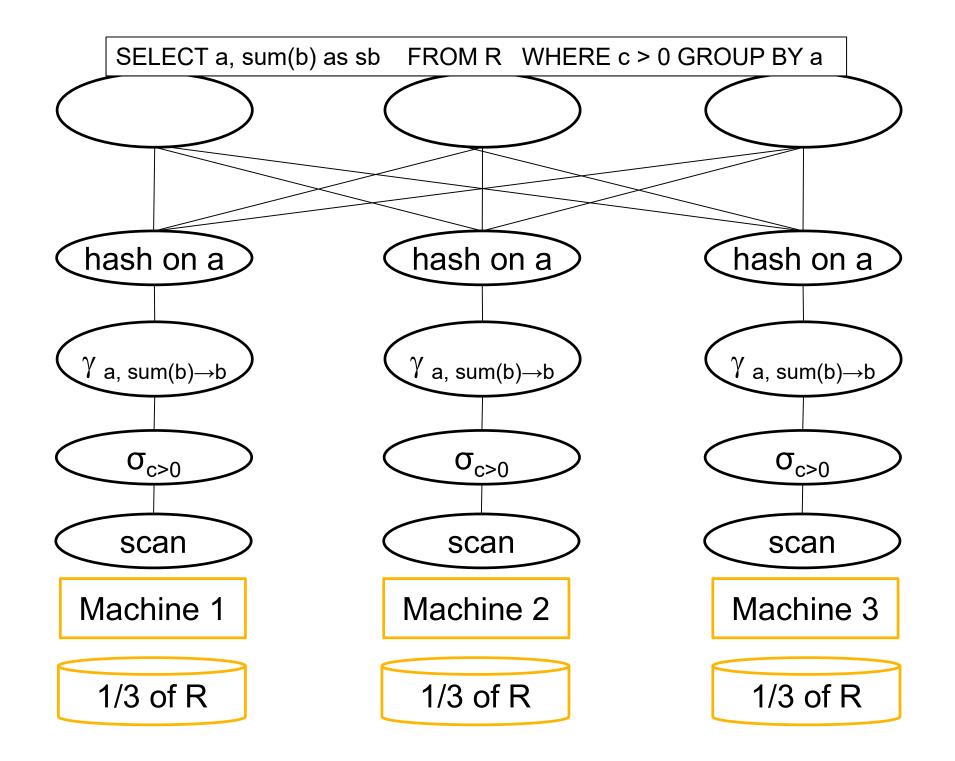


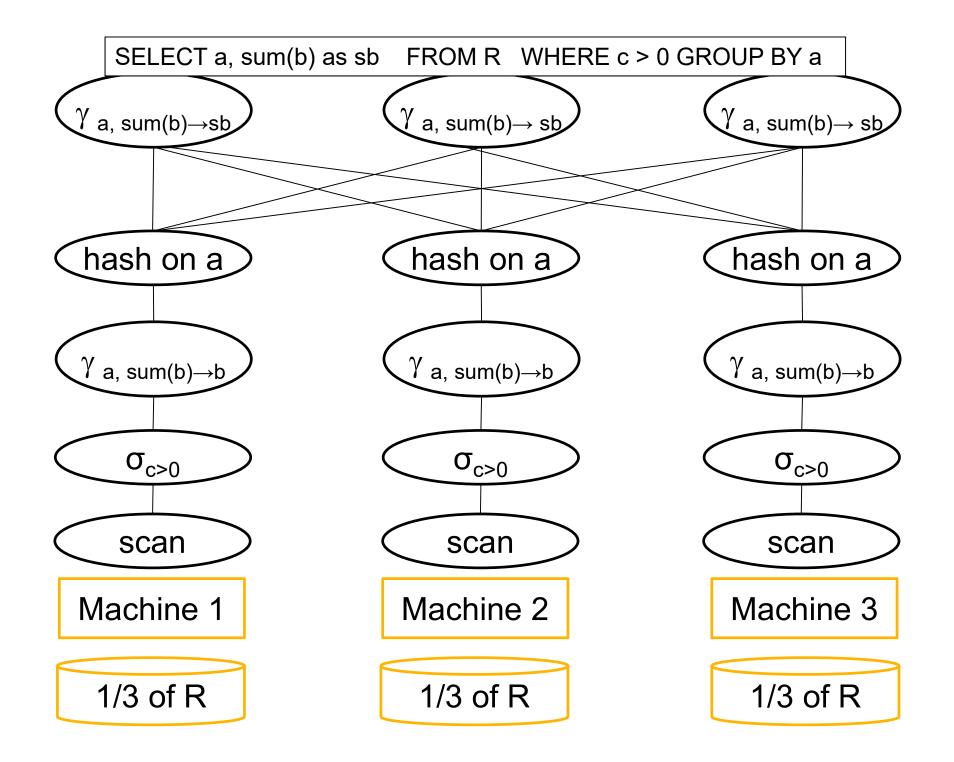












Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become 1/2)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become 1/2)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

But only if the data is without skew!