
DATA516/CSED516
Scalable Data Systems and

Algorithms
Lecture 4

Spark, MapReduce, Hive

Intro to Parallel Processing

Announcements

• Project proposals were due Friday
– If you have not submitted, staff will reach out

• HW2 (Spark) due on Monday 11/13
– Released later today/early tomorrow

– Pull upstream for new assignment

• Let us know when grades/late policy don’t
reflect prior arrangements

DATA516/CSED516 - Fall 2023 2

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases (Start Today) 3

Spark

4

Review: Single Client

5

E.g. data analytics

Review: Client-Server

6

Connection:

ODBC, JDBC

E.g. accounting, banking, …

Review: Three-tier

connection

(ODBC, JDBC)

http

E.g. Web commerce

Review: Distributed Database

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database

Spark, Snowflake

Distributed or Parallel Query
Processing

• Clusters:
– More servers  more in main memory
– More servers  more computing power
– Clusters are now cheaply available in the cloud
– Distributed query processing

• Multicores:
– The end of Moore’s law
– Parallel query processing

DATA516/CSED516 - Fall 2023 9

Motivation

• Limitations of relational database systems:
– Single server (at least traditionally)
– SQL is a limited language (eg no iteration)

• Spark:
– Distributed system
– Functional language (Python/R) good for ML

• Implementation:
– Extension of MapReduce
– Distributed physical operators

10

Programming in Spark

• A Spark program consists of:
– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T

• Distributed on many servers, not nested

• Operations are done in parallel

• Recoverable via lineage; more later

Seq<T> = a sequence

• Local to one server, may be nested

• Operations are done sequentially

Example from paper, new syntax

// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

// First line defines RDD backed by an HDFS file

lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one

errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later

errors.persist()

errors.collect()

errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program

errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions

Example

DATA516/CSED516 - Fall 2023 17

Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2023 18

Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2023 19

Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

Error…Error…Error…Error…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2023 20

Error…Warning…Error…Error…Abort…Abort…Error…Warning…Warning…Error…

Error…Error…Error…Error…Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

More on Programming Interface

Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey,

reduceByKey, union, join, cogroup, crossProduct,
…

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations

DATA516/CSED516 - Fall 2023 21

Transformations:

RDD<T> -> RDD<U>map(f : T -> U):

RDD<T> -> RDD<U>flatMap(f: T -> Seq(U)):

RDD<T> -> RDD<T>filter(f:T->Bool):

RDD<(K,V)> -> RDD<(K,Seq[V])>groupByKey():

RDD<(K,V)> -> RDD<(K,V)>reduceByKey(F:(V,V)-> V):

(RDD<T>,RDD<T>) -> RDD<T>union():

(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>join():

(RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>cogroup():

(RDD<T>,RDD<U>) -> RDD<(T,U)>crossProduct():

Actions:

RDD<T> -> Longcount():

RDD<T> -> Seq<T>collect():

RDD<T> -> Treduce(f:(T,T)->T):

Outputs RDD to a storage system e.g., HDFSsave(path:String):

What Am I?

DATA516/CSED516 - Fall 2023 23
[From Zaharia12]

What Am I?

DATA516/CSED516 - Fall 2023 24
[From Zaharia12]

Logistic
Regression!!

Spark Ecosystem Growth

DATA516/CSED516 - Fall 2023 25

Image from: http://spark.apache.org/

Now Called
Structured
Streaming

Spark SQL vs Functional Prog. API

• Spark’s original functional programming API
– General

– But limited opportunities for automatic optimization

• Spark SQL simultaneously
– Makes Spark accessible to more users

– Improves opportunities for automatic optimizations

DATA516/CSED516 - Fall 2023 26

Three Java-Spark APIs

• RDDs: Syntax: JavaRDD<T>
– T = anything, basically untyped

• Data frames: Dataset<Row>
– <Row> = a record, dynamically typed

• Datasets: Dataset<Person>
– <Person> = user defined type

– Not in Python/R

DATA516/CSED516 - Fall 2023 27

DataFrames

• Like RDD: immutable distributed collection

• Organized into named columns
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame

Datasets

• Like DataFrames, but elements must be typed

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of
Spark 2.0)

Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar?

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

31

DATA516/CSED516 - Fall 2023 32

MapReduce: References

• Jeffrey Dean and Sanjay Ghemawat,
MapReduce: Simplified Data Processing on
Large Clusters. OSDI’04

• D. DeWitt and M. Stonebraker. Mapreduce –
a major step backward. In Database Column
(Blog), 2008.

MapReduce

• Google:
– Started around 2000
– Paper published 2004
– Discontinued September 2019

• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

33DATA516/CSED516 - Fall 2023

Distributed File System (DFS)

• For very large files: TBs, PBs

• Each file partitioned into chunks (64MB)

• Each chunk replicated (≥3 times) – why?

• Implementations:
– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

DATA516/CSED516 - Fall 2023 34

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
DATA516/CSED516 - Fall 2023 35

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
DATA516/CSED516 - Fall 2023 36

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
DATA516/CSED516 - Fall 2023 37

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs

– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)

– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)

– Output: bag of output (values)
DATA516/CSED516 - Fall 2023 38

Step 1: the MAP Phase

User provides the MAP-function:

• Input: (input key, value)

• Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in input file

39DATA516/CSED516 - Fall 2023

Step 2: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of values)

• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

40DATA516/CSED516 - Fall 2023

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

DATA516/CSED516 - Fall 2023 41

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

DATA516/CSED516 - Fall 2023 42

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

DATA516/CSED516 - Fall 2023 43

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Think “Relational”!

DATA516/CSED516 - Fall 2023 44

Documents:

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu
and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in
the industry for business intelligence is growing rapidly, making
traditional warehousing solutions prohibitively expensive.
Hadoop [1] is a popular open-source map-reduce implementation
which is being used in companies like Yahoo, Facebook etc. to
store and process extremely large data sets on commodity
hardware. However, the map-reduce programming model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse. In this paper, we present
Hive, an open-source data warehousing solution built on top of
Hadoop. Hive supports queries expressed in a SQL-like
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL
enables users to plug in custom map-reduce scripts into queries.
The language includes a type system with support for tables
containing primitive types, collections like arrays and maps, and
nested compositions of the same. The underlying IO libraries can
be extended to query data in custom formats. Hive also includes
a system catalog - Metastore – that contains schemas and
statistics, which are useful in data exploration, query
optimization and query compilation. In Facebook, the Hive
warehouse contains tens of thousands of tables and stores over
700TB of data and is being used extensively for both reporting
and ad-hoc analyses by more than 200 users per month.

I. INTRODUCTION

Scalable analysis on large data sets has been core to the
functions of a number of teams at Facebook - both
engineering and non-engineering. Apart from ad hoc analysis
and business intelligence applications used by analysts across
the company, a number of Facebook products are also based
on analytics. These products range from simple reporting
applications like Insights for the Facebook Ad Network, to
more advanced kind such as Facebook's Lexicon product [2].
As a result a flexible infrastructure that caters to the needs of
these diverse applications and users and that also scales up in
a cost effective manner with the ever increasing amounts of
data being generated on Facebook, is critical. Hive and
Hadoop are the technologies that we have used to address
these requirements at Facebook.

The entire data processing infrastructure in Facebook prior
to 2008 was built around a data warehouse built using a
commercial RDBMS. The data that we were generating was
growing very fast - as an example we grew from a 15TB data
set in 2007 to a 700TB data set today. The infrastructure at
that time was so inadequate that some daily data processing
jobs were taking more than a day to process and the situation
was just getting worse with every passing day. We had an
urgent need for infrastructure that could scale along with our

data. As a result we started exploring Hadoop as a technology
to address our scaling needs. The fact that Hadoop was
already an open source project that was being used at petabyte
scale and provided scalability using commodity hardware was
a very compelling proposition for us. The same jobs that had
taken more than a day to complete could now be completed
within a few hours using Hadoop.

However, using Hadoop was not easy for end users,
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop
lacked the expressiveness of popular query languages like
SQL and as a result users ended up spending hours (if not
days) to write programs for even simple analysis. It was very
clear to us that in order to really empower the company to
analyze this data more productively, we had to improve the
query capabilities of Hadoop. Bringing this data closer to
users is what inspired us to build Hive in January 2007. Our
vision was to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of
Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in
August 2008 and since then has been used and explored by a
number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users
within Facebook. Today, we regularly run thousands of jobs
on the Hadoop/Hive cluster with hundreds of users for a wide
variety of applications starting from simple summarization
jobs to business intelligence, machine learning applications
and to also support Facebook product features.

In the following sections, we provide more details about
Hive architecture and capabilities. Section II describes the
data model, the type systems and the HiveQL. Section III
details how data in Hive tables is stored in the underlying
distributed file system – HDFS(Hadoop file system). Section
IV describes the system architecture and various components
of Hive . In Section V we highlight the usage statistics of Hive
at Facebook and provide related work in Section VI. We
conclude with future work in Section VII.

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE

Hive structures data into the well-understood database
concepts like tables, columns, rows, and partitions. It supports
all the major primitive types – integers, floats, doubles and
strings – as well as complex types such as maps, lists and
structs. The latter can be nested arbitrarily to construct more
complex types. In addition, Hive allows users to extend the

did1
system with their own types and functions. The query
language is very similar to SQL and therefore can be easily
understood by anyone familiar with SQL. There are some
nuances in the data model, type system and HiveQL that are
different from traditional databases and that have been
motivated by the experiences gained at Facebook. We will
highlight these and other details in this section.

A. Data Model and Type System

Similar to traditional databases, Hive stores data in tables,
where each table consists of a number of rows, and each row
consists of a specified number of columns. Each column has
an associated type. The type is either a primitive type or a
complex type. Currently, the following primitive types are
supported:

· Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes),
tinyint(1 byte). All integer types are signed.

· Floating point numbers – float(single precision),
double(double precision)

· String

Hive also natively supports the following complex types:

· Associative arrays – map<key-type, value-type>
· Lists – list<element-type>
· Structs – struct<file-name: field-type, ... >

These complex types are templated and can be composed to
generate types of arbitrary complexity. For example,
list<map<string, struct<p1:int, p2:int>> represents a list of
associative arrays that map strings to structs that in turn
contain two integer fields named p1 and p2. These can all be
put together in a create table statement to create tables with
the desired schema. For example, the following statement
creates a table t1 with a complex schema.

CREATE TABLE t1(st string, fl float, li list<map<string,
struct<p1:int, p2:int>>);

Query expressions can access fields within the structs using a
'.' operator. Values in the associative arrays and lists can be
accessed using '[]' operator. In the previous example, t1.li[0]
gives the first element of the list and t1.li[0]['key'] gives the
struct associated with 'key' in that associative array. Finally
the p2 field of this struct can be accessed by t1.li[0]['key'].p2.
With these constructs Hive is able to support structures of
arbitrary complexity.

The tables created in the manner describe above are
serialized and deserialized using default serializers and
deserializers already present in Hive. However, there are
instances where the data for a table is prepared by some other
programs or may even be legacy data. Hive provides the
flexibility to incorporate that data into a table without having
to transform the data, which can save substantial amount of
time for large data sets. As we will describe in the later
sections, this can be achieved by providing a jar that
implements the SerDe java interface to Hive. In such
situations the type information can also be provided by that jar
by providing a corresponding implementation of the

ObjectInspector java interface and exposing that
implementation through the getObjectInspector method
present in the SerDe interface. More details on these interfaces
can be found on the Hive wiki [3], but the basic takeaway here
is that any arbitrary data format and types encoded therein can
be plugged into Hive by providing a jar that contains the
implementations for the SerDe and ObjectInspector interfaces.
All the native SerDes and complex types supported in Hive
are also implementations of these interfaces. As a result once
the proper associations have been made between the table and
the jar, the query layer treats these on par with the native types
and formats. As an example, the following statement adds a
jar containing the SerDe and ObjectInspector interfaces to the
distributed cache([4]) so that it is available to Hadoop and
then proceeds to create the table with the custom serde.

add jar /jars/myformat.jar;
CREATE TABLE t2
ROW FORMAT SERDE 'com.myformat.MySerDe';

Note that, if possible, the table schema could also be provided
by composing the complex and primitive types.

B. Query Language

The Hive query language(HiveQL) comprises of a subset of
SQL and some extensions that we have found useful in our
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer
and outer joins, cartesian products, group bys and
aggregations, union all, create table as select and many useful
functions on primitive and complex types make the language
very SQL like. In fact for many of the constructs mentioned
before it is exactly like SQL. This enables anyone familiar
with SQL to start a hive cli(command line interface) and begin
querying the system right away. Useful metadata browsing
capabilities like show tables and describe are also present and
so are explain plan capabilities to inspect query plans (though
the plans look very different from what you would see in a
traditional RDBMS). There are some limitations e.g. only
equality predicates are supported in a join predicate and the
joins have to be specified using the ANSI join syntax such as

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

instead of the more traditional

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1, t2
WHERE t1.a2 = t2.b2;

Another limitation is in how inserts are done. Hive currently
does not support inserting into an existing table or data
partition and all inserts overwrite the existing data.
Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE t1

did2
. . .

Relation

Think “Relational”!

DATA516/CSED516 - Fall 2023 45

Documents:

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu
and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in
the industry for business intelligence is growing rapidly, making
traditional warehousing solutions prohibitively expensive.
Hadoop [1] is a popular open-source map-reduce implementation
which is being used in companies like Yahoo, Facebook etc. to
store and process extremely large data sets on commodity
hardware. However, the map-reduce programming model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse. In this paper, we present
Hive, an open-source data warehousing solution built on top of
Hadoop. Hive supports queries expressed in a SQL-like
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL
enables users to plug in custom map-reduce scripts into queries.
The language includes a type system with support for tables
containing primitive types, collections like arrays and maps, and
nested compositions of the same. The underlying IO libraries can
be extended to query data in custom formats. Hive also includes
a system catalog - Metastore – that contains schemas and
statistics, which are useful in data exploration, query
optimization and query compilation. In Facebook, the Hive
warehouse contains tens of thousands of tables and stores over
700TB of data and is being used extensively for both reporting
and ad-hoc analyses by more than 200 users per month.

I. INTRODUCTION

Scalable analysis on large data sets has been core to the
functions of a number of teams at Facebook - both
engineering and non-engineering. Apart from ad hoc analysis
and business intelligence applications used by analysts across
the company, a number of Facebook products are also based
on analytics. These products range from simple reporting
applications like Insights for the Facebook Ad Network, to
more advanced kind such as Facebook's Lexicon product [2].
As a result a flexible infrastructure that caters to the needs of
these diverse applications and users and that also scales up in
a cost effective manner with the ever increasing amounts of
data being generated on Facebook, is critical. Hive and
Hadoop are the technologies that we have used to address
these requirements at Facebook.

The entire data processing infrastructure in Facebook prior
to 2008 was built around a data warehouse built using a
commercial RDBMS. The data that we were generating was
growing very fast - as an example we grew from a 15TB data
set in 2007 to a 700TB data set today. The infrastructure at
that time was so inadequate that some daily data processing
jobs were taking more than a day to process and the situation
was just getting worse with every passing day. We had an
urgent need for infrastructure that could scale along with our

data. As a result we started exploring Hadoop as a technology
to address our scaling needs. The fact that Hadoop was
already an open source project that was being used at petabyte
scale and provided scalability using commodity hardware was
a very compelling proposition for us. The same jobs that had
taken more than a day to complete could now be completed
within a few hours using Hadoop.

However, using Hadoop was not easy for end users,
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop
lacked the expressiveness of popular query languages like
SQL and as a result users ended up spending hours (if not
days) to write programs for even simple analysis. It was very
clear to us that in order to really empower the company to
analyze this data more productively, we had to improve the
query capabilities of Hadoop. Bringing this data closer to
users is what inspired us to build Hive in January 2007. Our
vision was to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of
Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in
August 2008 and since then has been used and explored by a
number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users
within Facebook. Today, we regularly run thousands of jobs
on the Hadoop/Hive cluster with hundreds of users for a wide
variety of applications starting from simple summarization
jobs to business intelligence, machine learning applications
and to also support Facebook product features.

In the following sections, we provide more details about
Hive architecture and capabilities. Section II describes the
data model, the type systems and the HiveQL. Section III
details how data in Hive tables is stored in the underlying
distributed file system – HDFS(Hadoop file system). Section
IV describes the system architecture and various components
of Hive . In Section V we highlight the usage statistics of Hive
at Facebook and provide related work in Section VI. We
conclude with future work in Section VII.

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE

Hive structures data into the well-understood database
concepts like tables, columns, rows, and partitions. It supports
all the major primitive types – integers, floats, doubles and
strings – as well as complex types such as maps, lists and
structs. The latter can be nested arbitrarily to construct more
complex types. In addition, Hive allows users to extend the

did1
system with their own types and functions. The query
language is very similar to SQL and therefore can be easily
understood by anyone familiar with SQL. There are some
nuances in the data model, type system and HiveQL that are
different from traditional databases and that have been
motivated by the experiences gained at Facebook. We will
highlight these and other details in this section.

A. Data Model and Type System

Similar to traditional databases, Hive stores data in tables,
where each table consists of a number of rows, and each row
consists of a specified number of columns. Each column has
an associated type. The type is either a primitive type or a
complex type. Currently, the following primitive types are
supported:

· Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes),
tinyint(1 byte). All integer types are signed.

· Floating point numbers – float(single precision),
double(double precision)

· String

Hive also natively supports the following complex types:

· Associative arrays – map<key-type, value-type>
· Lists – list<element-type>
· Structs – struct<file-name: field-type, ... >

These complex types are templated and can be composed to
generate types of arbitrary complexity. For example,
list<map<string, struct<p1:int, p2:int>> represents a list of
associative arrays that map strings to structs that in turn
contain two integer fields named p1 and p2. These can all be
put together in a create table statement to create tables with
the desired schema. For example, the following statement
creates a table t1 with a complex schema.

CREATE TABLE t1(st string, fl float, li list<map<string,
struct<p1:int, p2:int>>);

Query expressions can access fields within the structs using a
'.' operator. Values in the associative arrays and lists can be
accessed using '[]' operator. In the previous example, t1.li[0]
gives the first element of the list and t1.li[0]['key'] gives the
struct associated with 'key' in that associative array. Finally
the p2 field of this struct can be accessed by t1.li[0]['key'].p2.
With these constructs Hive is able to support structures of
arbitrary complexity.

The tables created in the manner describe above are
serialized and deserialized using default serializers and
deserializers already present in Hive. However, there are
instances where the data for a table is prepared by some other
programs or may even be legacy data. Hive provides the
flexibility to incorporate that data into a table without having
to transform the data, which can save substantial amount of
time for large data sets. As we will describe in the later
sections, this can be achieved by providing a jar that
implements the SerDe java interface to Hive. In such
situations the type information can also be provided by that jar
by providing a corresponding implementation of the

ObjectInspector java interface and exposing that
implementation through the getObjectInspector method
present in the SerDe interface. More details on these interfaces
can be found on the Hive wiki [3], but the basic takeaway here
is that any arbitrary data format and types encoded therein can
be plugged into Hive by providing a jar that contains the
implementations for the SerDe and ObjectInspector interfaces.
All the native SerDes and complex types supported in Hive
are also implementations of these interfaces. As a result once
the proper associations have been made between the table and
the jar, the query layer treats these on par with the native types
and formats. As an example, the following statement adds a
jar containing the SerDe and ObjectInspector interfaces to the
distributed cache([4]) so that it is available to Hadoop and
then proceeds to create the table with the custom serde.

add jar /jars/myformat.jar;
CREATE TABLE t2
ROW FORMAT SERDE 'com.myformat.MySerDe';

Note that, if possible, the table schema could also be provided
by composing the complex and primitive types.

B. Query Language

The Hive query language(HiveQL) comprises of a subset of
SQL and some extensions that we have found useful in our
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer
and outer joins, cartesian products, group bys and
aggregations, union all, create table as select and many useful
functions on primitive and complex types make the language
very SQL like. In fact for many of the constructs mentioned
before it is exactly like SQL. This enables anyone familiar
with SQL to start a hive cli(command line interface) and begin
querying the system right away. Useful metadata browsing
capabilities like show tables and describe are also present and
so are explain plan capabilities to inspect query plans (though
the plans look very different from what you would see in a
traditional RDBMS). There are some limitations e.g. only
equality predicates are supported in a join predicate and the
joins have to be specified using the ANSI join syntax such as

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

instead of the more traditional

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1, t2
WHERE t1.a2 = t2.b2;

Another limitation is in how inserts are done. Hive currently
does not support inserting into an existing table or data
partition and all inserts overwrite the existing data.
Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE t1

did2
. . .

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…

Think “Relational”!

46

select word, count(*)
from Data
group by word

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…

Think “Relational”!

47

select word, count(*)
from Data
group by word

map = group by

reduce = count(…) (or sum(…) or…)

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…

Think “Relational”!

48

select word, count(*)
from Data
group by word

map = group by

reduce = count(…) (or sum(…) or…)

Relation

WordDid

Scalabledid1

analysisdid1

ondid1

largedid1

…did1

systemdid2

withdid2

…

MapReduce = Group-by-aggregate

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

49DATA516/CSED516 - Fall 2023

Examples from the paper

Discuss in class how to implement in MR

• Distributed grep

• Count URL access frequency: (URL, count)

• Reverse web-link graph: (URL, (list of URLs))

• Inverted index: (word, (list of URLs)) 50

Jobs v.s. Tasks

• A MapReduce Job
– One simple “query”, e.g. count words in docs

– Complex queries may require many jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, to be scheduled on a single worker

DATA516/CSED516 - Fall 2023 51

Workers

• A worker is a process that executes one task
at a time

• Typically, there is one worker per processor,
hence 4 or 8 per node

DATA516/CSED516 - Fall 2023 52

Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to disk
– Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

DATA516/CSED516 - Fall 2023 53

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

54

Choosing Parameters in MR

• Number of map tasks (M):
– Default: one map task per chunk
– E.g. data = 64TB, chunk = 64MB  M = 106

• Number of reduce tasks (R):
– No good default; set manually R << M
– E.g. R = 500 or 5000

• In general, MapReduce had very many
parameters that required expertise to tune

55

MapReduce Execution Details

DATA516/CSED516 - Fall 2023 56

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk:
M × R files (why?)

Output to
GFS or HDFS

File system:
GFS or HDFS

Task

Task

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map tasks
finish?

57

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map tasks
finish?

Because each map tasks needs to write its
output into R file; so R must be known before
the map tasks start

58

Local storage`̀

MapReduce Phases

59DATA516/CSED516 - Fall 2023

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

60

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down

61

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word

62

Temp=
select server, word, count(*) as c
from Data
group by server, word

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word

– Reducers perform final group-by

63

Temp=
select server, word, count(*) as c
from Data
group by server, word

Output =
select word, sum(c)
from Temp
group by word

Implementation
• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

• Workers write their output to local disk, partition
into R regions

• Master assigns workers to the R reduce tasks

• Reduce workers read regions from the map
workers’ local disks

64DATA516/CSED516 - Fall 2023

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

65

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

66

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

67

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)

68

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)

• The M * R problem – what is it?

69

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

• “Schemas are good”

• “Indexes”

• “Skew” (MR mitigates it somewhat, how?)

• The M * R problem – what is it?

• “Parallel databases uses push (to sockets)
instead of pull” – what’s the point?

70

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

71

Fault Tolerance

DATA516/CSED516 - Fall 2023 72

Fault Tolerance

• Traditional RDBMs:
– Major concern: recover after failure

• Massively distributed systems:
– Probability of failure increases w/ no. of workers

and length of job

DATA516/CSED516 - Fall 2023 73

Fault Tolerance
Example:

• if a server fails once/year…

• … a job with 10000 servers fails once/hour

74

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed:
this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2023 75

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed:
this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2023 76

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed

– Its in-progress reduce task needs re-executed

• Spark: will discuss next

DATA516/CSED516 - Fall 2023 77

Approach
New abstraction: Resilient Distributed Datasets

RDD properties

• Parallel data structure

• Can be persisted in memory

• Fault-tolerant

• Users can manipulate RDDs with rich set of
operators

DATA516/CSED516 - Fall 2023 78

Resilient Distributed Datasets
• RDD = Resilient Distributed Dataset

– Distributed, immutable.

– Records lineage = expression that says how that
relation was computed = a relational algebra plan

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory
is lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

DATA516/CSED516 - Fall 2023 79

Example

80

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting
in memory
or on disk

Example

81

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200);
SC = S.filter(t -> t.c < 100);
J = RB.join(SC);
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations

RDD Details

• An RDD is a partitioned collection of records
– RDD’s are typed: RDD[Int] is an RDD of integers
– Records are Java/Python objects

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join

82

RDD Materialization

• Users control persistence and partitioning

• Persistence
– Materialize this RDD in memory

• Partitioning
– Users can specify key for partitioning an RDD

DATA516/CSED516 - Fall 2023 83

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

84

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

85

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

86

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

87

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

88

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

89

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

90

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava

• Optimizations:
– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

91

Discussion

• Parallel database systems: since the 80s

• MapReduce: around 2000

• Hive: built on MapReuce

• Spark: “better” MapReduce around 2010

• Snowflake, Aurora: cloud, parallel databases;
around 2015

Quick comparison (next slides)

DATA516/CSED516 - Fall 2023 92

MapReduce v.s. Spark

• Job = Map+Reduce

• Language = Java

• Data = untyped

• Optimization = no

• Job = any query

• Language ≈ RA

• Data = has schema

• Optimization = yes
but limited: missing
stats on base data

93

Spark v.s. RDBMS

• Query language = its
own proprietary

• Optimizer = limited

• Runtime = its own
proprietary

• External functions =
yes; very useful in ML

• Query language =
SQL

• Optimizer = full scale

• Runtime = efficient
SQL query engine

• External functions =
no

94

Outline

• Spark Review

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases (Start Today) 95

Parallel Databases

96

Outline

• Basic notions

• Distributed query processing algorithms
(Start)

• Skew (will continue next lecture)

DATA516/CSED516 - Fall 2023 97

Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing

DATA516/CSED516 - Fall 2023 98

Shared Memory

• SMP =
symmetric multiprocessor

• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs
on a single machine and can
leverage many threads to
speed up a query

• Easy to use and program
• Expensive to scale

99

Interconnection
Network

P P P

Global Shared
Memory

D D D

Shared Disk

• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

100

Interconnection
Network

P P P

D D D

M M M

Shared Nothing

• Cluster of commodity machines

• Called "clusters" or "blade servers”

• Each machine: own memory & disk

• Up to x1000-x10000 nodes

• Example: redshift, spark, snowflake

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on a
single physical machine.

• Easy to maintain and scale

• Most difficult to administer and tune.

Interconnection
Network

P P P

D D D

M M M

Performance Metrics
Nodes = processors = computers

• Speed Up:
– More nodes, same data  higher speed

• Scale Up:
– More nodes, more data  same speed

Disclaimer: Scale Up is often mis-used as Speed Up

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2023 103

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Linear v.s. Non-linear Scaleup

DATA516/CSED516 - Fall 2023 104

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

DATA516/CSED516 - Fall 2023 105

“Scalability but at what cost?”

DATA516/CSED516 - Fall 2023 106

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Best single-server
algorithm

Discussion

Parallel/distributed data processing:

• Scales up* to more data:
– More servers can hold more data

• Speedup w/ number of nodes:
– Harder to achieve

– But can get there in with more nodes/future
research

107* “Scale up” is often used informally, like here

Outline

• Basic notions

• Distributed query processing algorithms

• Skew (will continue next lecture)

DATA516/CSED516 - Fall 2023 108

Distributed Query Processing
Algorithms

109

Horizontal Data Partitioning

110

……namesid
Table

R

Horizontal Data Partitioning

111

……namesid
Table

R

Horizontal Data Partitioning

112

……namesid ……namesid

……namesid

……namesid

Table

fragment
chunk

partition

R

R1

R2

R3

…

Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin:
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

DATA516/CSED516 - Fall 2023 113

Notations

114

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

p = number of servers (nodes) that hold the chunks

Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

115
We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join

• Group by ɣ

116

Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

DATA516/CSED516 - Fall 2023 117

Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

DATA516/CSED516 - Fall 2023 118

Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

DATA516/CSED516 - Fall 2023 119

Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

DATA516/CSED516 - Fall 2023 120

Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

121

Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

122

Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

123

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 124

R1 R2 RP

. . .

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 125

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 126

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 127

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 128

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 129

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk

– Worse than main memory

DATA516/CSED516 - Fall 2023 130

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2023 131

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?

GroupBy/Union Commutativity
qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

22LA

33NY

44LA

55Austin

qant…city

66Seattle

77LA

88NY

99LA

SELECT city, sum(quant)

FROM R

GROUP BY city

GroupBy/Union Commutativity
qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

22LA

33NY

44LA

55Austin

qant…city

66Seattle

77LA

88NY

99LA

SELECT city, sum(quant)

FROM R

GROUP BY city

Q: What is sum for Seattle?
A: 96

GroupBy/Union Commutativity
qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

22LA

33NY

44LA

55Austin

qant…city

66Seattle

77LA

88NY

99LA

SELECT city, sum(quant)

FROM R

GROUP BY city

Q: What is sum for Seattle?
A: 106

GroupBy/Union Commutativity

qant…city

22LA

33NY

44LA

55Austin

SELECT city, sum(quant)

FROM R

GROUP BY city

Q: What is sum for Seattle?
A: 106

Sum here = 40

Sum here = 66

qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

66Seattle

77LA

88NY

99LA

GroupBy/Union Commutativity

qant…city

22LA

33NY

44LA

55Austin

SELECT city, sum(quant)

FROM R

GROUP BY city

Q: What is sum for Seattle?
A: 106

Sum here = 40

Sum here = 66

qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

66Seattle

77LA

88NY

99LA

GroupBy/Union Commutativity

qant…city

22LA

33NY

44LA

55Austin

SELECT city, sum(quant)

FROM R

GROUP BY city

Q: What is sum for Seattle?
A: 106

Sum here = 40

Sum here = 66

qant…city

10Seattle

20LA

30Seattle

40NY

qant…city

66Seattle

77LA

88NY

99LA

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j … Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2023 138

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j … Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2023 139

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j … Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2023 140

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j … Tp,j
Answerj = γA, sum(C) (Rj’)

DATA516/CSED516 - Fall 2023 141

Pushing Aggregates Past Union

Which other rules can we push past union?

• Sum?

• Count?

• Avg?

• Max?

• Median?

DATA516/CSED516 - Fall 2023 142

Pushing Aggregates Past Union

Which other rules can we push past union?

• Sum?

• Count?

• Avg?

• Max?

• Median?

DATA516/CSED516 - Fall 2023 143

HolisticAlgebraicDistributive

median(B)avg(B) =
sum(B)/count(B)

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

SELECT a, sum(b) as sb

FROM R WHERE c > 0

GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb

FROM R WHERE c > 0

GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb

FROM R WHERE c > 0

GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2023 153

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2023 154

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2023 155But only if the data is without skew!

