DATA516/CSEDS16
Scalable Data Systems and
Algorithms

Lecture 4
Spark, MapReduce, Hive
Intro to Parallel Processing

Announcements

* Project proposals were due Friday
— If you have not submitted, staff will reach out

« HW2 (Spark) due on Monday 11/13

— Released later today/early tomorrow
— Pull upstream for new assignment

* Let us know when grades/late policy don't

reflect prior arrangements
DATA516/CSED516 - Fall 2023

Outline

Spark

MapReduce and critique

Fault Tolerance

Hive (short)

Next lecture: Parallel databases (Start Today) s

Spark

Review: Single Client
E.g. data analytics

Review: Client-Server

=

E.g. accounting, banking, ...

—
“ s (@

Y
/ \?',. L

Connection:
ODBC, JDBC

Review: Three-tier

E.g. Web commerce

—

connection
(ODBC, JDBC)

Review: Distributed Database _

\

\

— Sharded database

Spark, Snowflake

Distributed or Parallel Query
Processing

* Clusters:
— More servers - more in main memory
— More servers - more computing power
— Clusters are now cheaply available in the cloud
— Distributed query processing

* Multicores:
— The end of Moore’s law
— Parallel query processing

DATA516/CSED516 - Fall 2023

Motivation

 Limitations of relational database systems:

— Single server (at least traditionally)

— SQL is a limited language (eg no iteration)
¢ Spark:

— Distributed system

— Functional language (Python/R) good for ML
* Implementation:

— Extension of MapReduce
— Distributed physical operators

10

Programming in Spark

* A Spark program consists of:
— Transformations (map, reduce, join...). Lazy
— Actions (count, reduce, save...). Eager

« Eager: operators are executed immediately

» Lazy: operators are not executed immediately
— A operator tree is constructed in memory instead
— Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T
 Distributed on many servers, not nested
* Operations are done in parallel

* Recoverable via lineage; more later

Seq<T> = a sequence
* Local to one server, may be nested
* Operations are done sequentially

Example from paper, new syntax
Search logs stored in HDFS

lines = spark.textFile(*hdfs://...")

errors = lines.filter(x -> x.startsWith(“Error”))

errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()

Example from paper, new syntax
Search logs stored in HDFS

lines = spark.textFile(*hdfs://...")

errors = lines.filter(x -> x.startsWith(“Error™))

Mrmation: Not executed yD

errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()

Example from paper, new syntax
Search logs stored in HDFS

lines = spark.textFile(*hdfs://...")

errors = lines.filter(x -> x.startsWith(“Error™))

Mrmation: Not executed yet...

errors.persist() Action. triggers execution
errors.collect() of entire program

errors.filter(x -> x.contains("MySQL")).count()

Anonymous Functions

A.k.a. lambda expressions, starting in Java 8

errors = lines.filter(x -> x.startsWith(“Error™))

The RDD s: Example

Error... Warning... Warning... Error... Abort... Abort... Error... Error... Warning...

sqlerrors = spark.textFile(*hdfs://...”)
filter(x -> x.startsWith("ERROR"))
filter(x -> x.contains(“sqlite”))
.collect();

DATA516/CSED516 - Fall 2023 17

Exa m p I e Parallel step 1
rror... rror... arni

The RDD s:

sqlerrors = spark.textFile(*hdfs://...”)
filter(x -> x.startsWith("ERROR"))
filter(x -> x.contains(“sqlite”))
.collect();

DATA516/CSED516 - Fall 2023 18

The RDD s: p Parallel step 1
Error... Warning w g E Abort... Abort... Error... Error... Warning E
filter"ERROR") fllter(“ERRfR“) fllter(“ERtOR”) filter(“ERIROR”) fllter(“ERiOR") filter(“EiROR“) filter‘BRROR”) filter(“ERROR") fnter(“fRROR") filter(“ERROR”

\ 4
Error...

sqlerrors = spark.textFile(*hdfs://...”)
filter(x -> x.startsWith("ERROR?"))
filter(x -> x.contains(“sqlite”))
.collect();

DATA516/CSED516 - Fall 2023 19

The RDD s: Exa m ple Parallel step 1

Error... Warning... Warning... Error... Abort... Abort... Error... Error... Warning... Error...

A 4 \ 4

filter("ERROR”) fiIter(“ERRfR") fiIter(“ERtOR") filter(*ERROR”) fiIter(“ERiOR") filter(“EiROR") filter("§RROR”) filter(*ERROR”) filter(“fRROR") filter("ERROR”)

\ 4 \ 4 \ 4

Error... Error... Error... Error... Error...

filter(“sqlitl") filter(“sqlie”) filter(“sflite") filter(“silite”) filter(“sqlite”)
v

Parallel step 2

sqlerrors = spark.textFile(*hdfs://...”)
filter(x -> x.startsWith("ERROR?"))
filter(x -> x.contains(“sqlite”))
.collect();

DATA516/CSED516 - Fall 2023 20

More on Programming Interface

Large set of pre-defined transformations:

« Map, filter, flatMap, sample, groupByKey,
reduceByKey, union, join, cogroup, crossProduct,

Small set of pre-defined actions:
« Count, collect, reduce, lookup, and save

Programming interface includes iterations

DATA516/CSED516 - Fall 2023 21

Transformations:

map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey() : RDD< (K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>
join(): (RDD< (K,V)>,RDD<(K,W)>) -> RDD<(K, (V,W))>
cogroup(): (RDD< (K,V)>,RDD<(K,W)>)-> RDD< (K, (Seq<V>,Seq<hW>))>
crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>
Actions:
count(): RDD<T> -> Long
collect(): RDD<T> -> Seq<T>
reduce(f:(T,T)->T): RDD<T> -> T

save(path:String): Outputs RDD to a storage system e.g., HDFS

What Am 17

val points = spark.textFile(...)
.map(parsePoint) .persist()

var w = // random initial vector
for (1 <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
}.reduce((a,b) => a+b)
w -= gradient

}

[From Zaharia12]

DATA516/CSED516 - Fall 2023

23

What Am 17

val points = spark.textFile(...)

.map(parsePoint) .persist()
var w = // random initial vector
for (1 <- 1 to ITERATIONS) {
val gradient = points.map{ p =>

p.X * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
}.reduce((a,b) => a+b)
w -= gradient

} Logistic
Regression!!
[From Zaharia12]

DATA516/CSED516 - Fall 2023 24

Spark Ecosystem Growth

Spark MLIib

Streaming

Now Called
Structured
Streaming

Apache Spark

Image from: http://spark.apache.org/

(machine
learning)

DATA516/CSED516 - Fall 2023 25

Spark SQL vs Functional Prog. AP|

« Spark’s original functional programming API
— General
— But limited opportunities for automatic optimization

« Spark SQL simultaneously
— Makes Spark accessible to more users
— Improves opportunities for automatic optimizations

DATA516/CSED516 - Fall 2023 26

Three Java-Spark APls

 RDDs: Syntax: JavaRDD<T>
— T = anything, basically untyped
« Data frames: Dataset<Row>
— <Row> = a record, dynamically typed

 Datasets: Dataset<Person>

— <Person> = user defined type
— Not in Python/R

DATA516/CSED516 - Fall 2023

27

DataFrames

 Like RDD: immutable distributed collection

* QOrganized into named columns
— Just like a relation
— Elements are untyped objects called Row’s

 Similar APl as RDDs with additional methods

- people = spark.read().textFile(..);
ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame

Datasets

Like DataFrames, but elements must be typed
E.g.: Dataset<People> rather than Dataset<Row>
Can detect errors during compilation time

DataFrames are aliased as Dataset<Row> (as of
Spark 2.0)

Datasets APIl: Sample Methods

Functional API

- agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

- groupBy(String coll, String... cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

- join(Dataset<?> right)
Join with another DataFrame.

— orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

- select(Column... cols)
Selects a set of column based expressions.

“SQL" API

- SparkSession.sql(“select * from R”);

Look familiar?

Outline

Spark

MapReduce and critique

Fault Tolerance

Hive (short)

31

MapReduce: References

« Jeffrey Dean and Sanjay Ghemawat,
MapReduce: Simplified Data Processing on
Large Clusters. OSDI'04

 D. DeWitt and M. Stonebraker. Mapreduce —
a major step backward. In Database Column
(Blog), 2008.

DATA516/CSED516 - Fall 2023

32

MapReduce

« Google:
— Started around 2000
— Paper published 2004
— Discontinued September 2019

* Free variant: Hadoop

 MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

DATA516/CSED516 - Fall 2023 33

Distributed File System (DFS)

For very large files: TBs, PBs
Each file partitioned into chunks (64MB)
Each chunk replicated (=3 times) — why?

Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

DATA516/CSED516 - Fall 2023

34

MapReduce

* Describe the input and output to map reduce
« Describe the Map function

 Describe the Reduce function

DATA516/CSED516 - Fall 2023 35

MapReduce

* Describe the input and output to map reduce
— Input: a bag of (inputkey, value) pairs
— Output: a bag of (outputkey, value) pairs

« Describe the Map function

 Describe the Reduce function

DATA516/CSED516 - Fall 2023 36

MapReduce

* Describe the input and output to map reduce
— Input: a bag of (inputkey, value) pairs
— Output: a bag of (outputkey, value) pairs
« Describe the Map function
— Input: (input key, value)
— Ouput: bag of (intermediate key, value)

 Describe the Reduce function

DATA516/CSED516 - Fall 2023 37

MapReduce

* Describe the input and output to map reduce
— Input: a bag of (inputkey, value) pairs
— Output: a bag of (outputkey, value) pairs
« Describe the Map function
— Input: (input key, value)
— Ouput: bag of (intermediate key, value)
» Describe the Reduce function
— Input: (intermediate key, bag of values)
— Output: bag of output (values)

DATA516/CSED516 - Fall 2023 38

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
* Quput: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in input file

DATA516/CSED516 - Fall 2023

39

Step 2: the REDUCE Phase

User provides the REDUCE function:
* |Input: (intermediate key, bag of values)
* Qutput: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

DATA516/CSED516 - Fall 2023 40

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document
— The key = document id (did)
— The value = set of words (word)

DATA516/CSED516 - Fall 2023

41

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document
— The key = document id (did)
— The value = set of words (word)

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:
EmitIntermediate(w, “17);

DATA516/CSED516 - Fall 2023

42

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document

— The key = document id (did)
— The value = set of words (word)

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:
EmitIntermediate(w, “17);

DATA516/CSED51

reduce(String key, lterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += Parselnt(v);
Emit(AsString(result));

Think “Relational™

Documents: Relation

did1 did2

DATA516/CSED516 - Fall 2023

44

Think “Relational!

Documents: Relation
Did Word
did1 did2 did1 Scalable
did1 analysis
did1 on
did1 large
did1
did2 system
did2 with

DATA516/CSED516 - Fall 2023

45

Think “Relational’!

select
from

word, count(™)
Data

group by word

Relation
Did Word
did1 Scalable
did1 analysis
did1 on
did1 large
did1
did2 system
did2 with

46

Think “Relational’!

select word, count(*) Relation
from Data Did Word
group by word did1 Scalable
did1 analysis
did1 on
did1 large
did1
map = group by did2 system
reduce = count(...) (or sum(...) or...) |did2 with

Think “Relational’!

select word, count(*) Relation
from Data Did Word
group by word did1 Scalable
did1 analysis
did1 on
did1 large
did1
map = group by did2 system
reduce = count(...) (or sum(...) or...) |did2 with

MapReduce = Group-by-aggregate

48

MAP REDUCE

—> | (w1,1)

(did1,v1) > (w2t Shuffle
> | (w3,1) w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) — | w2, 77)
(did2,v2) | (wi,1) w3,(1...)) —— | (w3, 12)
— | (w2,1) —>| ..

(did3.v3)|— | \

[DATA516/CSED516 - Fall 2023 49

Examples from the paper

Discuss in class how to implement in MR

Distributed grep

Count URL access frequency: (URL, count)

Reverse web-link graph: (URL, (list of URLS))

Inverted index: (word, (list of URLS)) 50

Jobs v.s. Tasks

A MapReduce Job

— One simple “query”, e.g. count words in docs
— Complex queries may require many jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, to be scheduled on a single worker

DATA516/CSED516 - Fall 2023

51

Workers

* A worker is a process that executes one task
at a time

* Typically, there is one worker per processor,
hence 4 or 8 per node

DATA516/CSED516 - Fall 2023 52

Fault Tolerance

* |If one server fails once every year...
... then a job with 10,000 servers will fail in
less than one hour

 MapReduce handles fault tolerance by writing
Intermediate files to disk:
— Mappers write file to disk

— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another
server

DATA516/CSED516 - Fall 2023 53

MAP Tasks REDUCE Tasks
/
4 — | w1 Shuffle /

(did1,v1) |~ | w21 -
> | (w3,1) 7 | (w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) — | w2, 77)
(did2,V2) | (w11 L | w3,(1...) — > | w3, 12)
\ — (w2,1)//
== ~
(did3,v3) | — -
N
//
e k=
[] 54

Choosing Parameters in MR

 Number of map tasks (M):

— Default: one map task per chunk

— E.g. data = 64TB, chunk = 64MB = M = 10°
 Number of reduce tasks (R):

— No good default; set manually R << M
— E.g. R =500 or 5000

* |n general, MapReduce had very many
parameters that required expertise to tune

95

MapReduce Execution Details

i
\ I GFS or HDFS

Reduce Task

Intermediate data
goes to local disk:
(Shuffle) M M x R files (why?)
Map Task
Dmanm
necessanW%ocaI
File system

GFS or HDFS

DATA516/CSED516 - Fall 2023

Discussion

Why doesn’'t MR determine the number of
reduce tasks R dynamically, after all map tasks
finish?

o7

Discussion

Why doesn’'t MR determine the number of

reduce tasks R dynamically, after all map tasks
finish?

Because each map tasks needs to write its
output into R file; so R must be known before
the map tasks start

58

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader-—»Map —.>:Combine:—-—>‘ Copy }—DM—»‘ Reduce \
filej H l file
‘ Local storage| —

HDFS

DATA516/CSED516 - Fall 2023 59

Riddle

 The combiner function
performs an optimization that
you already know

 \Which one?

60

Riddle

 The combiner function
performs an optimization that
you already know

 \Which one?

* Pushing aggregates down

61

Riddle

 The combiner function
performs an optimization that

you already know Temp=

. :) select server, word, count(*) as c
Which one” tom Data

group by server, word

* Pushing aggregates down:
— Each mapper groups by word

62

Riddle

 The combiner function
performs an optimization that

you already know Temp=

. :) select server, word, count(*) as c
Which one” tom Data

group by server, word

* Pushing aggregates down:
— Each mapper groups by word
Output =

— Reducers perform final group-by | = select word, sum(c)

from Temp
group by word

0S5

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk, partition
iInto R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

DATA516/CSED516 - Fall 2023 64

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

65

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
« “Schemas are good”

66

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
« “Schemas are good”
* “Indexes”

67

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

« “Schemas are good”

* “Indexes’

« “Skew” (MR mitigates it somewhat, how?)

68

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

“Schemas are good”

“Indexes”

“Skew” (MR mitigates it somewhat, how?)
The M * R problem — what is it?

69

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

e “Schemas are good”

* “Indexes’

« "Skew” (MR mitigates it somewhat, how?)
« The M * R problem — what is it?

« "Parallel databases uses push (to sockets)
instead of pull” — what’s the point?

70

Outline

Spark

MapReduce and critique

Fault Tolerance

Hive (short)

71

Fault Tolerance

DATA516/CSED516 - Fall 2023

72

Fault Tolerance

 Traditional RDBMs:

— Major concern: recover after failure

* Massively distributed systems:

— Probability of failure increases w/ no. of workers
and length of job

DATA516/CSED516 - Fall 2023

73

Fault Tolerance

Example:
* if a server fails once/year...

e ... ajob with 10000 servers fails once/hour

74

Fault Tolerance

How is fault tolerance handled in each system?

 MapReduce: if a worker fails then

« Spark:

DATA516/CSED516 - Fall 2023 75

Fault Tolerance

How is fault tolerance handled in each system?

 MapReduce: if a worker fails then
— All its completed map tasks need re-executed
— Its in-progress reduce task needs re-executed

« Spark:

DATA516/CSED516 - Fall 2023 76

Fault Tolerance

How is fault tolerance handled in each system?

 MapReduce: if a worker fails then
— All its completed map tasks need re-executed
— Its in-progress reduce task needs re-executed

« Spark: will discuss next

DATA516/CSED516 - Fall 2023 77

Approach

New abstraction: Resilient Distributed Datasets

RDD properties

« Parallel data structure

« Can be persisted in memory
« Fault-tolerant

« Users can manipulate RDDs with rich set of
operators

DATA516/CSED516 - Fall 2023 78

Resilient Distributed Datasets

« RDD = Resilient Distributed Dataset

— Distributed, immutable.
— Records lineage = expression that says how that
relation was computed = a relational algebra plan
« Spark stores intermediate results as RDD

 |If a server crashes, its RDD in main memory
Is lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

DATA516/CSED516 - Fall 2023 79

R(A,B) SELECT count(*) FROM R, S
S(A,C) WHERE R.B > 200 and S.C <100 and RA=S.A

Example

strm.read().textFile(“R.csv”).map(parseRecord).persist();
strm.read().textFile(“S.csv”).map(parseRecord).persist();

@each line into a@

persisting
in memory
or on disk

80

R(A,B) SELECT count(*) FROM R, S
S(A,C) WHERE R.B > 200 and S.C <100 and RA=S.A

Example

strm.read().textFile(“R.csv”).map(parseRecord).persist();
strm.read().textFile(“S.csv”).map(parseRecord).persist();
R.filter(t -> t.b > 200);

B
C = S.filter(t -> t.c < 100); @
= RB.join(SC);

J.count();<<::;/z;;;;\\

filter((a,b)->b>200) filter((b,c)->€<100)

81

RDD Detalls

 An RDD is a partitioned collection of records
— RDD'’s are typed: RDD[Int] is an RDD of integers
— Records are Java/Python objects

 An RDD is read only

— This means no updates to individual records
— This is to contrast with in-memory key-value stores

 To create an RDD
— Execute a deterministic operation on another RDD

— Or on data in stable storage
— Example operations: map, filter, and join

82

RDD Materialization

» Users control persistence and partitioning

* Persistence
— Materialize this RDD in memory

 Partitioning
— Users can specify key for partitioning an RDD

DATA516/CSED516 - Fall 2023

83

Outline

Spark
MapReduce and critique

Fault Tolerance

Hive (short)

84

Hive

* Facebook’s implementation of SQL over MR
» Supports subset of SQL

* Uses MapReduce runtime (pros/cons?)
— Note: this is similar to Google’s FlumedJava

85

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL

Uses MapReduce runtime (pros/cons?)
— Note: this is similar to Google’s FlumedJava

Optimizations:

86

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL

Uses MapReduce runtime (pros/cons?)
— Note: this is similar to Google’s FlumedJava
Optimizations:

— Column pruning

87

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL

Uses MapReduce runtime (pros/cons?)
— Note: this is similar to Google’s FlumedJava
Optimizations:

— Column pruning

— Predicate push-down

88

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL

Uses MapReduce runtime (pros/cons?)
— Note: this is similar to Google’s FlumedJava
Optimizations:

— Column pruning

— Predicate push-down

— Partition pruning

89

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL
Uses MapReduce runtime (pros/cons?)

Note: this is similar to Google’s FlumeJava

Optimizations:

Column pruning

Predicate push-down

Partition pruning

Map-side join = "broadcast join” (discuss in class)

90

Hive

Facebook’s implementation of SQL over MR
Supports subset of SQL

Uses MapReduce runtime (pros/cons?)

— Note: this is similar to Google’s FlumedJava
Optimizations:

— Column pruning

— Predicate push-down

— Partition pruning

— Map-side join = "broadcast join” (discuss in class)
— Join reordering

91

Discussion

« Parallel database systems: since the 80s
 MapReduce: around 2000

« Hive: built on MapReuce

« Spark: “better” MapReduce around 2010

« Snowflake, Aurora: cloud, parallel databases;
around 2015

Quick comparison (next slides)

DATA516/CSED516 - Fall 2023 92

MapReduce v.s. Spark

Job = Map+Reduce
Language = Java
Data = untyped

Optimization = no

Job = any query
Language = RA
Data = has schema

Optimization = yes
but limited: missing
stats on base data

93

Spark v.s. RDBMS

Query language = its
own proprietary

Optimizer = limited

Runtime = its own
proprietary

External functions =
yes; very useful in ML

Query language =
SQL

Optimizer = full scale

Runtime = efficient
SQL query engine

External functions =
no

94

Next lecture:

Outline

Spark Review

MapReduce and critique

Fault Tolerance

Hive (short)

Parallel databases (Start Today)| e

Parallel Databases

96

Outline

 Basic notions

« Distributed query processing algorithms
(Start)

« Skew (will continue next lecture)

DATA516/CSED516 - Fall 2023

97

Architectures for Parallel Databases

« Shared memory
« Shared disk

« Shared nothing

DATA516/CSEDS16 - Fall 2023

98

Shared Memory

Interconnection
Network

r

Global Shared
Memory

G

SMP =
symmetric multiprocessor

Nodes share RAM and disk
10x ... 100x processors

Example: SQL Server runs
on a single machine and can
leverage many threads to
speed up a query

Easy to use and program
Expensive to scale

99

M

M

M

Network

[Interconnection

]

R

Shared Disk

All nodes access same disks

10X processors

Example: Oracle

No more memory contention

Harder to program
Still hard to scale

100

Shared Nothing

[Interconnection]

* Cluster of commodity machines

« Called "clusters" or "blade servers”
« Each machine: own memory & disk
* Up to x1000-x10000 nodes

P P P « Example: redshift, spark, snowflake

Network

Because all machines today have many
cores and many disks, shared-nothing
M M M systems typically run many "nodes” on a
single physical machine.

« Easy to maintain and scale
 Most difficult to administer and tune.

Performance Metrics

Nodes = processors = computers

« Speed Up:

— More nodes, same data =» higher speed

« Scale Up:

— More nodes, more data = same speed

Disclaimer: Scale Up is often mis-used as Speed Up

Linear v.s. Non-linear Speedup

Speedup

\666\

x10

|
nodes (=P)
DATA516/CSED516 - Fall 2023

103

Batch
Scaleup

Linear v.s. Non-linear Scaleup

|deal
%1 x5 x10 x15
| I | |
| | | |
nodes (=P) AND data size
DATA516/CSED516 - Fall 2023 104

Why Sub-linear?

« Startup cost
— Cost of starting an operation on many nodes

* Interference
— Contention for resources between nodes

« Skew
— Slowest node becomes the bottleneck

DATA516/CSEDS16 - Fall 2023 105

Speedup

“Scalabllity but at what cost?”

\633\

Best single-server

algorithm

X5 x10 x15
I | |

l |
nodes (=P)
DATA516/CSED516 - Fall 2023 106

Discussion

Parallel/distributed data processing:

« Scales up” to more data:
— More servers can hold more data

« Speedup w/ number of nodes:
— Harder to achieve

— But can get there in with more nodes/future
research

* “Scale up” is often used informally, like here 107

Outline

 Basic notions

« Distributed query processing algorithms

« Skew (will continue next lecture)

DATA516/CSED516 - Fall 2023

108

Distributed Query Processing
Algorithms

109

Horizontal Data Partitioning

110

Horizontal Data Partitioning

111

Horizontal Data Partitioning

sid

name | ...

—

sid

name | ...

R,

R,

Rs

fragment
chunk
partition

112

Horizontal Data Partitioning

* Block Partition, a.k.a. Round Robin:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

« Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

« Range partitioned on attribute A:
— Partition the range of Ainto -o =v,<v,<...<vp=
— Tuple t goes to chunk i, if vy < t.A<v,

DATA516/CSED516 - Fall 2023 113

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers,
we draw the picture like this:

R, R, Ro

Here R, is the fragment of R stored on server 1, etc

R=R,UR,U--UR;

114

Uniform Load and Skew
* |R] =N tuples, then |R| +|R;| + ... + |Rj| =N

 We say the load is uniform when:
Ry =Ryl = ... = [R,| = N/p

« Skew means that some load is much larger:
max; |Ri| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

« Selection o

e Join X

 Group by y

116

Parallel Selection

Data: R(K, A, B, C)
Query: Op=v(R), Or 0y 1cpa<2(R)

* Block partitioned:

* Hash partitioned:

* Range partitioned:

DATA516/CSED516 - Fall 2023 117

Parallel Selection

Data: R(K, A, B, C)
Query: Op=v(R), Or 0y 1cpa<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:

* Range partitioned:

DATA516/CSED516 - Fall 2023 118

Parallel Selection

Data: R(K, A, B, C)
Query: Op=v(R), Or 0y 1cpa<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

* Range partitioned:

DATA516/CSED516 - Fall 2023 119

Parallel Selection

Data: R(K, A, B, C)
Query: Op=v(R), Or 0y 1cpa<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

* Range partitioned:
— Only some servers need to scan

DATA516/CSED516 - Fall 2023 120

Parallel GroupBy
Data: R(K, A, B, C)
Query: YA sum(c)(R)

Discuss in class how to compute in each case:

* R is hash-partitioned on A

* R is block-partitioned or hash-partitioned on K

121

Parallel GroupBy

Data: R(K, A, B, C)

Query: YA sum(c)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally yu sym(c)(Ri)

* R is block-partitioned or hash-partitioned on K

122

Parallel GroupBy

Data: R(K, A, B, C)

Query: YA sum(c)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally yu sym(c)(Ri)

* R is block-partitioned or hash-partitioned on K
— Need to reshuffle data on A first (next slide)
— Then compute locally yu sym(c)(Ri)

123

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

R, R, R,

DATA516/CSED516 - Fall 2023 124

Basic Parallel GroupBy
Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

R, R, R,

DATA516/CSED516 - Fall 2023 125

Basic Parallel GroupBy
Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

DATA516/CSED516 - Fall 2023 126

Basic Parallel GroupBy

Data:
Query:
e Ris bloc

Reshuffle R
on attribute A

R(K, A, B, C)

YA,sum(C)(R)
K-partitioned or hash-partitioned on K

R,

R,

R,

DATA516/CSED516 - Fall 2023

R,

127

Basic Parallel GroupBYy
Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

R1’ R21 - - - RP1

R, R, R,

DATA516/CSED516 - Fall 2023 128

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: Yasumc)(R)

* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

R,

R,

R,

R,

This is done in one
communication step

DATA516/CSED516 - Fall 2023

Rp

129

Reshuffling
* Nodes send data over the network
 Many-many communications possible

* Throughput:
— Better than disk
— Worse than main memory

DATA516/CSED516 - Fall 2023 130

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Ry |RY CL Rp’
Reshuffle R This is d(.)nelln one
on attribute A communication step
R R, Rp

Can you think
DATA516/CSED516 - Fall 2023 of an optimization?

GroupBy/Union Commutativity

city gant

Seattle 10

LA 20

Seattle 30

NY 40

cit gant .

= - SELECT city, sum(quant)
Y E FROM R

LA 44

Austin 55 GROUP BY Clty
city gant

Seattle 66

LA 77

NY 88

LA 99

GroupBy/Union Commutativity

city gant

Seattle 10 Q: What is sum for Seattle?
Seattle 30

NY 40

S — SELECT city, sum(quant)
TR FROM R
Austin 55 GROUP BY Clty

GroupBy/Union Commutativity

city gant

Seattle 10 Q: What is sum for Seattle?
Seattle 30

NY 40

S — SELECT city, sum(quant)
TR FROM R
Austin 55 GROUP BY Clty

GroupBy/Union Commutativity

city gant

Seattle 10 Q: What is sum for Seattle?
LA 20 A: 106

Seattle 30

NY 40

S SELECT city, sum(quant)
DA FROM R

LA 44

Austin 55 GROUP BY Clty

city gant
Seattle 66 Sum here = 66

LA 77

NY 88

LA 99

GroupBy/Union Commutativity

city gant

Seattle 10 Sum here = 40 Q: What is sum for Seattle?
LA 20 A: 106

Seattle 30

NY 40

city gant .

— o SELECT city, sum(quant)
v = FROM R

LA 44

Austin 55 GROUP BY city

city gant

Seattle 66 Sum here = 66

LA 77

NY 88

LA 99

Y city,sum(q) (R{ UR, U RB) =

GroupBy/Union Commutativity

city gant

Seattle 10 Sum here = 40 Q: What is sum for Seattle?
LA 20 A: 106

Seattle 30

NY 40

city gant .

— o SELECT city, sum(quant)
v = FROM R

LA 44

Austin 55 GROUP BY city

city gant

Seattle 66 Sum here = 66

LA 77

NY 88

LA 99

Y city,sum(q) (R{ UR, U RB) =
= YCity,sum(q) (YCity,sum(q) (R 1) U YCity,sum(q) (RZ) U YCity,sum(q) (RB))

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

DATA516/CSED516 - Fall 2023 138

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = Yasum(c)(Ri)

DATA516/CSED516 - Fall 2023 139

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = Yasum(c)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
Ti,1’ T T, P

then send fragment JIZ,J to server |

DATA516/CSED516 - Fall 2023 140

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = Yasum(c)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
TI 15 Ti P

then send fragment JIZ to serverj

Step 2: receive fragments, union them, then group-by
R'=T,;U...UT,,
Answer = VA sum(C) (R)

DATA516/CSED516 - Fall 2023 141

Pushing Aggregates Past Union

Which other rules can we push past union”?
¢ Sum?

« Count?

* Avg?

« Max?

 Median?

DATA516/CSED516 - Fall 2023 142

Pushing Aggregates Past Union

Which other rules can we push past union”?

e Sum? Distributive Algebraic Holistic
° P sum(a,ta,+...+ag)= avg(B) = median(B)
Count] sum(ssjm(2a1+az+z3)+ sum(B)/count(B)
o sum(a,tas+ag)+
Avg? sum(ar+ag+ay)
+ Max?
* Median?

DATA516/CSED516 - Fall 2023 143

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Y a, sum(b)—sb

GC>O

R

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Machine 1 Machine 2

1/3 of R 1/3 of R

Y a, sum(b)—sb

GC>O

R

Machine 3

1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

<0c>0> <°c>0> <0c>0>
<sca n> (sca n> <sca n>

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

i a, sum(b)—b

<0c>0>
<sca n>

Machine 1

1/3 of R

Y a, sum(b)—b

<°c>0>
(sca n>

Machine 2

1/3 of R

Y a, sum(b)—b

<0c>0>
<sca n>

Machine 3

1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

@sh o@

<0c>0>
<sca n>

Machine 1

1/3 of R

@sh o@

<°c>0>
(sca n>

Machine 2

1/3 of R

@sh o@

<0c>0>
<sca n>

Machine 3

1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

@ on a @sh o@

<0c>0> <°c>0>
<sca n> (sca n>

Machine 1 Machine 2

1/3 of R 1/3 of R

hash_@

<0c>0>
<sca n>

Machine 3

1/3 of R

SELECT a, sum(b) assb FROMR WHERE c >0 GROUP BY a

i a, sum(b)—sb Y a, sum@

<0c>0> <°c>0>
<sca n> (sca n>

Machine 1 Machine 2

1/3 of R 1/3 of R

Y a, sum(b)— sb

hash_@

<0c>0>
<sca n>

Machine 3

1/3 of R

Speedup and Scaleup

Consider the query Y, sumc)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

DATA516/CSED516 - Fall 2023 153

Speedup and Scaleup

Consider the query Y, sumc)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %2)

If we double both P and size of R, what is the runtime?
* Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2023 154

Speedup and Scaleup

Consider the query Y, sumc)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %2)

If we double both P and size of R, what is the runtime?
* Same (chunk sizes remain the same)

‘But only if the data is without skew! s

