DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 3 Query Optimization, Spark

Administrivia

- Homework 1 (Updated): Monday, 10/30
 - Thinking part done, Now... Redshift
 - Pull Upstream to get Changes
 - Updated Instructions on https://gitlab.cs.washington.edu/jackkhuu/csed516-2023au/

AWS Academy Account invite sent out

Announcements

- Project proposals due on Oct. 28th
 - If you have not filled out the partner form, we will email you

Review was due today (How good…?)

Outline for Today

Section First (Redshift Set Up)

- Query Optimization
 - How good are they?

Spark

Recap

- Optimizer has three components:
 - Search space
 - Cardinality and cost estimation
 - Plan enumeration algorithms

Recap

- Optimizer has three components:
 - Cardinality and cost estimation
 - Search space
 - Plan enumeration algorithms
- Paper addresses three questions:
 - How good are the cardinality estimators?
 - How important is the cost model?
 - How large does the search space need to be?

Paper Outline

How good are the cardinality estimators?

How important is the cost model?

 How large does the search space need to be?

The Job Benchmark

 Why do they use the IMDB database instead of TPC-H?

 IMDB – popular data on the web, can be imported into any RDBMS with moderate effort

Note: Importing your dataset into RDBMS can be a painful process

The Job Benchmark

JOB Benchmark: 33 templates, 113 queries Discuss the difference in class:

- SQL query
- SQL query template (or structure)

Group-by Queries

- None in JOB!
- Important in DS; we'll discuss them later

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

- Number of tuples (cardinality) T(R)
- Number of values in R.a: V(R,a)
- Histograms (later today)

What are the four assumptions that database systems do?

What are the four assumptions that database systems do?

- Uniformity
- Independence
- Containment of values
- Preservation of values

Single Table Estimation

$$\sigma_{A=c}(R) = T(R)/V(R,A)$$

What assumption does this make?

Single Table Estimation

$$\sigma_{A=c}(R) = T(R)/V(R,A)$$

What assumption does this make?

Uniformity

Single Table Estimation

$$\sigma_{A=c}(R) = T(R)/V(R,A)$$
 What assumption does this make? Uniformity

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections

Histograms

- T(R), V(R,A) too coarse
- Histogram: separate stats per bucket

- In each bucket store:
 - T(bucket)
 - V(bucket,A)

Histograms

T(Employee) = 25000, V(Employee, age) = 50

Estimate $\sigma_{age=48}$ (Employee) = ?

Histograms

```
T(Employee) = 25000, V(Employee, age) = 50
```

```
Estimate \sigma_{\text{age}=48}(\text{Employee}) = ? = 25000/50 = 500
```

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate $\sigma_{\text{age}=48}(\text{Employee}) = ? = 25000/50 = 500$

Age:	020	2029	30-39	40-49	50-59	> 60
T =	200	800	5000	12000	6500	500
V =	3	10	7	6	5	4

Estimate $\sigma_{age=48}$ (Employee) = ?

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate $\sigma_{\text{age}=48}(\text{Employee}) = ? = 25000/50 = 500$

Age:	020	2029	30-39	40-49	50-59	> 60
T =	200	800	5000	12000	6500	500
V =	3	10	7	6	5	4

Estimate $\sigma_{\text{age}=48}$ (Employee) = ? = 12000/6 = 2000

Types of Histograms

Eq-Width

Eq-Depth

Compressed: store outliers separately

"Special": V-Optimal histograms

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	032	3341	42-46	47-52	53-58	> 60
Т	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	032	3341	42-46	47-52	53-58	> 60
Т	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

"Weighed Variance of the source values is minimized"

Improved Histograms for Selectivity Estimation of Range Predicates

- Pick boundaries that minimize the variance of frequencies within buckets
- Dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Multiple Predicates

- Independence assumption:
 - Simple
 - But often leads to major underestimates

- Modeling correlations:
 - Solution 1: 2d Histograms
 - Solution 2: use sample from the data

Independence Assumption T(Supplier) = 250,000

scity:	AE	Fl	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ **Estimate**

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ **Estimate**

Select random tuple in Supplier, with probability 1/T

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Estimate
$$\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$$

Select random tuple in Supplier, with probability 1/T

Pr(scity = 'Mtv') =

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ **Estimate**

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M)$

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Estimate
$$\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$$

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = \frac{1}{V_{J.M}} * T_{J.M}/T$

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Estimate
$$\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$$

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M} * T_{J..M}/T$

Pr(sstate = 'CA') =

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ **Estimate**

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M} * T_{J..M}/T$

Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate ∈ A...J) * P(sstate ∈ A...J)

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ	
Т	125000	80000	45000	
V	20	10	20	

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ **Estimate**

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M} * T_{J..M}/T$

 $Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate \in A...J) * P(sstate \in A...J) = \frac{1}{V_{A...J}} * T_{A...J}/T$

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Estimate
$$\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$$

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M} * T_{J..M}/T$

Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate ∈ A..J) * P(sstate ∈ A..J) = 1/V_{A..I} * T_{A..I}/T

Pr(scity = 'Mtv' ∧ sstate = 'CA') =

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ Estimate

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = \frac{1}{V_{J.M}} * T_{J.M}/T$

 $Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate \in A..J) * P(sstate \in A..J) = \frac{1/V_{A..J} * T_{A..J}/T}{1/V_{A..J} * T_{A..J}/T}$

Independence $Pr(scity = 'Mtv' \land sstate = 'CA') = (1/V_{J,M} * T_{J,M}/T) * (1/V_{A,J} * T_{A,J}/T)$

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Estimate
$$\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$$

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M} * T_{J..M}/T$

Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate ∈ A..J) * P(sstate ∈ A..J) = 1/V_{A..J} * T_{A..J}/T

 $Pr(scity = 'Mtv' \land sstate = 'CA') = (1/V_{J_AM} * T_{J_AM}/T) * (1/V_{A_AJ} * T_{A_AJ}/T)$

Answer: $(1/V_{J_1M} * T_{J_2M}/T) * (1/V_{A_2J} * T_{A_2J}/T) * T = 1/1250 * 1/40 * 250000 = 5$

Independence Assumption T(Supplier) = 250,000

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$ Estimate

> This is likely an underestimate. Why?

Select random tuple in Supplier, with probability 1/T

 $Pr(scity = 'Mtv') = Pr(scity = 'Mtv' | scity \in J..M) * P(scity \in J..M) = 1/V_{J..M}$

Pr(sstate = 'CA') = Pr(sstate = 'CA' | sstate ∈ A..J) * P(sstate ∈ A..J) = 1/V

 $Pr(scity = 'Mtv' \land sstate = 'CA') = (1/V_{J_{-M}} * T_{J_{-M}}/T) * (1/V_{A_{-J}} * T_{A_{-J}}/T)$

Answer: $(1/V_{J..M} * T_{J..M}/T) * (1/V_{A..J} * T_{A..J}/T) * T = 1/1250 * 1/40 * 250000 = 5$

Modeling Correlations

- 1. Multi-dimensional histograms
 - Also called column-group statistics

2. Sample from the data

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

2d-Histogram

T(Supplier) = 250,000

1d Histograms

	scity:	AE	FI	JM	NQ	RU	VZ
	Т	2000	8000	50000	120000	65000	5000
Ī	V	50	40	250	300	130	100

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

2d Histogram

Sstate	AE	FI	JM	NQ	RU	VZ
AJ			T,V=			
KS						
TZ						

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ	
Т	125000	80000	45000	
V	20	10	20	

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

2d Histogram

Sstate	AE	FI	JM	NQ	RU	VZ
AJ			T,V=			
KS						
TZ						

Answer: T_{bucket} / V_{bucket}

Sample

 Compute a small, uniform sample from Supplier

```
Estimate \sigma_{\text{sscity}=\text{'Mtv'}} \wedge \text{sstate}=\text{'CA'}(\text{Supplier}) = ?
```

Sample

 Compute a small, uniform sample from Supplier

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

 Use Thomson's estimator:

Sample

 Compute a small, uniform sample from Supplier

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

 Use Thomson's estimator:

Answer: σ_{sscity='Mtv' ∧ sstate='CA'}(Sample) * T(Supplier) / T(Sample)

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: Awkward to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: Awkward to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: Awkward to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: Awkward to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: Awkward to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

Review: Estimate Join Size

Estimate: $T(R \bowtie_{A=B} S) = ??$

Review: Estimate Join Size

Estimate: $T(R \bowtie_{A=B} S) = ??$

Answer: $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

Review: Estimate Join Size

Estimate: $T(R \bowtie_{A=B} S) = ??$

Answer: $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

What assumptions do we make?

Review: Estimate Join Size

Estimate: $T(R \bowtie_{A=R} S) = ??$

Answer: $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

What assumptions do we make?

- Uniformity
- Containment of values
- Independence:
 - less obvious
 - reason is that T(R)T(S) is estimated too

Joins (0 to 6)

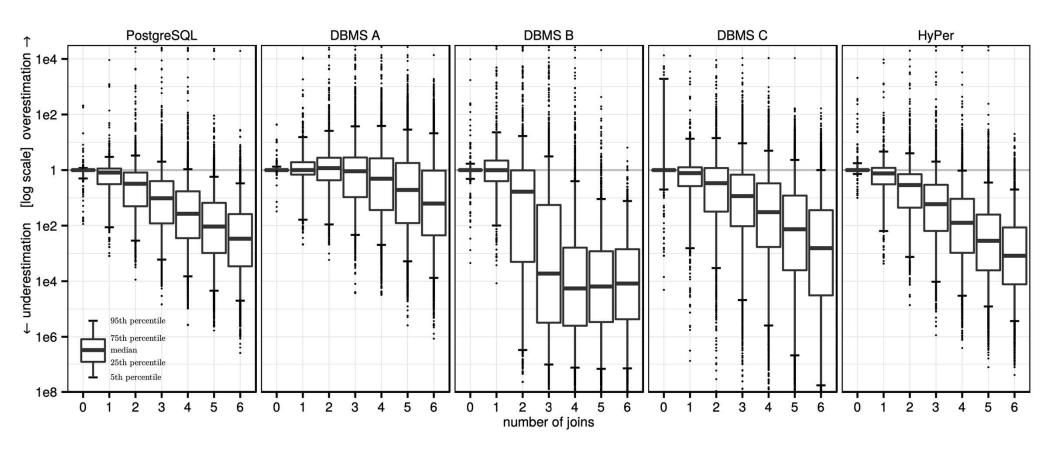


Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

Joins (0 to 6)

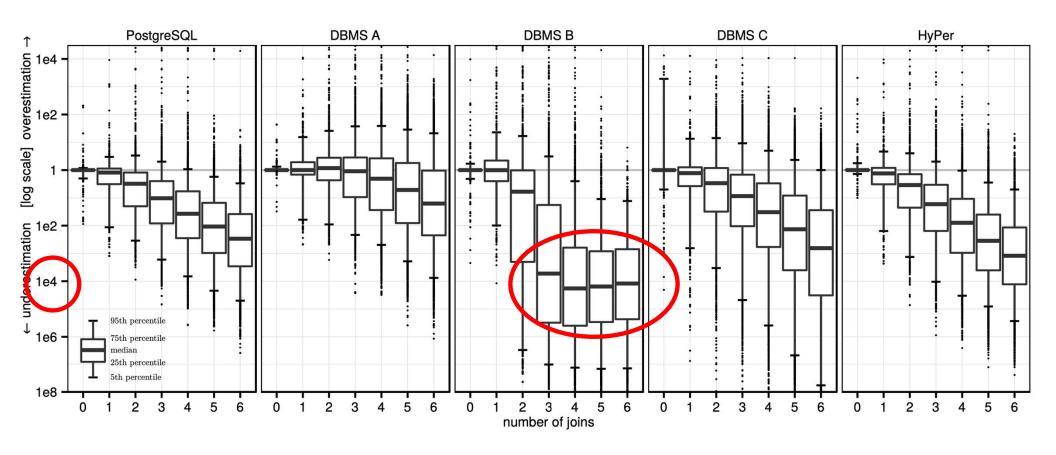


Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

Discussion

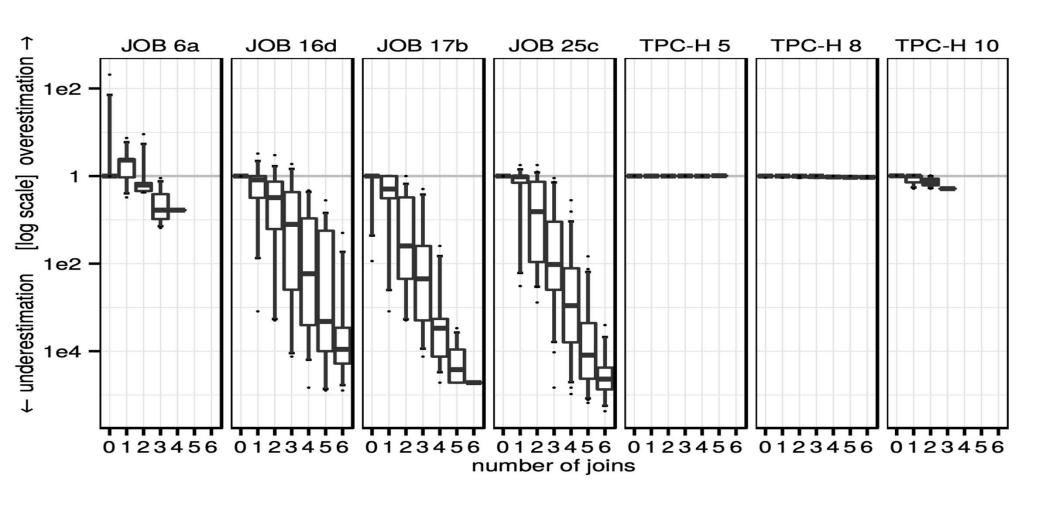
Paper explains the need for real data

Discussion

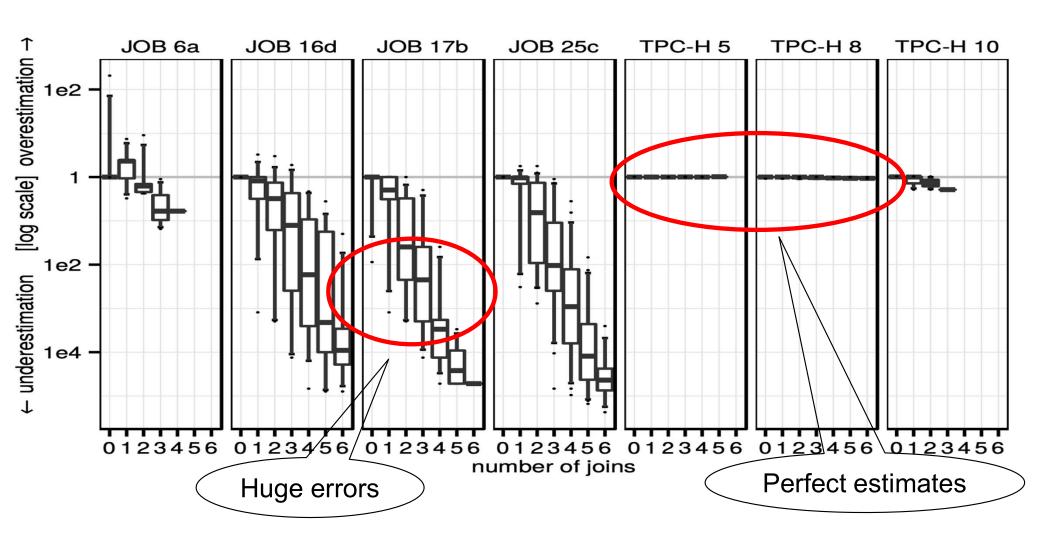
Paper explains the need for real data

 Synthetic data used in benchmarks is often generated using uniform, independent distributions; formulas for cardinality estimation are perfect

TPC-H v.s. Real Data (IMDB)



TPC-H v.s. Real Data (IMDB)



Impact of Mis-estimates

- Sec.4 (probably more than you want to know)
- Simple configuration (key index only):
 - Minor performance impact, because the big, "fact" table needs to be scanned anyway
 - Most come from nested-loop joins (why?)
 - Most of the rest come from hash-join (why?)
 - Briefly discuss re-hashing
- More complex configuration
 - Higher perf. Impact

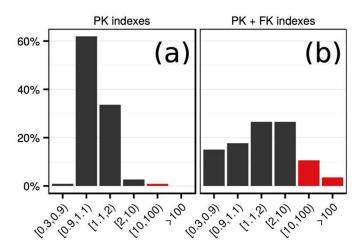


Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Paper Outline

How good are the cardinality estimators?

How important is the cost model?

 How large does the search space need to be?

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join R⋈S
 - $\text{Cost} = c_1^*T(R) + c_2^*T(R)^*T(S)$

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join R⋈S
 - $\text{Cost} = c_1^*T(R) + c_2^*T(R)^*T(S)$
- Example: hash-join R⋈S
 - $\text{Cost} = c_3^* T(R) + c_4^* T(S) // c_3 \neq c_4$

Cost model: for each physical operator we use a formula to convert cardinality to cost

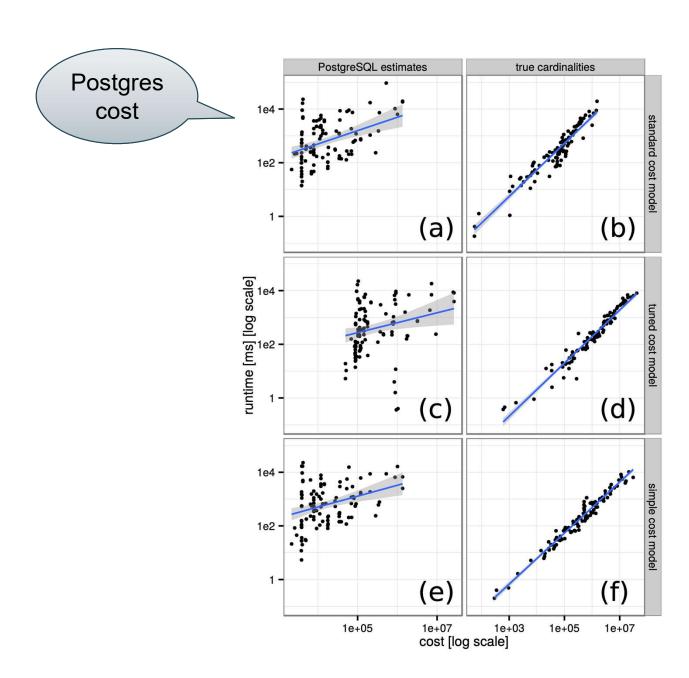
- Example: nested loop join R⋈S
 - $\text{Cost} = c_1^*T(R) + c_2^*T(R)^*T(S)$
- Example: hash-join R⋈S
 - $\text{Cost} = c_3^* T(R) + c_4^* T(S) // c_3 \neq c_4$
- Difficult to choose the right constants!

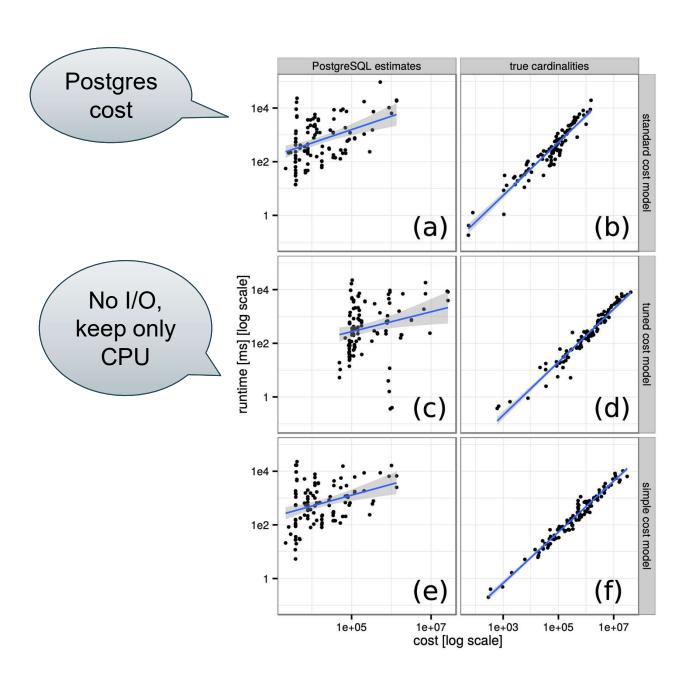
Cost model: for each physical operator we use a formula to convert cardinality to cost

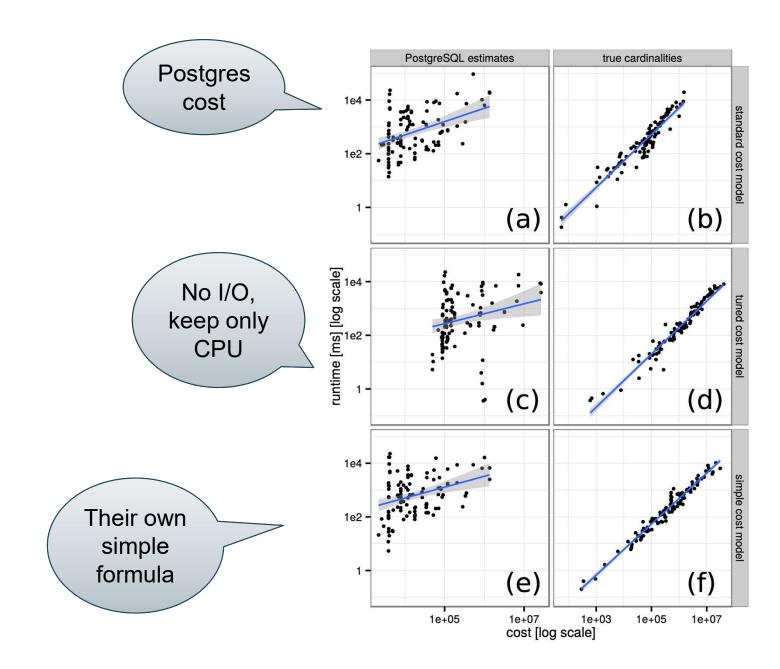
- Example: nested loop join R⋈S
 - $\text{Cost} = c_1^*T(R) + c_2^*T(R)^*T(S)$
- Example: hash-join R⋈S
 - $\text{Cost} = c_3^* T(R) + c_4^* T(S) // c_3 \neq c_4$
- Difficult to choose the right constants!

How important is the cost model?









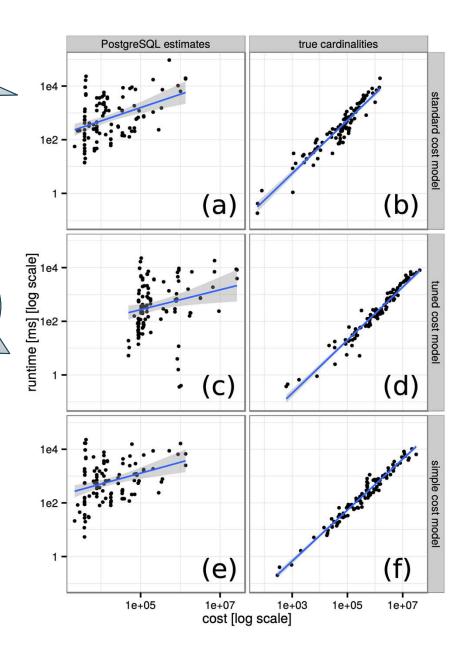
Cardinalities to Cost

Postgres

Cardinality
 estimation creates
 largest errors

Complex or simple cost models don't differ much

Their own simple formula



Not in the paper!

Digression: Yet Another Difficulty

SQL Queries issued from applications:

Query is optimized once: prepare

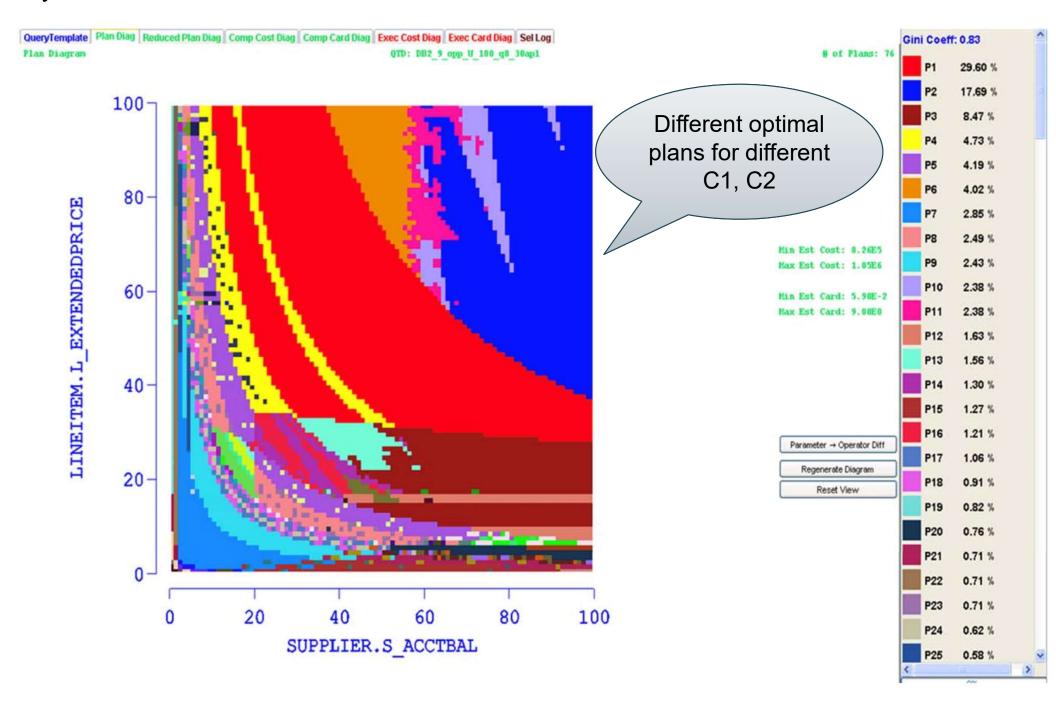
Then, executed repeatedly

Query constants are unknown until execution: optimized plan is suboptimal

```
select
 o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
        I_extendedprice * (1 - I_discount) as volume,
        n2.n name as nation
 from part, supplier, lineitem, orders,
    customer, nation n1, nation n2, region
 where p partkey = I partkey and s suppkey = I suppkey
  and I_orderkey = o_orderkey and o_custkey = c_custkey
  and c nationkey = n1.n nationkey
  and n1.n regionkey = r regionkey
  and r name = 'AMERICA'
  and s_nationkey = n2.n_nationkey
  and o orderdate between '1995-01-01'
  and '1996-12-31'
  and p type = 'ECONOMY ANODIZED STEEL'
 and s acctbal ≤ C1 and I extendedprice ≤ C2 ) as all nations
group by o_year order by o_year
```

```
select
 o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
        I_extendedprice * (1 - I_discount) as volume,
        n2.n name as nation
 from part, supplier, lineitem, orders,
    customer, nation n1, nation n2, region
 where p partkey = I partkey and s suppkey = I suppkey
  and I_orderkey = o_orderkey and o_custkey = c_custkey
  and c nationkey = n1.n nationkey
  and n1.n regionkey = r regionkey
  and r name = 'AMERICA'
                                                          Optimize without
  and s_nationkey = n2.n_nationkey
                                                           knowing C1, C2
  and o orderdate between '1995-01-01'
  and '1996-12-31'
  and p type = 'ECONOMY ANODIZED STEEL'
 and s acctbal ≤ C1 and I extendedprice ≤ C2 ) as all nations
group by o_year order by o_year
```

Jayant Haritsa, ICDE'2019 tutorial



Paper Outline

How good are the cardinality estimators?

How important is the cost model?

 How large does the search space need to be?

Search Space

The set of alternative plans

- Rewrite rules; examples:
 - Push selections down: $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$
 - Join reorder: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
 - Push aggregates down (later today)

Types of join trees (next)

The need for a rich search space

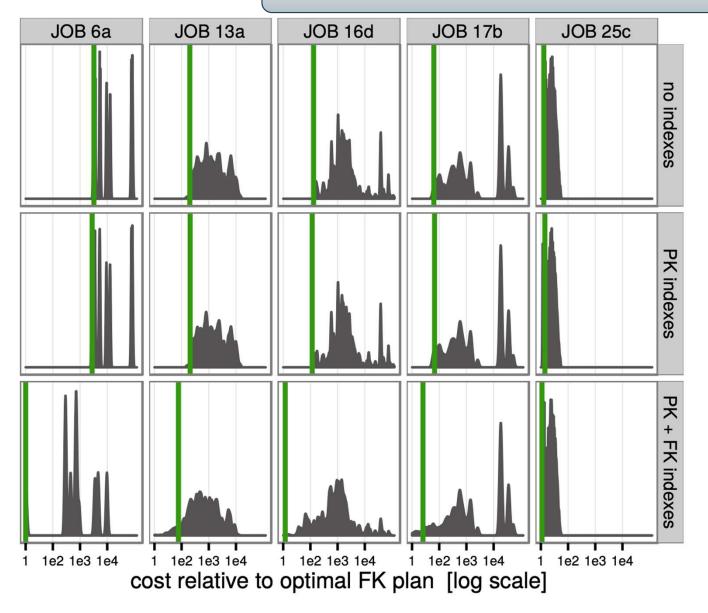
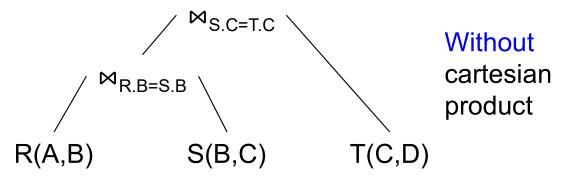
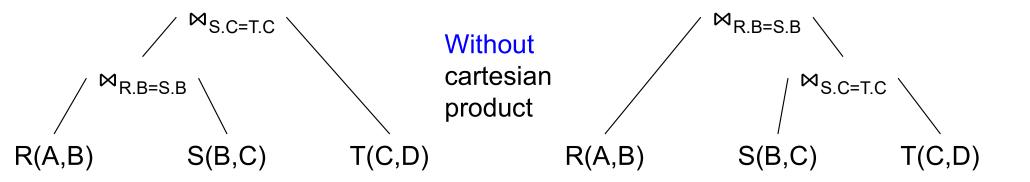


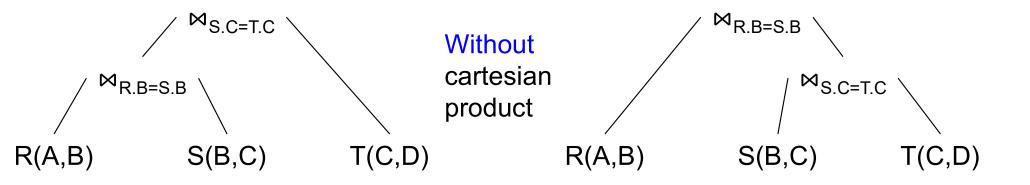
Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

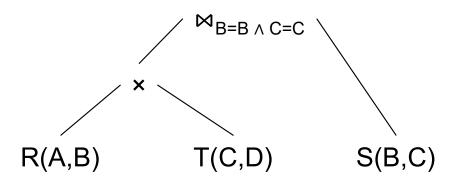
Types of Join Trees

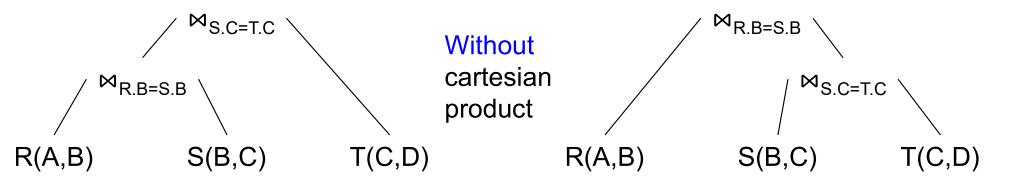
- Based on the join condition:
 - With cartesian products
 - Without cartesian products
- Based on the shape:
 - Left deep
 - Right deep
 - Zig-zag
 - Bushy

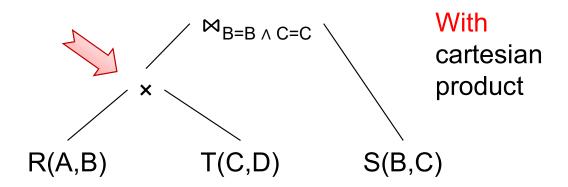


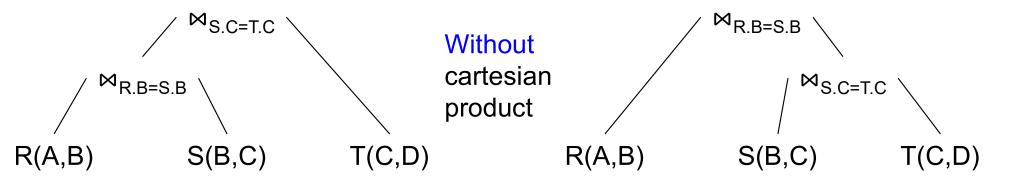


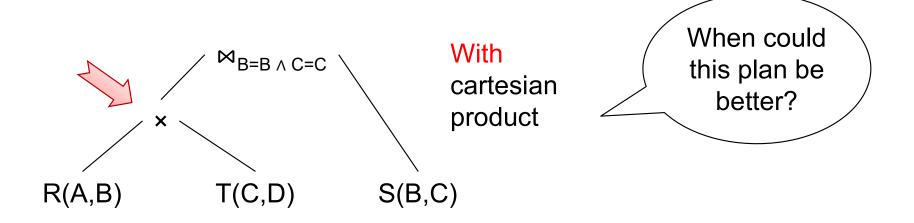




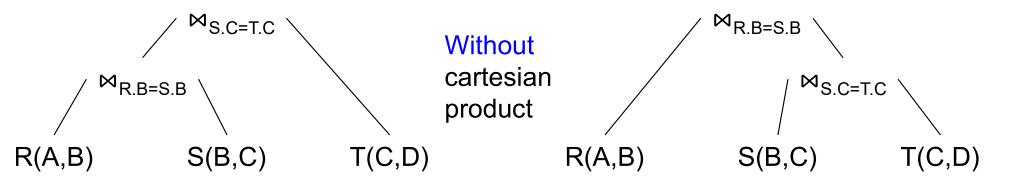


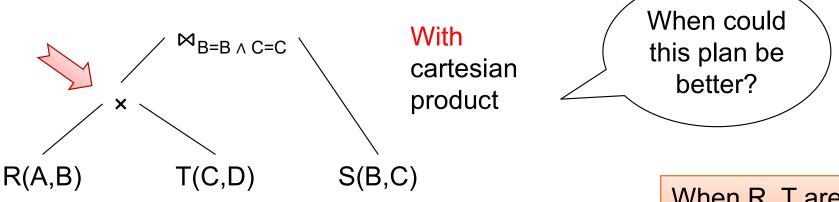




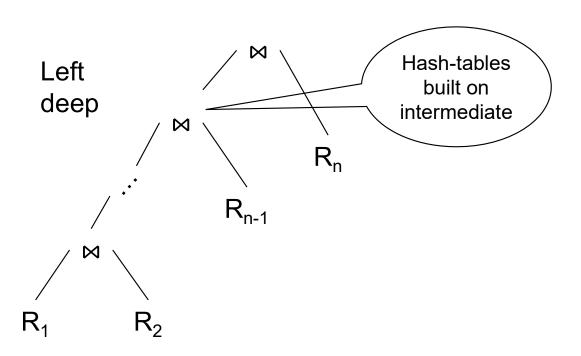


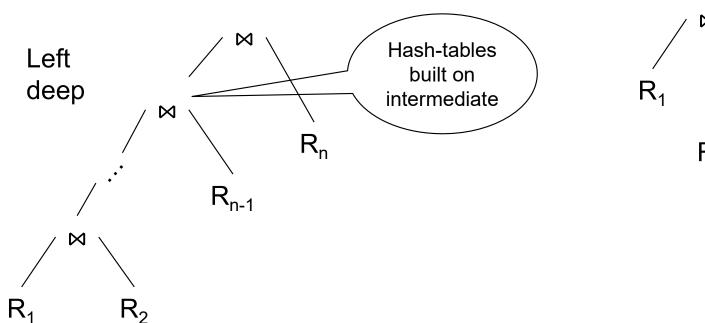
 $R(A,B) \bowtie_{R.B=S.B} S(B,C) \bowtie_{S.C=T.C} T(C,D)$

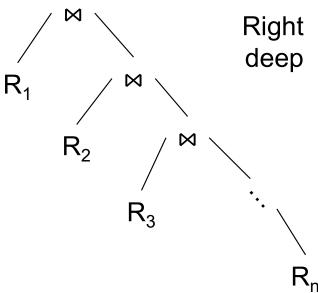


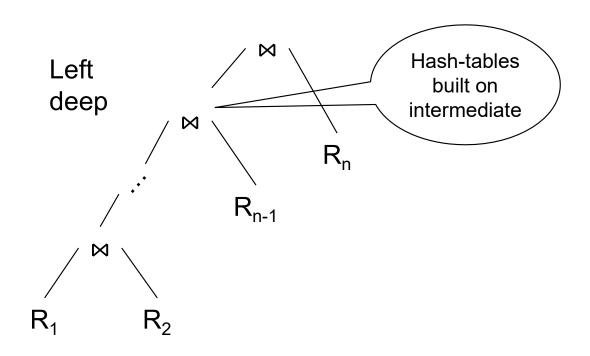


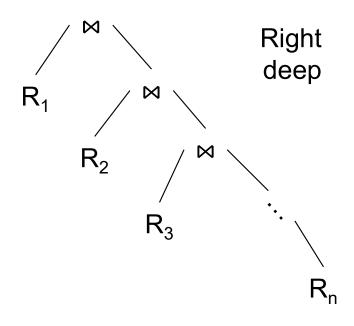
When R, T are very small, and S is very large

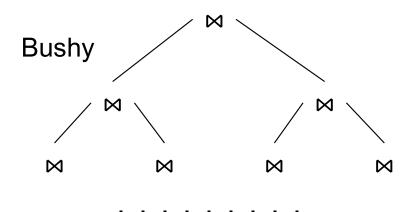


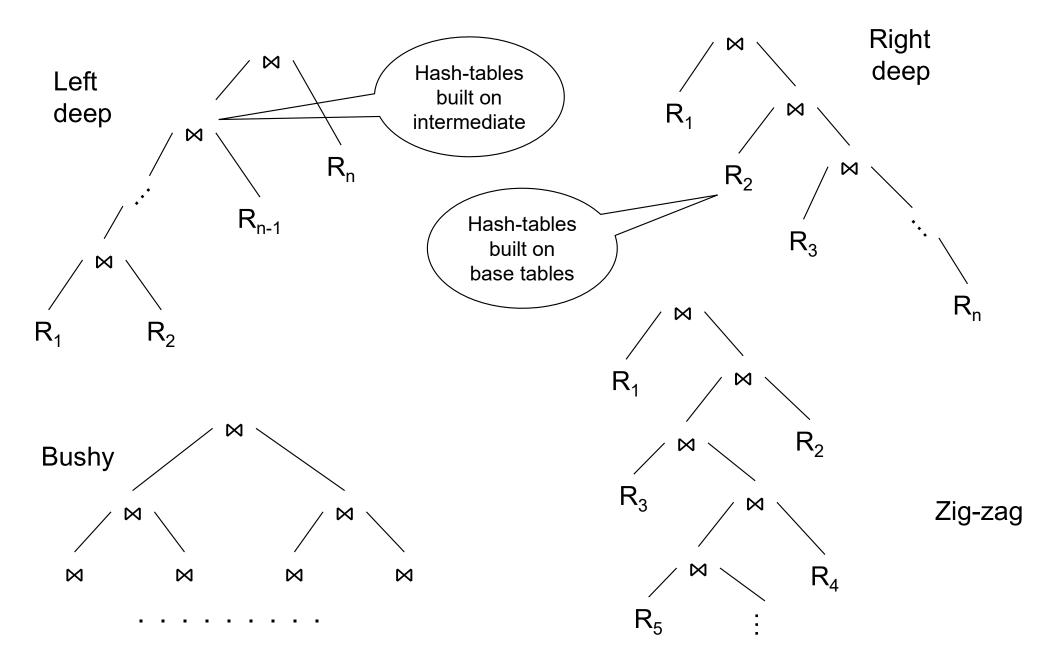












[How good are they]

Left/right convention switches: Depending on Author/Convention

The effect of restricting the search space

	PK indexes			PK + FK indexes		
	median	95%	max	median	95%	max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in comparison to the optimal plan (true cardinalities)

Search Space: Discussion

Search space can be huge

- Database systems often reduce it by applying heuristics:
 - No cartesian products
 - Restrict to left-deep trees (or other restriction)

Rewrite Rules

- We have seen last time:
 - Push selection down: $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$
 - AND: $\sigma_{C1 \text{ and } C2}(R \bowtie S) = \sigma_{C1}(\sigma_{C2}(R \bowtie S))$
 - Join associativity: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
 - Join commutativity: $R \bowtie S = S \bowtie R$
- Two more rules
 - Push aggregates down
 - Remove redundant joins

Very important for Data Science!

select count(*) from customer;

Answer: 1500000

Time: 2 s

select count(*) from customer;

Answer: 1500000

Time: 2 s

select count(*) from lineitem;

Answer: 59986052

Time: 1 s

select count(*) from customer;

Answer: 1500000

Time: 2 s

select count(*) from lineitem;

Answer: 59986052

Time: 1 s

select count(*) from customer, lineitem;

select count(*) from customer;

Answer: 1500000

Time: 2 s

select count(*) from lineitem;

Answer: 59986052

Time: 1 s

select count(*) from customer, lineitem;

Timeout!!!

select count(*) from customer;

Answer: 1500000

Time: 2 s

select count(*) from lineitem;

Answer: 59986052

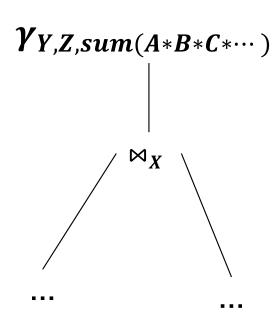
Time: 1 s

select count(*) from customer, lineitem;

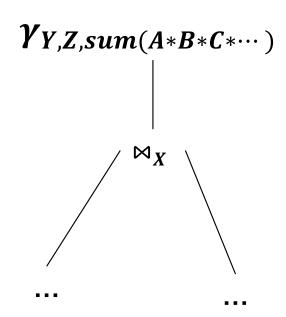
Timeout!!!

But 3rd query is simply the **product** of the first two!

select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

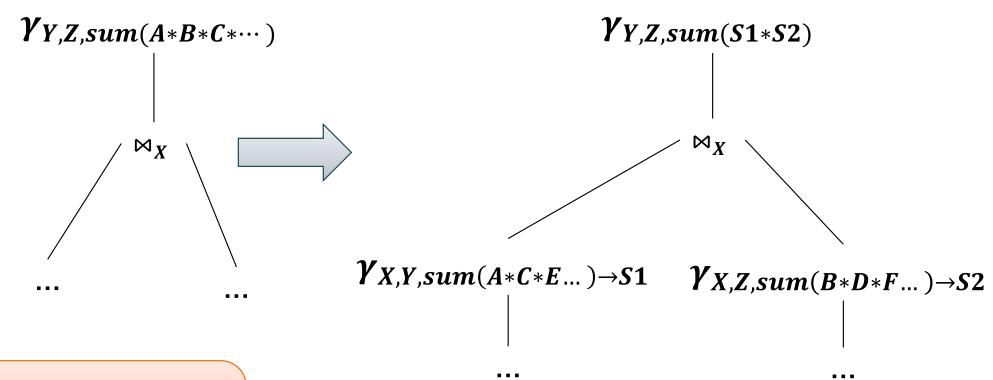


select Y,Z, sum(A*B*C*...) from...where... group by Y, Z



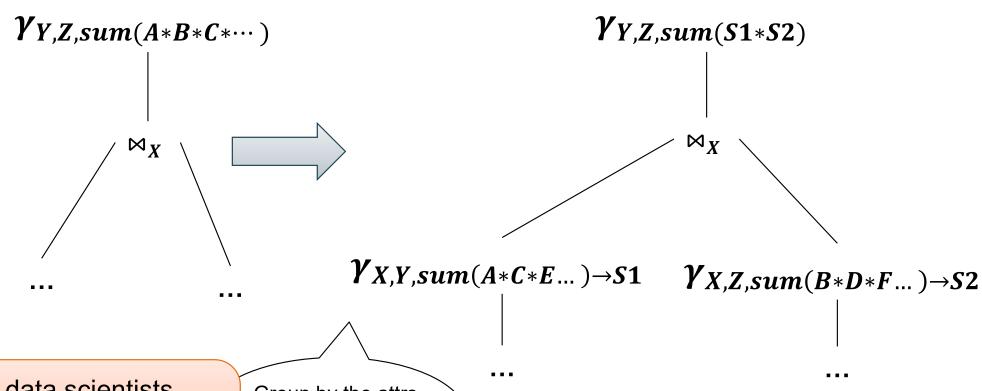
As data scientists, you may really need this optimization; do it manually, if needed!

select Y,Z, sum(A*B*C*...) from...where... group by Y, Z



As data scientists, you may really need this optimization; do it manually, if needed!

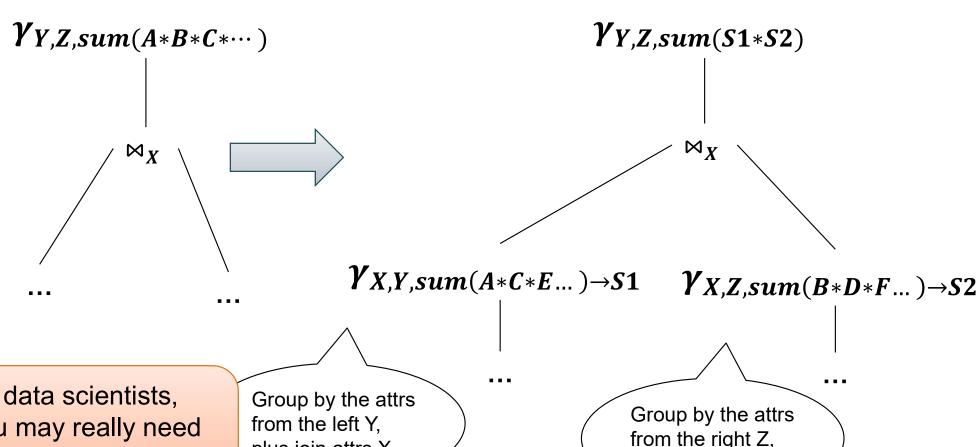
select Y,Z, sum(A*B*C*...) from...where... group by Y, Z



As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X

select Y,Z, sum(A*B*C*...) from...where... group by Y, Z



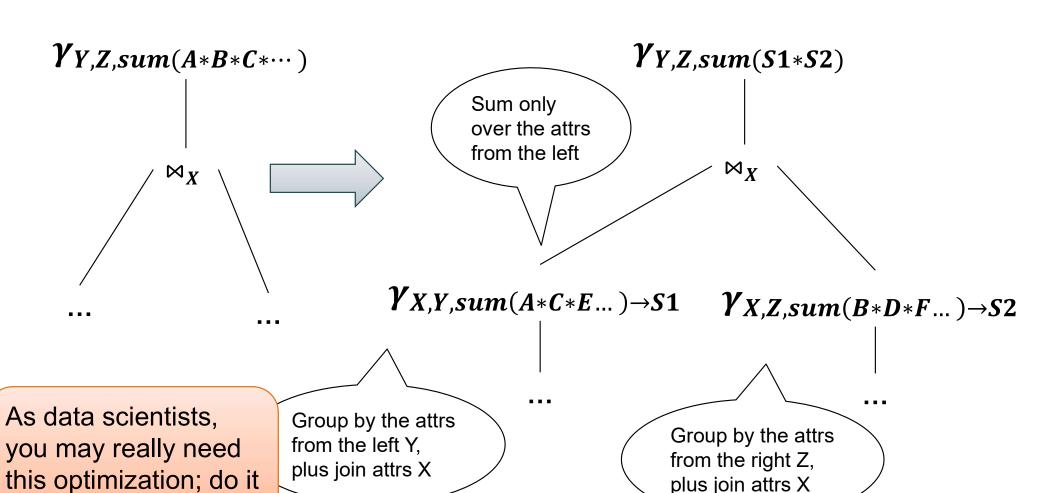
As data scientists, you may really need this optimization; do it manually, if needed!

plus join attrs X

from the right Z, plus join attrs X

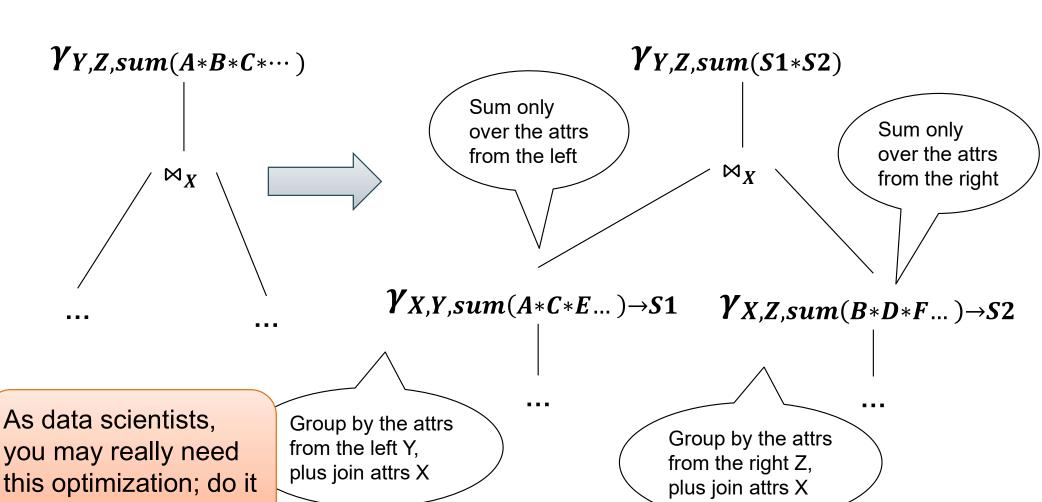
select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

manually, if needed!



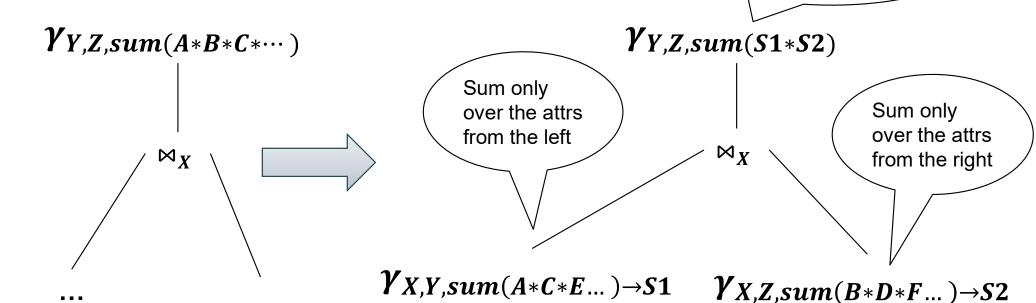
select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

manually, if needed!



select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

Group by Y,Z (again) multiply the two sums, and sum again



As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X

Group by the attrs from the right Z, plus join attrs X

Example 1

SELECT count(*) from R, S where R.x=S.x

 $\begin{array}{c|c}
 & Y_{count(*)} \\
 & \downarrow \\
 & \downarrow \\
 & x,y,z
\end{array}$ $\bowtie_{x} \\
 & S(x,z)$

SELECT count(*) from R, S where R.x=S.x

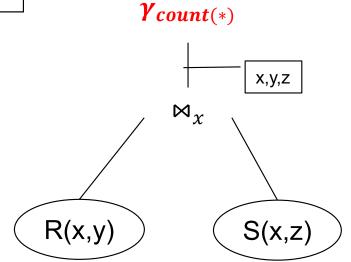
R:

X	у
b	а
b	С
f	d
h	g

S:

X	Z
b	g
b	k
h	m

Answer = **????**



SELECT count(*) from R, S where R.x=S.x

R:

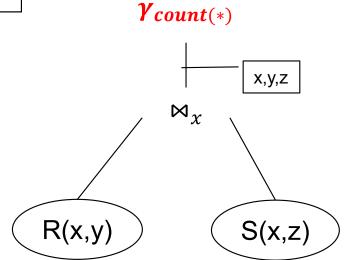
X	у
b	а
b	С
f	d
h	g

S:

X	Z
b	g
b	k
h	m

Answer = 5

Runtime = $O(N^2)$



SELECT count(*) from R, S where R.x=S.x

R:

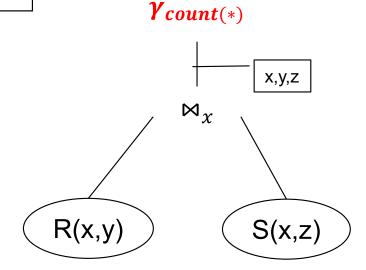
X	у
b	а
b	С
f	d
h	g

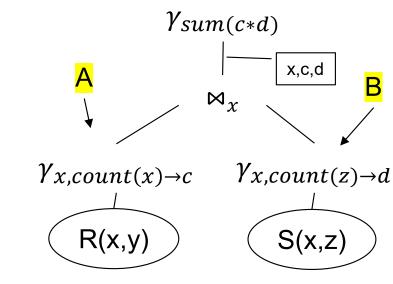
S:

X	Z
b	О
b	k
h	m

Answer = 5

Runtime = $O(N^2)$





SELECT count(*) from R, S where R.x=S.x

R:

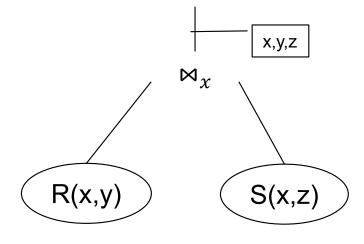
X	у
b	а
b	С
f	d
h	g

S:

X	Z
b	g
b	k
h	m

Answer = 5

Runtime = $O(N^2)$



A:

X	С
b	2
f	1
h	1

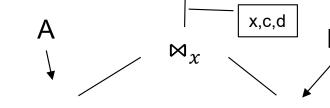
B:

Х	d
р	2
h	1

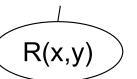
A⋈B

X	С	d
d	2	2
h	1	1

 $\gamma_{sum(c*d)}$



 $\gamma_{x,count(x)\to c}$



 $\gamma_{x,count(z)\to d}$

SELECT count(*) from R, S where R.x=S.x

R:

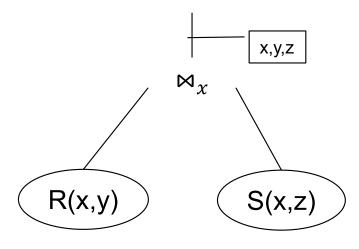
X	у
b	а
b	С
f	d
h	g

S:

X	Z
b	g
b	k
h	m

Answer = 5

Runtime = $O(N^2)$



Answer = 5

Runtime = O(N)

A:

X	С
b	2
f	1
h	1

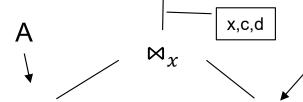
B:

Х	d
b	2
h	1

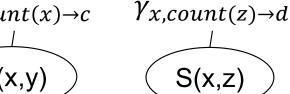
A⋈B

X	С	d
b	2	2
h	1	1

 $\gamma_{sum(c*d)}$



 $\gamma_{x,count(x)\to c}$

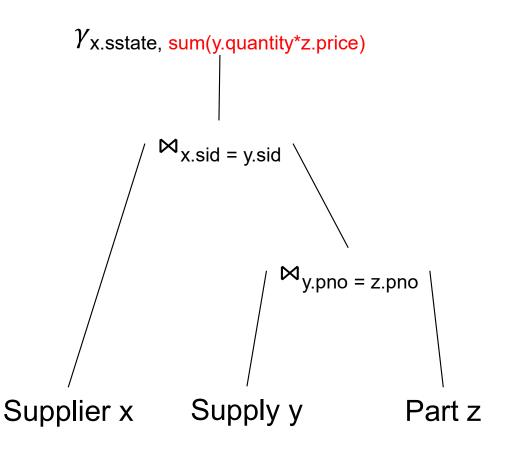


R(x,y)

```
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)
```

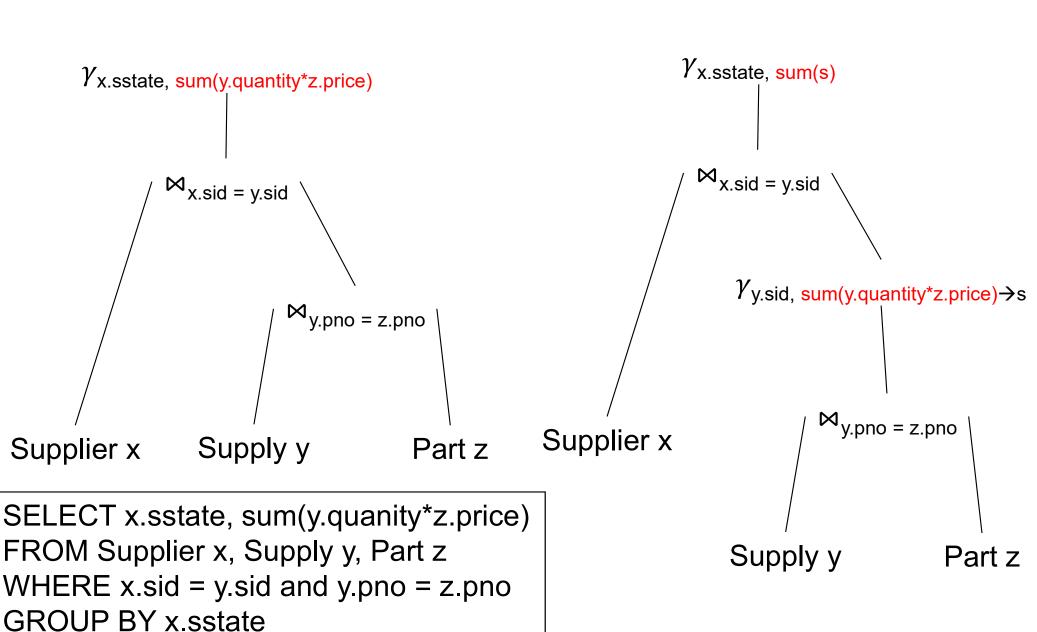
SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

```
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)
```



SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

```
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)
```



Discussion

- Join-aggregates: common in data science
- Implementation in RDBMS seems spotty:
 - Postgres: NO (someone started, abandoned)
 - Redshift: NO (I don't know the status)
 - SQL Server: YES (at least a few years back)
 - Snowflake: ??
- You may have to force this manually, by writing nested SQL queries

Redundant Foreign-key / key Joins

Simple, highly effective

Almost all engines implement this

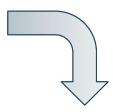
Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, <u>pno</u>, quant<u>ity</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid



?

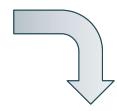
Supplier(<u>sid</u>, sname, scity, sstate)
Supply(<u>sid</u>, <u>pno</u>, quanti<u>ty</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid



Select x.pno, x.quantity

From Supply x

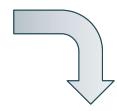
Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, <u>pno</u>, quant<u>ity</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid



Select x.pno, x.quantity

From Supply x

Only if these constraints hold:

- 1. Supplier.sid = key
- 2. Supply.sid = foreign key
- 3. Supply.sid NOT NULL

Summary of Rules

 Database optimizers typically have a database of rewrite rules

• E.g. SQL Server: 400+ rules

 Rules become complex as they need to serve specialized types of queries

Query Optimization

1. Search space

Discussed already

2. Cardinality and cost estimation

3. Plan enumeration algorithms

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R [Selinger 1979]
 - Join reordering algorithm
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
- Today's systems combine both

System R Optimizer

For each subquery $Q \subseteq \{R_1, ..., R_n\}$, compute best plan:

- Step 1: $Q = \{R_1\}, \{R_2\}, ..., \{R_n\}$
- Step 2: $Q = \{R_1, R_2\}, \{R_1, R_3\}, ..., \{R_{n-1}, R_n\}$
- •
- Step n: $Q = \{R_1, ..., R_n\}$

Avoid cartesian products; possibly restrict tree shapes

Details

For each subquery $Q \subseteq \{R_1, ..., R_n\}$ store:

Estimated Size: Size(Q)

A best plan for Q: Plan(Q)

The cost of that plan: Cost(Q)

Details

Step 1: single relations $\{R_1\}$, $\{R_2\}$, ..., $\{R_n\}$

- Size = $T(R_i)$
- Best plan: scan(R_i)
- Cost = c*T(R_i) // c=the cost to read one tuple

Details

Step k = 2...n:

For each $Q = \{R_{i_1}, ..., R_{i_k}\}$ // w/o cartesian product

- Size = estimate the size of Q
- For each j=1,...,k:
 - Let: $Q' = Q \{R_{i_i}\}$
 - Let: $Plan(Q') \bowtie R_{i_j} \quad Cost(Q') + CostOf(\bowtie)$
- Plan(Q), Cost(Q) = cheapest of the above

[How good are they]

Is Dynamic Programming needed?

	PK indexes				PK + FK indexes							
	PostgreSQL estimates		true cardinalities		PostgreSQL estimates			true cardinalities				
	median	95%	max	median	95%	max	median	95%	max	median	95%	max
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Discussion

All database systems implement
 Selinger's algorithm for join reorder

 For other operators (group-by, aggregates, difference): rule-based

 Many search strategies beyond dynamic programming

Final Discussion

- Optimizer has three components:
 - Search space
 - Cardinality and cost estimation
 - Plan enumeration algorithms
- Optimizer realizes physical data independence
- Weakest link: cardinality estimation
 - Poor plans are almost always due to that

Spark

Distributed or Parallel Query Processing

Clusters:

- More servers → more in main memory
- More servers → more computing power
- Clusters are now cheaply available in the cloud
- <u>Distributed</u> query processing

Multicores:

- The end of Moore's law
- Parallel query processing

Motivation

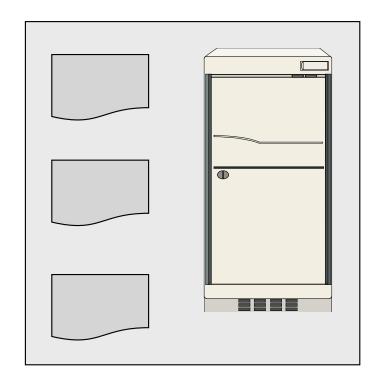
- Limitations of relational database systems:
 - Single server (at least traditionally)
 - SQL is a limited language (eg no iteration)
- Spark:
 - Distributed system
 - Functional language (Python/R) good for ML
- Implementation:
 - Extension of MapReduce
 - Distributed physical operators

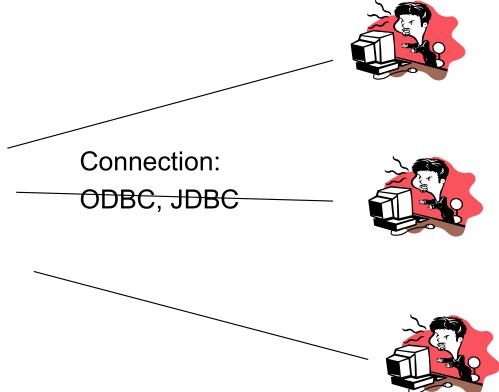
Review: Single Client

E.g. data analytics

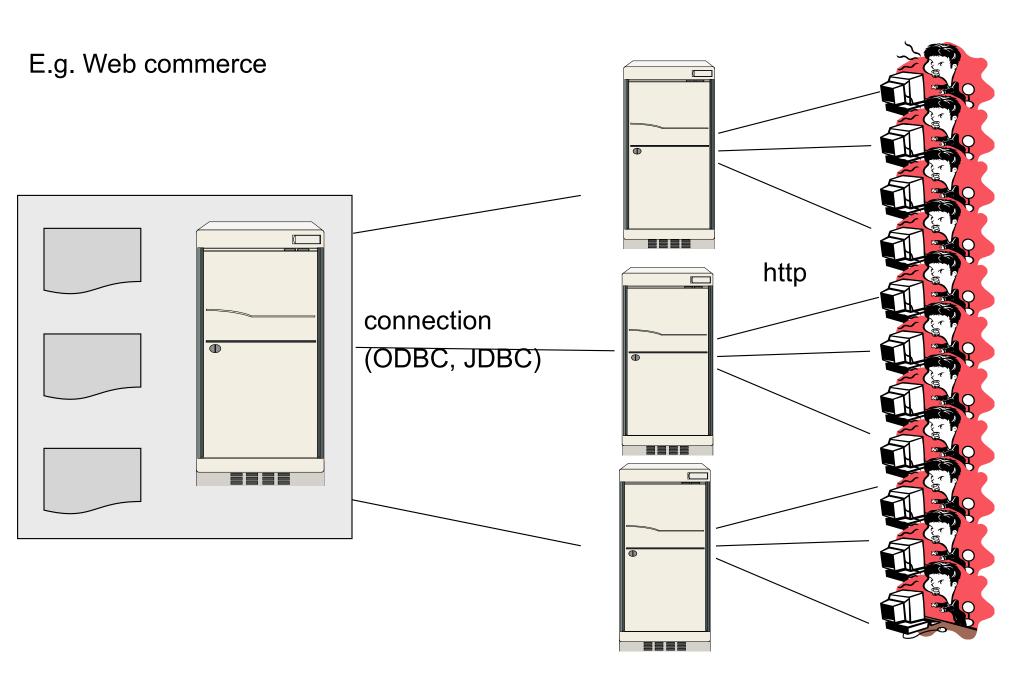
Review: Client-Server

E.g. accounting, banking, ...

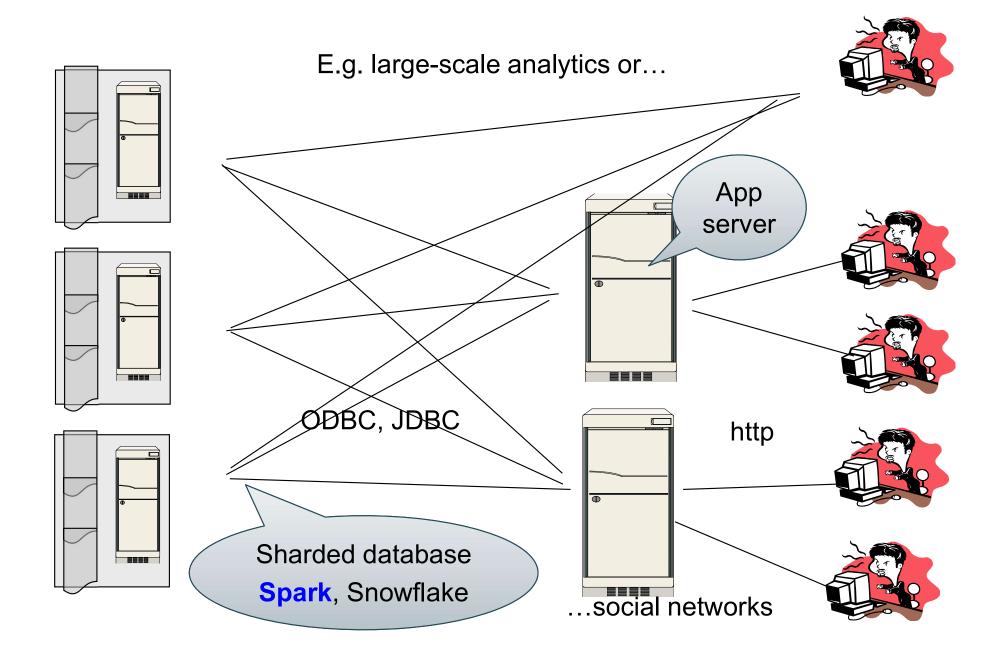




Review: Three-tier



Review: Distributed Database



Programming in Spark

- A Spark program consists of:
 - Transformations (map, reduce, join...). Lazy
 - Actions (count, reduce, save...). Eager
- Eager: operators are executed immediately
- Lazy: operators are not executed immediately
 - A operator tree is constructed in memory instead
 - Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T

- Distributed on many servers, not nested
- Operations are done in parallel
- Recoverable via lineage; more later

Seq<T> = a sequence

- Local to one server, may be nested
- Operations are done sequentially

Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))
// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()
```

Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))
                                Transformation: Not executed yet...
// Persist the RDD in men
errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()
```

Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))
                                Transformation: Not executed yet...
// Persist the RDD in men
errors.persist()
errors.collect()
errors.filter(x -> x.co.: ins("MySQL")).count()
                                Action: triggers execution
                                    of entire program
```

Anonymous Functions

A.k.a. lambda expressions, starting in Java 8

errors = lines.filter(x -> x.startsWith("Error"))

Chaining Style

```
sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();
```

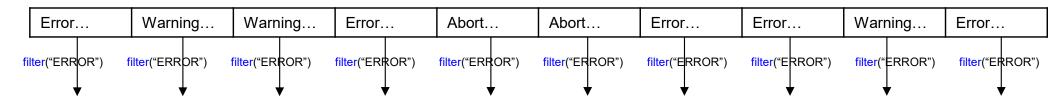
The RDD s:

Error	Warning	Warning	Error	Abort	Abort	Error	Error	Warning	Error
		_						_	

```
sqlerrors = spark.textFile("hdfs://...")
    .filter(x -> x.startsWith("ERROR"))
    .filter(x -> x.contains("sqlite"))
    .collect();
```

The RDD s:

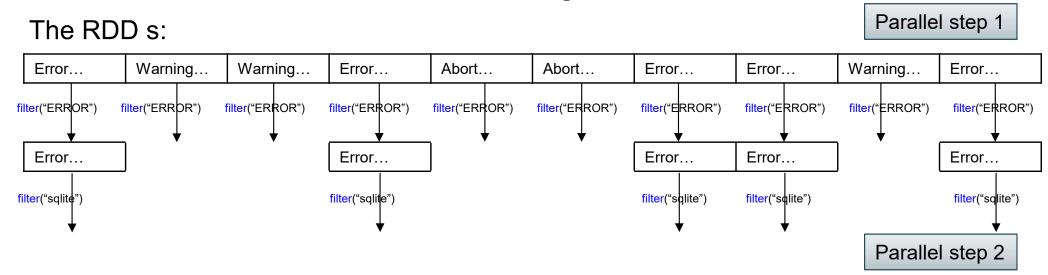
Parallel step 1



```
sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();
```

Parallel step 1 The RDD s: Error... Warning... Warning... Error... Abort... Abort... Error... Error... Warning... Error... filter("ERROR") filter("ERROR") filter("ERRDR") filter("ERROR") filter("ERROR") filter("ERROR") filter("ERROR") filter("ERROR") filter("ERROR") filter("ERROR") Error... Error... Error... Error... Error...

```
sqlerrors = spark.textFile("hdfs://...")
.filter(x -> x.startsWith("ERROR"))
.filter(x -> x.contains("sqlite"))
.collect();
```



```
sqlerrors = spark.textFile("hdfs://...")
    .filter(x -> x.startsWith("ERROR"))
    .filter(x -> x.contains("sqlite"))
    .collect();
```

More on Programming Interface

Large set of pre-defined transformations:

 Map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, crossProduct, ...

Small set of pre-defined actions:

Count, collect, reduce, lookup, and save

Programming interface includes iterations

Transformations:					
map(f : T -> U):	RDD <t> -> RDD<u></u></t>				
<pre>flatMap(f: T -> Seq(U)):</pre>	RDD <t> -> RDD<u></u></t>				
<pre>filter(f:T->Bool):</pre>	RDD <t> -> RDD<t></t></t>				
<pre>groupByKey():</pre>	RDD<(K,V)> -> RDD<(K,Seq[V])>				
<pre>reduceByKey(F:(V,V)-> V):</pre>	RDD<(K,V)> -> RDD<(K,V)>				
<pre>union():</pre>	(RDD <t>,RDD<t>) -> RDD<t></t></t></t>				
<pre>join():</pre>	(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>				
cogroup():	(RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq <v>,Seq<w>))></w></v>				
<pre>crossProduct():</pre>	(RDD <t>,RDD<u>) -> RDD<(T,U)></u></t>				

Actions:					
<pre>count():</pre>	RDD <t> -> Long</t>				
<pre>collect():</pre>	RDD <t> -> Seq<t></t></t>				
<pre>reduce(f:(T,T)->T):</pre>	RDD <t> -> T</t>				
<pre>save(path:String):</pre>	Outputs RDD to a storage system e.g., HDFS				