
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 1

Relational Model, SQL

1DATA516/CSED516 - Fall 2023

2

Course Staff
• Instructor: Jack Khuu

jackkhuu@cs.washington.edu

• TA: Menita Agarwal
menita@uw.edu

• TA: Pranali Oza
pranalio@uw.edu

Course Aims

• Study design of big data systems
– Historical perspective

– Sample of modern systems

– Breadth of designs (relational, streaming, graph, etc.)

• Study scalable data processing algorithms

• Gain hands-on experience with big data systems

DATA516/CSED516 - Fall 2023 3

Course Content

• Query processing: single-sever, distributed

• MapReduce, successors

• Streaming, Column Stores, Graph engines

• See the calendar on the course website (subject to
change)

DATA516/CSED516 - Fall 2023 4

Course Format

• 5pm - ~7:50pm: Lectures

• ~8pm - 8:50pm: Section
– Bring your laptop!

• Office hours: By zoom

See the course website

DATA516/CSED516 - Fall 2023 5

6

Grading

• 15%: Reading assigned papers

• 60%: Homework assignments

• 25%: Final project

Homeworks

• HW1: Amazon Redshift

• HW2: Spark/Databricks

• HW3: Snowflake

• HW4: mini-homeworks – stay tuned

Save free credits for the project!

7

Project

Choose a topic:

• Don’t worry about novelty

• Recommended: Benchmark projects

• Other ideas are welcome too

• I posted a few ideas, but you are
encouraged to come up with your own

See the course website

8

Communication

• Course webpage: all important stuff
https://courses.cs.washington.edu/cours
es/csed516/23au/

• Discussion Board: Canvas

• Class email: only for important
announcements

9

How to Turn In

Homework and project:

• https://gitlab.cs.washington.edu/

Reviews

• Canvas

See the course website

10

Ice Breaker

DATA516/CSED516 - Fall 2023 11

Now onward to the world of databases!

DATA516/CSED516 - Fall 2023 12

Quick Review

• Database = a collection of files
– Examples: products database; movies database

• Database management system (DBMS) = a
piece of software to help manage that data
– Examples: Postgres, Oracle, sqlite

DATA516/CSED516 - Fall 2023 13

DBMS Functionality

• DBMS does many things:
– Complex queries, updates, concurrency,

recovery, access control, integrity checks,
data distribution, etc, etc

• Some DBMS are more specialized for
some tasks than others

DATA516/CSED516 - Fall 2023 14

DBMS Architectures
and Workloads

DATA516/CSED516 - Fall 2023 15

Single Client

16

Application and database
on the same computer

E.g. sqlite, postgres

E.g. data analytics

Two-tier Architecture
Client-Server

17

Connection:

ODBC, JDBC

Applications:
Java, python

Database server

E.g. postgres, Oracle, DB2,…

E.g. accounting, banking, …

Three-tier Architecture

connection

(ODBC, JDBC)

http

Application server

E.g. java,python,
ruby-on-rails

Database server

E.g. postgres, Oracle, DB2,…

E.g. Web commerce

browser

Cloud Databases

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database

E.g. Redshift, Spark, Snowflake

Workloads

• OLTP – online transaction processing
– Not interesting for data science

• OLAP – online analytics processing,
a.k.a. Decision Support
– Critical for scalable data science

DATA516/CSED516 - Fall 2023 20

Relational Data Model

DATA516/CSED516 - Fall 2023 21

Relational Data Model

Modeling the data: schema + data

• Database = collection of relations

• Relation (a.k.a. table) = a set of tuples

• A Tuple (row, record) = (v1, …, vn)

Modeling the query:

• Set-at-a-time, relational query language

DATA516/CSED516 - Fall 2023 22

DATA516/CSED516 - Fall 2023

Schema

• Relation schema: describes column heads
– Relation name

– Name of each field (or column, or attribute)

– Domain of each field

– The arity of the relation = # attributes

• Database schema: set of all relation schemas

23

DATA516/CSED516 - Fall 2023

Instance

• Relation instance: concrete table content
– Set of records matching the schema
– The cardinality or size of the relation = # tuples

• Database instance: set of relation instances

24

What is the schema?
What is the instance?

DATA516/CSED516 - Fall 2023 25

sstatescitysnamesno

WASeattleACME1005

TXAustinFreddie1006

WASeattleJoe’s1007

TXAustinACME1008

Supplier

What is the schema?
What is the instance?

DATA516/CSED516 - Fall 2023 26

Schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier

instance

sstatescitysnamesno

WASeattleACME1005

TXAustinFreddie1006

WASeattleJoe’s1007

TXAustinACME1008

What is the schema?
What is the instance?

27

Schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier

instance

sstatescitysnamesno

WASeattleACME1005

TXAustinFreddie1006

WASeattleJoe’s1007

TXAustinACME1008

In class: discuss keys, foreign keys, FD

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

Data independence!

DATA516/CSED516 - Fall 2023 28

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is immaterial
– Applications refer to columns by their names

Data independence!

DATA516/CSED516 - Fall 2023 29

Or is it?

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is immaterial
– Applications refer to columns by their names

• Each Domain = a primitive type; no nesting!

Data independence!

DATA516/CSED516 - Fall 2023 30

Or is it?

Relational Query Language

• Set-at-a-time:
– Inputs and outputs are relations

– Contrast with python/Julia/java/etc: tuple-at-a-time

• Examples:
– SQL, Relational Algebra, datalog, various graph

query languages (Sparql, TigerGraph)

DATA516/CSED516 - Fall 2023 31

SQL

DATA516/CSED516 - Fall 2023 32

SQL

• Standard query language

• Introduced late 70’s, now it ballooned

• We briefly review “core SQL” (whatever
that means); study more on your own!

• Review: A case against SQL 33

Structured Query Language: SQL

• Data definition language: DDL
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

• Data manipulation language: DML
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…,
DELETE…

Our focus

Review
on your own

SQL Query

DATA516/CSED516 - Fall 2023 35

SELECT <attributes>

FROM <one or more relations>

WHERE <conditions>

Quick Review of SQL

What do
these queries

compute?

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

DATA516/CSED516 - Fall 2023 36

SELECT *
FROM Part
WHERE pcolor = ‘red’

Quick Review of SQL

What do
these queries

compute?

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT x.sno, x.name
FROM Supplier x
WHERE x.sstate = ‘WA’

DATA516/CSED516 - Fall 2023 37

SELECT *
FROM Part
WHERE pcolor = ‘red’

Quick Review of SQL

What does
this query
compute?

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno

and y.pno = z.pno
and x.sstate = ‘WA’
and y.price < 100

DATA516/CSED516 - Fall 2023 38

Terminology

• Selection/filter: e.g. … WHERE scity=’Seattle’

• Projection: e.g. SELECT sname …

• Join: e.g. …FROM Supplier, Supply, Part …

39

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

DATA516/CSED516 - Fall 2023 40

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno

DATA516/CSED516 - Fall 2023 41

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno

DATA516/CSED516 - Fall 2023 42

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

This doesn’t work…

Why?

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno

DATA516/CSED516 - Fall 2023 43

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno

DATA516/CSED516 - Fall 2023 44

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?

Nope!

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

DATA516/CSED516 - Fall 2023 45

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

DATA516/CSED516 - Fall 2023 46

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

DATA516/CSED516 - Fall 2023 47

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

the SAME part

Semantics

DATA516/CSED516 - Fall 2023 48

Semantics

• What does a SQL query compute?

• Simple semantics:
– Nested Loop Semantics

• Allows optimizations
– Physical data independence

DATA516/CSED516 - Fall 2023 49

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 50

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 51

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 52

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 53

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 54

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 55

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 56

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

This SEMANTICS!
It says what it means.

Doesn’t say how to get it

Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2023 57

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

This SEMANTICS!
It says what it means.

Doesn’t say how to get it

Data Independence

Data Independence

DATA516/CSED516 - Fall 2023 58

Physical Data Independence

• The query is written independently of
how it will be evaluated

• We write what data we want;
optimizer decides how to get it

DATA516/CSED516 - Fall 2023 59

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT. *
FROM Supply y, Part z
WHERE y.price = 100 and z.pcolor = ‘red’ and y.pno = z.pno

Discuss in
class how

Discussion

• Data independence is the main reason
why the relational data model is the
dominant data model today

• Reading next week: What Goes Around

DATA516/CSED516 - Fall 2023 60

NULL

DATA516/CSED516 - Fall 2023 61

NULLs in SQL

• A NULL value means missing, or
unknown, or undefined, or inapplicable

• Common in Data Science

• The key should never be NULL

DATA516/CSED516 - Fall 2023 62

pcolorpsizepricepnamepno

blue13500iPad1

NULLNULL99Scooter2

redNULLNULLCharger3

NULL250iPad4

Part(pno,pname,price,psize,pcolor)

NULLs in WHERE Clause

Predicate in WHERE Clause

• Atomic: e.g. pcolor = ‘red’

• AND / OR / NOT

63

Part(pno,pname,price,psize,pcolor)

When is the WHERE condition satisfied?

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pcolorpsizepricepnamepno

blue13500iPad1

NULLNULL99Scooter2

redNULLNULLCharger3

NULL250iPad4

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pcolorpsizepricepnamepno

blue13500iPad1

NULLNULL99Scooter2

redNULLNULLCharger3

NULL250iPad4

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pcolorpsizepricepnamepno

blue13500iPad1

NULLNULL99Scooter2

redNULLNULLCharger3

NULL250iPad4

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1

• pcolor = ‘red’
– False or True when pcolor is not NULL

– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …

WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pcolorpsizepricepnamepno

blue13500iPad1

NULLNULL99Scooter2

redNULLNULLCharger3

NULL250iPad4

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• Problem: A or not(A) ≠ true

select *

from Part

where (price <= 100) or (price > 100)

Part(pno,pname,price,psize,pcolor)

Does it
return all
parts?

Three-Valued Logic

• Problem: A or not(A) ≠ true

select *

from Part

where (price <= 100) or (price > 100)

Part(pno,pname,price,psize,pcolor)

-- solution to return all parts:

select *

from Part

where (price <= 100) or (price > 100) or isNull(price)

Does it
return all
parts?

Aggregates

DATA516/CSED516 - Fall 2023 72

Examples

DATA516/CSED516 - Fall 2023 73

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

What do
they compute?

Examples

DATA516/CSED516 - Fall 2023 74

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

What do
they compute?

Examples

DATA516/CSED516 - Fall 2021 75

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity
HAVING count(*) > 200

What do
they compute?

Discussion

• Aggregates = important for data science!

• Semantics:
1. FROM-WHERE (nested-loop semantics)

2. GROUP BY attrs

3. Apply HAVING predicates on groups

4. Apply SELECT aggregates on groups

• count, sum, min, max, avg

• DISTINCT is special case of GROUP BY

76

Outer Joins

DATA516/CSED516 - Fall 2023 77

Outer joins

CategoryName

gadgetGizmo

PhotoCamera

PhotoOneClick

StoreProdName

WizGizmo

RitzCamera

WizCamera

Product Purchase

Product(name, category)

Purchase(prodName, store)

prodName
is foreign Key

Retrieve all products and stores.
Include products that never sold

Outer joins

CategoryName

gadgetGizmo

PhotoCamera

PhotoOneClick

StoreProdName

WizGizmo

RitzCamera

WizCamera

Product Purchase

Product(name, category)

Purchase(prodName, store)

prodName
is foreign Key

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all products and stores.
Include products that never sold

Outer joins

CategoryName

gadgetGizmo

PhotoCamera

PhotoOneClick

StoreProdName

WizGizmo

RitzCamera

WizCamera

Product Purchase Output

missingmissing

StoreCategoryName

WizgadgetGizmo

RitzPhotoCamera

WizPhotoCamera

Product(name, category)

Purchase(prodName, store)

prodName
is foreign Key

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all products and stores.
Include products that never sold

Outer joins

CategoryName

gadgetGizmo

PhotoCamera

PhotoOneClick

StoreProdName

WizGizmo

RitzCamera

WizCamera

Product Purchase Output

Now it’s presentNow it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

StoreCategoryName

WizgadgetGizmo

RitzPhotoCamera

WizPhotoCamera

NULLPhotoOneClick

Product(name, category)

Purchase(prodName, store)

prodName
is foreign Key

Retrieve all products and stores.
Include products that never sold

Left Outer Join (Details)

from R left outer join S on C1 where C2

1. Compute cross product R×S

2. Filter on C1

3. Add all R records without a match

4. Filter on C2

DATA516/CSED516 - Fall 2023 82

Joins

• Inner join

• Left outer join

• Right outer join

• Full outer join
DATA516/CSED516 - Fall 2023 83

SQL: Beyond Relations

DATA516/CSED516 - Fall 2023 84

Beyond Relations

• Sparse vectors, matrices

• Graph databases

• Important to data science!

DATA516/CSED516 - Fall 2023 85

Sparse Matrix

DATA516/CSED516 - Fall 2023 86

How can we represent
it as a relation?

Sparse Matrix

DATA516/CSED516 - Fall 2023 87

ValColRow

511

-231

-132

723

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2023 88

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2023 89

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2023 90

SELECT A.row, B.col, sum(A.val*B.val)
FROM A, B
WHERE A.col = B.row
GROUP BY A.row, B.col;

Discussion

Matrix multiplication = join + group-by

• Try at home: write in SQL

where the trace is defined as:

Surprisingly, is a bit harder…
91

Matrix Addition in SQL

DATA516/CSED516 - Fall 2021 92

Matrix Addition in SQL

DATA516/CSED516 - Fall 2021 93

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Matrix Addition in SQL

DATA516/CSED516 - Fall 2021 94

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Why is this wrong?

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2021 95

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2021 96

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2021 97

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2021 98

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 2: Group By

DATA516/CSED516 - Fall 2021 99

SELECT m.row, m.col, sum(m.val)
FROM (SELECT * FROM A

UNION ALL
SELECT * FROM B) as m

GROUP BY m.row, m.col;

Graph Databases

A graph is a simple relational database

• Niche area: graph databases/languages
– E.g. Neo4J, TigerGraph, Sparql

• Do we need specialized graph engines?
– Dan’s answer: NO

– We may need better languages: datalog
100

Graph Databases
A graph:

1

2

4

3

5

Graph Databases

dstsrc

21

12

32

41

43

54

EdgeA graph: A relation:

1

2

4

3

5

Graph Databases

1

2

4

3

dstsrc

21

12

32

41

43

54

Edge

5

A graph:

Find nodes at distance 2:

A relation:

Graph Databases

dstsrc

21

12

32

41

43

54

EdgeA graph:

Find nodes at distance 2:

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Crash Course in Formal Logic

• The Relational Data Model is founded
on first order logic (”What goes around”)

• SQL was designed as a more friendly
language than FO

• Complex SQL queries are sometimes
best understood in the framework of FO

105

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

x (Likes(‘Alice’,x) Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

x (Likes(‘Alice’,x) Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

x (Likes(‘Alice’,x) Likes(‘Bob’,x))

x (y Likes(x,y) Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Crash Course in Formal Logic

Atomic predicates:

• Likes(x,y)

• Product(x,y,z)
-- pid, name, color

• Product(x,y,’red’)

Connectives: , , ¬, , ,

• x P(x):
there exists x s.t. P(x) is true

• x P(x):
for every x, P(x) is true

What do these sentences say?

x(Likes(‘Alice’,x) Likes(‘Bob’,x))

x (Likes(‘Alice’,x) Likes(‘Bob’,x))

x (y Likes(x,y) Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Everybody who likes somebody
also likes Alice

Graph Databases

dstsrc

21

12

32

41

43

54

EdgeA graph:

Find nodes at distance 2:

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Now this should
be clear

Other Representation

dstsrc

BobAlice

AliceBob

ChrisBob

DavidAlice

DavidChris

EveDavid

EdgeNode

Alice

Bob

David

Chris

Eve
Frank

src

Alice

Bob

Chris

David

Eve

Frank

Representing nodes separately;

needed for “isolated nodes” e.g. Frank

Other Representation

weightdstsrc

3BobAlice

1AliceBob

2ChrisBob

9DavidAlice

5DavidChris

1EveDavid

EdgeNode

Alice

Bob

David

Chris

Eve
Frank

src

Alice

Bob

Chris

David

Eve

Frank

Adding edge labels

Adding node labels…

2

5

3
1

9
1

Limitations of SQL

• No recursion!

• Data Science often requires recursion

• Datalog is designed for recursion
– later in the quarter

• Practical solution
– Use some external driver, e.g. pyton

DATA516/CSED516 - Fall 2021 117

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data

Switched
(following Mitchell)

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data

Switched
(following Mitchell)

Train weights to minimize loss:

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Example: Logistic Regression
Tom Mitchell: Machine Learning

YX3X2X1

0393

1753

0226

0363

1955

1339

………

………

Data
Gradient Descent:

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Update W, then repeat this
e.g. using python

Lecture Summary

• One line takeaway:
– Relational model data independence

• What you should do next:
– Review SQL

– Write reviews for next lecture

– Start working on HW1 (redshift)

DATA516/CSED516 - Fall 2023 129

