DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 3 Query Optimization, Spark

Administrivia

- Email if there might have a runaway cluster/instance
 - Even if you haven't received an email, it is worth checking (pause clusters + stop labs)
- Don't fear Late Day Tokens

Project Sign Ups

Announcements

- HW2 is posted (pull upstream) and due on Oct. 31st
- Project proposals due on Oct. 28th
- Review was due today (*How good…?*) Review of three papers due next week
- Jack's OH: Thursday 10/27 => Monday 10/24

Outline for Today

- Query Optimization – How good are they?
- Spark

Recap

- Optimizer has three components:
 - Search space
 - Cardinality and cost estimation
 - Plan enumeration algorithms

Recap

- Optimizer has three components:
 - Search space
 - Cardinality and cost estimation
 - Plan enumeration algorithms
- Paper addresses three questions:
 - How good are the cardinality estimators?
 - How important is the cost model?
 - How large does the search space need to be?

Paper Outline

How good are the cardinality estimators?

• How important is the cost model?

How large does the search space need to be?

The Job Benchmark

- Why do they use the IMDB database instead of TPC-H?
- IMDB popular data on the web, can be imported into any RDBMS with moderate effort

Lesson: you can always import your dataset into RDBMS!

The Job Benchmark

JOB Benchmark: 33 templates, 113 queries Discuss the difference in class:

- SQL query
- SQL query template (or structure)

Group-by Queries

- None in JOB!
- Important in DS; we'll discuss them later

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

- Number of tuples (cardinality) T(R)
- Number of values in R.a:
- Histograms (later today)

V(R,a)

What are the four assumptions that database systems do?

What are the four assumptions that database systems do?

- Uniformity
- Independence
- Containment of values
- Preservation of values

Single Table Estimation

 $\sigma_{A=c}(R) = T(R)/V(R,A)$

What assumption does this make?

Single Table Estimation

Single Table Estimation

	_						
$\sigma_{\Lambda-c}(R) = T(R)/V(R,A)$ What assumption							
	/ (,	/			Uniformi	ty	
	m	edian	90th	95th	max		
PostgreSQ	<u>p</u> L	1.00	2.08	6.10	207		
DBMS A		1.01	1.33	1.98	43.4		
DBMS B		1.00	6.03	30.2	104000		
DBMS C		1.06	1677	5367	20471		
HyPer		1.02	4.47	8.00	2084		

Table 1: Q-errors for base table selections

Histograms

- T(R), V(R,A) too coarse
- Histogram: separate stats per bucket

- In each bucket store:
 - T(bucket)
 - -V(bucket,A)

Employee(<u>ssn</u>, name, age)

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate $\sigma_{age=48}$ (Empolyee) = ?

Employee(<u>ssn</u>, name, age)

Histograms

- T(Employee) = 25000, V(Empolyee, age) = 50
- Estimate $\sigma_{age=48}$ (Employee) = ? = 25000/50 = 500

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate $\sigma_{age=48}$ (Employee) = ? = 25000/50 = 500

Age:	020	2029	30-39	40-49	50-59	> 60
T =	200	800	5000	12000	6500	500
V =	3	10	7	6	5	4

Estimate $\sigma_{age=48}$ (Employee) = ?

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate $\sigma_{age=48}$ (Employee) = ? = 25000/50 = 500

Age:	020	2029	30-39	40-49	50-59	> 60
T =	200	800	5000	12000	6500	500
V =	3	10	7	6	5	4

Estimate $\sigma_{age=48}$ (Employee) = ? = 12000/6 = 2000

Types of Histograms

• Eq-Width

- Eq-Depth
- Compressed: store outliers separately

• "Special": V-Optimal histograms

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	032	3341	42-46	47-52	53-58	> 60
Т	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Т	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	032	3341	42-46	47-52	53-58	> 60
Т	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

"Weighed Variance of the source values is minimized"

-Improved Histograms for Selectivity Estimation of Range Predicates

- Pick boundaries that minimize the variance of frequencies within buckets
- Dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Multiple Predicates

- Independence assumption:
 - Simple
 - But often leads to major underestimates
- Modeling correlations:
 - Solution 1: 2d Histograms
 - Solution 2: use sample from the data

Modeling Correlations

- 1. Multi-dimensional histograms
 - Also called column-group statistics
- 2. Sample from the data

2d-Histogram

T(Supplier) = 250,000

sstate:	AJ	KS	TZ
Т	125000	80000	45000
V	20	10	20

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

Estimate	$\sigma_{sscity='Mtv' \land sstate='CA'}(Supplier) = ?$
----------	---

1d Histograms

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ	
Т	125000	80000	45000	
V	20	10	20	

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

2d Histogram

scity Sstate	AE	FI	JM	NQ	RU	VZ
AJ			T,V=			
KS						
TZ						

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity:	AE	FI	JM	NQ	RU	VZ
Т	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	AJ	KS	TZ	
Т	125000	80000	45000	
V	20	10	20	

 $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

2d Histogram

scity Sstate	AE	FI	JM	NQ	RU	VZ
AJ			T,V=			
KS						
TZ						

Estimate

Answer: T_{bucket} / V_{bucket}

Sample

 Compute a small, uniform sample from Supplier

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

Sample

 Compute a small, uniform sample from Supplier

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

 Use Thomson's estimator:

Sample

 Compute a small, uniform sample from Supplier

Estimate $\sigma_{\text{sscity='Mtv'} \land \text{sstate='CA'}}(\text{Supplier}) = ?$

• Use Thomson's estimator:

Answer: $\sigma_{sscity='Mtv' \land sstate='CA'}$ (Sample) * T(Supplier) / T(Sample)

Correlations

- Solution 1: 2d histograms
 Plus: can be accurate for 2 predicates
 - Minus: unclear how to use for 3 or more preds
 Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: unclear how to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates
Correlations

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: unclear how to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: unclear how to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
 - Plus: can be accurate for 2 predicates
 - Minus: unclear how to use for 3 or more preds
 - Minus: too many 2d histogram candidates
- Solution 2: sampling
 - Plus: can be accurate for >2 predicates
 - Plus: work for complex preds, e.g. "like"
 - Minus: fail for low selectivity predicates

Discussion

• Paper explains the need for real data

Discussion

- Paper explains the need for real data
- Synthetic data used in benchmarks is often generated using uniform, independent distributions; formulas for cardinality estimation are perfect

TPC-H v.s. Real Data (IMDB)

TPC-H v.s. Real Data (IMDB)

Paper Outline

How good are the cardinality estimators?

• How important is the cost model?

How large does the search space need to be?

Digression: Yet Another Difficulty

SQL Queries issued from applications:

- Query is optimized once: *prepare*
- Then, executed repeatedly

Query constants are unknown until execution: optimized plan is suboptimal

```
select
 o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
        I_extendedprice * (1 - I_discount) as volume,
        n2.n name as nation
 from part, supplier, lineitem, orders,
    customer, nation n1, nation n2, region
 where p partkey = I partkey and s suppkey = I suppkey
  and I_orderkey = o_orderkey and o_custkey = c_custkey
  and c nationkey = n1.n nationkey
  and n1.n regionkey = r regionkey
  and r name = 'AMERICA'
  and s_nationkey = n2.n_nationkey
  and o orderdate between '1995-01-01'
  and '1996-12-31'
  and p type = 'ECONOMY ANODIZED STEEL'
 and s acctbal \leq C1 and I extended price \leq C2) as all nations
group by o_year order by o_year
```

```
select
 o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
        I_extendedprice * (1 - I_discount) as volume,
        n2.n name as nation
 from part, supplier, lineitem, orders,
    customer, nation n1, nation n2, region
 where p partkey = I partkey and s suppkey = I suppkey
  and I_orderkey = o_orderkey and o_custkey = c_custkey
  and c nationkey = n1.n nationkey
  and n1.n regionkey = r regionkey
  and r name = 'AMERICA'
                                                           Optimize without
  and s_nationkey = n2.n_nationkey
                                                           knowing C1, C2
  and o orderdate between '1995-01-01'
  and '1996-12-31'
  and p type = 'ECONOMY ANODIZED STEEL'
 and s acctbal \leq C1 and I extended price \leq C2) as all nations
group by o_year order by o_year
```

Jayant Haritsa, ICDE'2019 tutorial

Paper Outline

How good are the cardinality estimators?

• How important is the cost model?

How large does the search space need to be?

Search Space

The set of alternative plans

- Rewrite rules; examples:
 - Push selections down: $\sigma_{c}(R \bowtie S) = \sigma_{c}(R) \bowtie S$
 - -Join reorder: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
 - Push aggregates down (later today)
- Types of join trees (next)

The need for a rich search space

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

Types of Join Trees

- Based on the join condition:
 - With cartesian products
 - Without cartesian products
- Based on the shape:
 - Left deep
 - Right deep
 - Zig-zag
 - Bushy

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R}.\mathsf{B}=\mathsf{S}.\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S}.\mathsf{C}=\mathsf{T}.\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R}.\mathsf{B}=\mathsf{S}.\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S}.\mathsf{C}=\mathsf{T}.\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R},\mathsf{B}=\mathsf{S},\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S},\mathsf{C}=\mathsf{T},\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R},\mathsf{B}=\mathsf{S},\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S},\mathsf{C}=\mathsf{T},\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R}.\mathsf{B}=\mathsf{S}.\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S}.\mathsf{C}=\mathsf{T}.\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

 $\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{R},\mathsf{B}=\mathsf{S},\mathsf{B}} \mathsf{S}(\mathsf{B},\mathsf{C}) \bowtie_{\mathsf{S},\mathsf{C}=\mathsf{T},\mathsf{C}} \mathsf{T}(\mathsf{C},\mathsf{D})$

Left/right	The effect of restricting the search space					
convention switches: Depending on Author/Convention						
	PK indexes			PK + FK indexes		
	median	95%	max	median	95%	max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in comparison tothe optimal plan (true cardinalities)

Search Space: Discussion

• Search space can be huge

- Database systems often reduce it by applying heuristics:
 - No cartesian products
 - Restrict to left-deep trees (or other restriction)

Rewrite Rules

- We have seen last time:
 - Push selection down: $\sigma_{c}(R \bowtie S) = \sigma_{c}(R) \bowtie S$
 - AND: $\sigma_{C1 \text{ and } C2}(R \bowtie S) = \sigma_{C1}(\sigma_{C2}(R \bowtie S))$
 - Join associativity: ($R \bowtie S$) $\bowtie T = R \bowtie (S \bowtie T)$
 - Join commutativity: $R \bowtie S = S \bowtie R$
- Two more rules
 - Push aggregates down
 - Remove redundant joins

Very important for Data Science!

Motivation

select count(*) from customer;

Answer: 1500000 Time: 2 s

Motivation

select count(*) from customer;

select count(*) from lineitem;

Answer: 1500000 Time: 2 s

Answer: 59986052 Time: 1 s
Motivation

select count(*) from customer;

select count(*) from lineitem;

select count(*) from customer, lineitem;

Answer: 1500000 Time: 2 s

Answer: 59986052 Time: 1 s

Motivation

select count(*) from customer;

select count(*) from lineitem;

select count(*) from customer, lineitem;

Answer: 1500000 Time: 2 s

Answer: 59986052 Time: 1 s

Timeout!!!

Motivation

select count(*) from customer;

select count(*) from lineitem;

Answer: 1500000 Time: 2 s

Answer: 59986052 Time: 1 s

select count(*) from customer, lineitem;

Timeout!!!

But 3rd query is simply the **product** of the first two!

 $\gamma_{Y,Z,sum(A*B*C*\cdots)}$ \bowtie_X . . .

select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

 $\gamma_{Y,Z,sum}(A * B * C * \cdots)$ \bowtie_X

As data scientists, you may really need this optimization; do it manually, if needed!

select Y,Z, sum(A*B*C*...) from...where... group by Y, Z

As data scientists, you may really need this optimization; do it manually, if needed!

SELECT count(*) from R, S where R.x=S.x

SELECT count(*) from R, S where R.x=S.x

Answer = 5

Runtime = $O(N^2)$

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Example 2

SELECT x.sstate, sum(y.quanity*z.price) FROM Supplier x, Supply y, Part z WHERE x.sid = y.sid and y.pno = z.pno GROUP BY x.sstate

```
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)
```


SELECT x.sstate, sum(y.quanity*z.price) FROM Supplier x, Supply y, Part z WHERE x.sid = y.sid and y.pno = z.pno GROUP BY x.sstate Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Discussion

- Join-aggregates: common in data science
- Implementation in RDBMS seems spotty:
 - Postgres: NO (someone started, abandoned)
 - Redshift: NO (I don't know the status)
 - SQL Server: YES (at least a few years back)
 - Snowflake: ??
- You may have to force this manually, by writing nested SQL queries
- Let's make sure we understand it (next)

Redundant Foreign-key / key Joins

- Simple, highly effective
- Almost all engines implement this

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quant<u>ity</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quant<u>ity</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Select x.pno, x.quantity

From Supply x

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quant<u>ity</u>)

Foreign-Key / Key

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Select x.pno, x.quantity

From Supply x

Only if these constraints hold:

- 1. Supplier.sid = key
- 2. Supply.sid = foreign key
- 3. Supply.sid NOT NULL

Summary of Rules

 Database optimizers typically have a database of rewrite rules

• E.g. SQL Server: 400+ rules

 Rules become complex as they need to serve specialized types of queries

Query Optimization

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R [Selinger 1979]
 - Join reordering algorithm
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
- Today's systems combine both

System R Optimizer

For each subquery $Q \subseteq \{R_1, ..., R_n\}$, compute best plan:

- Step 1: $Q = \{R_1\}, \{R_2\}, ..., \{R_n\}$
- Step 2: $Q = \{R_1, R_2\}, \{R_1, R_3\}, \dots, \{R_{n-1}, R_n\}$

• Step n: $Q = \{R_1, ..., R_n\}$

Avoid cartesian products; possibly restrict tree shapes

Details

For each subquery $Q \subseteq \{R_1, ..., R_n\}$ store:

- Estimated Size: Size(Q)
- A best plan for Q: Plan(Q)
- The cost of that plan: Cost(Q)

Details

- **Step 1**: single relations $\{R_1\}, \{R_2\}, ..., \{R_n\}$
- Size = $T(R_i)$
- Best plan: scan(R_i)
- Cost = $c^{T}(R_i)$ // c=the cost to read one tuple

Details

Step k = 2...n:

For each $Q = \{R_{i_1}, ..., R_{i_k}\} // w/o$ cartesian product

- Size = estimate the size of Q
- For each j=1,...,k: - Let: $Q' = Q - \{R_{i_j}\}$ - Let: $Plan(Q') \bowtie R_{i_j}$ $Cost(Q') + CostOf(\bowtie)$
- Plan(Q), Cost(Q) = cheapest of the above

Is Dynamic Programming needed?

	PK indexes						PK + FK indexes					
	PostgreSQL estimates			true cardinalities			PostgreSQL estimates			true cardinalities		
	median	95%	max	median	95%	max	median	95%	max	median	95%	max
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

 Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy

 Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Discussion

• All database systems implement Selinger's algorithm for join reorder

• For other operators (group-by, aggregates, difference): rule-based

 Many search strategies beyond dynamic programming

Final Discussion

- Optimizer has three components:
 - Search space
 - Cardinality and cost estimation
 - Plan enumeration algorithms
- Optimizer realizes physical data independence
- Weakest link: cardinality estimation
 - Poor plans are almost always due to that

Spark
Distributed or Parallel Query Processing

- Clusters:
 - More servers \rightarrow more in main memory
 - More servers \rightarrow more computing power
 - Clusters are now cheaply available in the cloud
 - *Distributed* query procesing
- Multicores:
 - The end of Moore's law
 - Parallel query processing

Motivation

- Limitations of relational database systems:
 - Single server (at least traditionally)
 - SQL is a limited language (eg no iteration)
- Spark:
 - Distributed system
 - Functional language (Java/Scala) good for ML
- Implementation:
 - Extension of MapReduce
 - Distributed physical operators

Review: Single Client

E.g. data analytics

Review: Client-Server

Review: Three-tier

Review: Distributed Database

Programming in Spark

- A Spark program consists of:
 - Transformations (map, reduce, join...). Lazy
 - Actions (count, reduce, save...). Eager
- Eager: operators are executed immediately
- Lazy: operators are not executed immediately

 A operator tree is constructed in memory instead
 Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T

- Distributed on many servers, not nested
- Operations are done in parallel
- Recoverable via lineage; more later

Seq<T> = a sequence

- Local to one server, may be nested
- Operations are done sequentially

Example from paper, new syntax

Search logs stored in HDFS

```
// First line defines RDD backed by an HDFS file
lines = spark.textFile("hdfs://...")
```

```
// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith("Error"))
```

```
// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains("MySQL")).count()
```

Example from paper, new syntax

Search logs stored in HDFS

Example from paper, new syntax

Search logs stored in HDFS

Anonymous Functions

A.k.a. lambda expressions, starting in Java 8

errors = lines.filter(x -> x.startsWith("Error"))

Chaining Style

The RDD s:

	Error	Warning	Warning	Error	Abort	Abort	Error	Error	Warning	Error
--	-------	---------	---------	-------	-------	-------	-------	-------	---------	-------

The RDD s:

Parallel step 1

Error		Warning	Warning	Error	Abort	Abort	Error	Error	Warning	Error
filter("ERF	ROR") ▼	filter("ERROR") ▼	filter("ERROR")	filter("ERROR") ▼	filter("ERROR")	filter("ERROR") ▼	filter("ERROR") ▼	filter("ERROR") ▼	filter("ERROR") ▼	filter("ERROR") ▼

The RDD s:

Parallel step 1

The RDD s:

Parallel step 1

More on Programming Interface

Large set of pre-defined transformations:

 Map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, crossProduct, ...

Small set of pre-defined actions:

Count, collect, reduce, lookup, and save

Programming interface includes iterations

Transformations:				
<pre>map(f : T -> U):</pre>	RDD <t> -> RDD<u></u></t>			
<pre>flatMap(f: T -> Seq(U)):</pre>	RDD <t> -> RDD<u></u></t>			
<pre>filter(f:T->Bool):</pre>	RDD <t> -> RDD<t></t></t>			
<pre>groupByKey():</pre>	RDD<(K,V)> -> RDD<(K,Seq[V])>			
<pre>reduceByKey(F:(V,V)-> V):</pre>	RDD<(K,V)> -> RDD<(K,V)>			
union():	(RDD <t>,RDD<t>) -> RDD<t></t></t></t>			
join():	(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>			
<pre>cogroup():</pre>	<pre>(RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<v>,Seq<w>))></w></v></pre>			
<pre>crossProduct():</pre>	(RDD <t>,RDD<u>) -> RDD<(T,U)></u></t>			

Actions:				
<pre>count():</pre>	RDD <t> -> Long</t>			
<pre>collect():</pre>	RDD <t> -> Seq<t></t></t>			
<pre>reduce(f:(T,T)->T):</pre>	RDD <t> -> T</t>			
<pre>save(path:String):</pre>	Outputs RDD to a storage system e.g., HDFS			