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Administrivia
* Emaill if there might have a runaway

cluster/instance

— Even if you haven’t received an email, it is
worth checking (pause clusters + stop labs)

* Don’t fear Late Day Tokens

* Project Sign Ups



Announcements

HW2 is posted (pull upstream)
and due on Oct. 318t

Project proposals due on Oct. 28t

Review was due today (How good...?)
Review of three papers due next week

Jack’'s OH: Thursday 10/27 => Monday 10/24



Outline for Today

* Query Optimization
— How good are they?

* Spark



[How good are they]

Recap

* Optimizer has three components:
— Search space
— Cardinality and cost estimation
— Plan enumeration algorithms



[How good are they]

Recap

* Optimizer has three components:
— Search space
— Cardinality and cost estimation
— Plan enumeration algorithms

* Paper addresses three questions:

ow good are the cardinality estimators?
ow important is the cost model?
ow large does the search space need to be?



[How good are they]

Paper Outline

 How good are the cardinality estimators?

* How important is the cost model?

* How large does the search space need to
be?



[How good are they]

The Job Benchmark

 Why do they use the IMDB database instead
of TPC-H?

 IMDB — popular data on the web, can be
imported into any RDBMS with moderate
effort

Lesson: you can always import your dataset
into RDBMS!



[How good are they]

The Job Benchmark

JOB Benchmark: 33 templates, 113 queries
Discuss the difference in class:

« SQL query

* SQL query template (or structure)

Group-by Queries
* None in JOB!
* Important in DS; we’'ll discuss them later



Review: Cardinality Estimation

Problem: given statistics on base tables and
a query, estimate size of the answer

What are the statistics on base tables?



Review: Cardinality Estimation

Problem: given statistics on base tables and
a query, estimate size of the answer

What are the statistics on base tables?

* Number of tuples (cardinality) T(R)

* Number of values in R.a: V(R,a)
» Histograms (later today)



Review: Cardinality Estimation

What are the four assumptions that
database systems do?



Review: Cardinality Estimation

What are the four assumptions that
database systems do?

* Uniformity

* Independence

» Containment of values
* Preservation of values



[How good are they]

Single Table Estimation

0acc(R) = TRIV(RA)
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[How good are they]

Single Table Estimation

Oa=(R) = TR)V(R,A)

What assumption
does this make? _ _
UnlformltyJ

median | 90th | 95th max
PostgreSQL 1.00 | 2.08 | 6.10 207
DBMS A 1.01 | 1.33 | 1.98 43.4
DBMS B 1.00 | 6.03 | 30.2 | 104000
DBMS C 1.06 | 1677 | 5367 | 20471
HyPer 1.02 | 447 | 8.00 2084

Table 1: Q-errors for base table selections



Histograms

* T(R), V(R,A) too coarse
* Histogram: separate stats per bucket

 |n each bucket store:
— T(bucket)
— V(bucket,A)



Employee(ssn, name, age)

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate 0,4.-45(Empolyee) = ?
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Employee(ssn, name, age)

Histograms

T(Employee) = 25000, V(Empolyee, age) = 50

Estimate 0,4.-45(Employee) =7  =25000/50 = 500

Age: 0..20 20..29 30-39 40-49 50-59 > 60
T= 200 3800 5000 12000 6500 500
V= 3 10 I 6 5 4

Estimate 0,4.-45(Employee) =7  =12000/6 = 2000



Types of Histograms

Eqg-Width
Eqg-Depth
Compressed: store outliers separately

“Special”: V-Optimal histograms



Employee(ssn, name, age)

Histograms
Eg-width:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
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Histograms
Eg-width:
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Employee(ssn, name, age)

Histograms
Eg-width:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
T 200 800 5000 12000 6500 500
V 2 38 10 10 8 3
Eqg-depth:
Age: 0..32 33..41 42-46 47-52 53-58 > 60
T 1800 2000 2100 2200 1900 1800
V 38 10 9 10 8 6

Compressed: store separately highly frequent values: (48,1900)




V-Optimal Histograms

“Weighed Variance of the source values is minimized”

=Improved Histograms for Selectivity Estimation of Range Predicates

* Pick boundaries that minimize the
variance of frequencies within buckets

* Dynamic programming

 Modern databases systems use V-optimal
histograms or some variations



Multiple Predicates

* Independence assumption:
— Simple
— But often leads to major underestimates

* Modeling correlations:
— Solution 1: 2d Histograms
— Solution 2: use sample from the data



Modeling Correlations

1. Multi-dimensional histograms
— Also called column-group statistics

2. Sample from the data



Supplier(sid, sname, scity, sstate)

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity: A..E F..| J..M N..Q R..U V..Z sstate: A.J K..S 1.2
T 2000 8000 50000 | 120000 | 65000 5000 T 125000 | 80000 | 45000
V 50 40 250 300 130 100 \% 20 10 20

Estimate Gsscity=‘Mtv’ A sstate=‘CA’(Supp“er) =2




Supplier(sid, sname, scity, sstate)

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity: A.E F.l J.M N..Q R..U V..Z sstate: | A..J K..S T.Z
T 2000 | 8000 | 50000 | 120000 | 65000 | 5000 T 125000 | 80000 | 45000
V 50 40 250 300 130 100 \Y 20 10 20
Estimate O-sscity=‘Mtv’ A sstate=‘CA’(Supp“er) =2
2d Histogram
scity A.E F.l JM | NQ | RU | V.Z

Sstate

A..J T,V=...

K..S

1.2




Supplier(sid, sname, scity, sstate)

2d-Histogram

T(Supplier) = 250,000

1d Histograms

scity: A.E F.l J.M N..Q R..U V..Z sstate: | A..J K..S T.Z
T 2000 | 8000 | 50000 | 120000 | 65000 | 5000 T 125000 | 80000 | 45000
V 50 40 250 300 130 100 \Y 20 10 20
Estimate O-sscity=‘Mtv’ A sstate=‘CA’(Supp“er) =2
2d Histogram
scity A.E F.l JM | NQ | RU | V.Z

Sstate

A..J T,V=...

K..S

T.Z

Answer: T, et ! Voucket




Supplier(sid, sname, scity, sstate)

Sample

« Compute a small,
uniform sample

from Supplier Estimate Gsscity=‘Mtv’ A sstate=‘CA’(Supp”er) =7?




Supplier(sid, sname, scity, sstate)

Sample
« Compute a small,
uniform sample
from Supplier Estimate O-sscity=‘Mtv’ Asstate=‘CA’(Supp”er) =7?

e Use Thomson’s
estimator:



Supplier(sid, sname, scity, sstate)

Sample
« Compute a small,
uniform sample
from Supplier Estimate O-sscity=‘Mtv’ Asstate=‘CA’(Supp”er) =7?

e Use Thomson’s
estimator:

Answer: c)-sscity=‘Mtv’/\sstate=‘CA’(Sample) i T(Supp“er) / T(Sample)




Correlations

» Solution 1: 2d histograms
— Plus: can be accurate for 2 predicates
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Correlations

» Solution 1: 2d histograms
— Plus: can be accurate for 2 predicates
— Minus: unclear how to use for 3 or more preds
— Minus: too many 2d histogram candidates

» Solution 2: sampling
— Plus: can be accurate for >2 predicates
— Plus: work for complex preds, e.g. “like”



Correlations

» Solution 1: 2d histograms
— Plus: can be accurate for 2 predicates
— Minus: unclear how to use for 3 or more preds
— Minus: too many 2d histogram candidates

» Solution 2: sampling
— Plus: can be accurate for >2 predicates

— Plus: work for complex preds, e.g. “like”
— Minus: fail for low selectivity predicates



[How good are they]

Discussion

* Paper explains the need for real data



[How good are they]

Discussion

* Paper explains the need for real data

» Synthetic data used in benchmarks is
often generated using uniform,
independent distributions; formulas for
cardinality estimation are perfect



[How good are they]

TPC-H v.s. Real Data (IMDB)
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[How good are they]

H v.s. Real Data (IMDB)

TPC

TPC-H 10

TPC-H 8

TPC-H 5

JOB 25c

JOB 17b

JOB 16d

JOB 6a
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Perfect estimates

Huge errors

62

DATA516/CSEDS16 - Fall 2022



Paper Outline

 How good are the cardinality estimators?

* How important is the cost model?

* How large does the search space need to
be?

64



[How good are they]

Cardinalities to Cost
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[How good are they]

Cardinalities to Cost
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[How good are they]

Cardinalities to Cost

PostgreSQL estimates true cardinalities
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[How good are they]

Cardinalities to Cost
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[How good are they]

estim

largest errors

 Complex or
simple cost

Cardinalities to Cost
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Not in the paper!

Digression: Yet Another Difficulty

SQL Queries issued from applications:
* Query is optimized once: prepare
* Then, executed repeatedly

Query constants are unknown until
execution: optimized plan is suboptimal



Jayant Haritsa, ICDE’'2019 tutorial

select
0_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
| _extendedprice * (1 - |_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region
where p_partkey = | partkey and s_suppkey = | _suppkey
and |_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01"
and '1996-12-31°
and p_type ='ECONOMY ANODIZED STEEL'
and s_acctbal < C1 and |_extendedprice < C2 ) as all_nations
group by o_year order by o_year




Jayant Haritsa, ICDE’'2019 tutorial

select
0_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
| _extendedprice * (1 - |_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region
where p_partkey = | partkey and s_suppkey = | suppkey
and |_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01"
and '1996-12-31°
and p_type ='ECONOMY ANODIZED STEEL'
and s_acctbal = C1 and | _extendedprice < C2 ) as all_nations
group by o_year order by o_year

Optimize without
knowing C1, C2




Jayant Haritsa, ICDE’2019 tutorial
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Paper Outline

 How good are the cardinality estimators?

* How important is the cost model?

* How large does the search space need to
be?

78



Search Space

* The set of alternative plans

* Rewrite rules; examples:

— Push selections down: 0-(R ¢ S) = 0.(R) x S
—Joinreorder: (R S)x T=R x (S > T)
— Push aggregates down (later today)

* Types of join trees (next)



[How good are they]

[The need for a rich search space}

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25¢

SaXapul ou

soxapul Yd

SoXapul Y- + Md

1 1;21e31e4 1l 1e21;31;4 1 1;.2 1e3 1e4 1 1;21e31e4 1 1;21e31e4
cost relative to optimal FK plan [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

80



Types of Join Trees

* Based on the join condition:
— With cartesian products
— Without cartesian products

* Based on the shape.:
— Left deep
— Right deep
— Zig-zag
— Bushy



Cartesian Product: with or without

R(A,B) Mg g=s g S(B,C) Mg crc T(C,D)

Nsc=Tc
/ Without

MR B=s B cartesian
/ \ product

R(A,B) S(B,C) T(C,D)
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Cartesian Product: with or without

R(A,B) Mg g=s g S(B,C) Mg crc T(C,D)

D<’sc: =T.C _ MNRB= SB
Without
NRB -sB cartesian Nsc TC
\ product

R( S(B,C) R(A,B) C D)

x/ MB=B A C=C \
e

R(A,B) T(C,D) S(B,C)
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D<’sc: =T.C _ MNRB= SB
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NRB -sB cartesian Nsc TC
\ product

R(A, S(B,C) R(A,B) C D)

When could
this plan be
better?

MB=B A C=C With
% / cartesian
/ X \ product



Cartesian Product: with or without

R(A,B) Mg g=s g S(B,C) Mg crc T(C,D)

D<’sc: =T.C _ MNRB= SB
Without
NRB -sB cartesian Nsc TC
\ product

R(A, S(B,C) R(A,B) C D)

. When could
"1B=B 1 C=C With this plan be
% / cartesian better?
/ X \ product '
R(A,B) T(C,D) S(B,C)

When R, T are very small,
and S is very large



Shapes of Join Trees
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Shapes of Join Trees
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Shapes of Join Trees

Right

4
X
| eft / Hash-tables / \ deep

built on

/ > \ intermediate R1 / . \
\ Rn R2 / > \
R,

/N \




Shapes of Join Trees

X Right
| eft / . Hash-tables / \ deep
built on
deep / 5 \ intermediate R, / ™ \
’ \ Rn R2 / X \
/ Ro+ R
built on 3

X ) base tables \
R1/ \R VAN A
N VAN
Bushy / \ . 3/ D \N R, ]
/ D \ / D \ / \ Ig-zag
X X X X e N R,
Rs :

Hash-tables



[How good are they]

[The effect of restricting the search space}

Left/right
convention switches:
Depending on
Author/Convention

PK indexes PK + FK indexes
median | 95% | max | median 95% max
z1g-zag 1.00 | 1.06 | 1.33 1.00 1.60 2.54
left-deep 1.00 | 1.14 | 1.63 1.06 2.49 4.50
right-deep 1.87 | 497 | 6.80 47.2 | 30931 | 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

DATA516/CSEDS16 - Fall 2022 92



Search Space: Discussion

* Search space can be huge

» Database systems often reduce it by
applying heuristics:
— No cartesian products
— Restrict to left-deep trees (or other restriction)



Rewrite Rules

* WWe have seen last time:
— Push selection down: 0-(R x S) = 0-(R) x S
— AND: Oc1and c2(R ™ S) = 0¢4(0¢o(R > S))
— Join associativity: (R S) x T=R x (S x T)
— Join commutativity: R S=S xR

 Two more rules
Very important
— Push aggregates down

— Remove redundant joins
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Motivation

select count(*) from customer; Answer: 1500000
Time:2s

select count(*) from lineitem; Answer: 59986052
Time:1s

select count(*) from customer, lineitem; Timeout!!!

But 3" query is simply the product of the first two!
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Pushing Aggregates Down

select Y,Z, sum(A*B*C*...) from...where...
group by Y, Z

Vy.Z sum(A«B*Cx---)
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Sum only
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this optimization; do it
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Pushing Aggregates Down

group by Y, Z

select Y,Z, sum(A*B*C*...) from...where...

Vy.Z sum(A«B*Cx---)

X x

As data scientists,
you may really need
this optimization; do it
manually, if needed!

=)

Sum only
over the attrs
from the left

Group by Y,Z (again)
multiply the two sums,
and sum again

Yy z sum(s1+52)

X x

Sum only
over the attrs
from the right

VXY sum(A+C+E..)>S1 VX Z sum(B+D+F...)~S2

Group by the attrs
from the left Y,
plus join attrs X

Group by the attrs
from the right Z,
plus join attrs X



Example 1

SELECT count(*) from R, S where R.x=S.x

YCount(*)

X,¥,Z

& @z




Example 1

SELECT count(*) from R, S where R.x=S.x

Rifx|y| S|x|z Answer = ?2?7?7?
b | a b|g
b|c b | k
f|d h |m
h|g

YCount(*)

X,¥,Z

Dy




Example 1

SELECT count(*) from R, S where R.x=S.x

Rilx ]y | Si|x|z Answer = 5
b | a b|g _
o | o o | Runtime = O(N?)
f|d h |m
hlg

YCount(*)

X,¥,Z

Dy




Example 1

SELECT count(*) from R, S where R.x=S.x

YCount(*)
Ry x|y | S:|x|z Answer = 5
b | a bl|g Runt O(N2 y i
b | o o | untime = O(N?) x
f|d h|m
"o Croy ) (s
Vsum(cxd)

A Nl X,c,d B
VTN

Vx,count(x)—-c Yx,count(z)—-d




Example 1

SELECT count(*) from R, S where R.x=S.x

R:i| x|y S:
b | a
b|c
f|d
hlg

A | X | ¢C
b | 2

f |1
h | 1

> (T |T | X

S |~ |@Q | N

Answer =5

Runtime = O(N?)

AxB| x| ¢ | d

YCount(*)

o

Vsum(cxd)

A Nl X,c,d B
TN/

Vx,count(x)—-c Yx,count(z)—-d




Example 1

SELECT count(*) from R, S where R.x=S.x

YCount(*)
RIIX |y | Si|x|z Answer = 5
b | a b | g Runti O(N? g =
b | c o | untime = O(N*4) x
f|d h |m
e CRow ) (o)
Answer = 5
) Vsum(cxd)
Runtime = O(N) |
A X,c,d
. & >, B
A: X = B: X d AxB | X C d / \ /
b | 2 b | 2 b| 2 | 2 Yx,count(x)-»c  Vx,count(z)-d
r1 : h| 1]
2K (R Cstxa)




Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)
Part(pno, pname, pprice) Exam ple 2

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate




Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)
Part(pno, pname, pprice) Exam ple 2

yx.sstate, sum(y.quantity*z.price)

Dy sid = y.sid \

Ny.pno = Z.pno

Supplier x Supply y Part z

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate




Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)
Part(pno, pname, pprice) Exam ple 2

Y x sstate, sum(y.quantity*z.price) ¥x.sstate, sum(s)

Dy sid = y.sid \ X sid = y.sid \

yy sid, sum(y.quantity*z.price)>s
Ny.pno = z.pno \

Ny.pno = Z.pno

Supplier x Supply y Partz  Supplier x

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z Supply y Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate




Discussion

Join-aggregates: common in data science

Implementation in RDBMS seems spotty:
— Postgres: NO (someone started, abandoned)
— Redshift: NO (I don’t know the status)

— SQL Server: YES (at least a few years back)
— Snowflake: ?7?

You may have to force this manually, by
writing nested SQL queries

Let's make sure we understand it (next)



Redundant Foreign-key / key Joins

« Simple, highly effective

* Almost all engines implement this



Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantit ]
If)orelgn-Key | Key

Select x.pno, x.quantity

From Supply x, Supplier y
Where x.sid = y.sid l ‘




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantitﬁ)

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

oreign-Key / Key

=

Select x.pno, x.quantity

From Supply x




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantitﬁ)

Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Only if these constraints hold:

1.  Supplier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

oreign-Key / Key

=

Select x.pno, x.quantity

From Supply x




Summary of Rules

» Database optimizers typically have a
database of rewrite rules

* E.g. SQL Server: 400+ rules

* Rules become complex as they need to
serve specialized types of queries



Query Optimization

1. Search space

Discussed
already

2. Cardinality and cost estimation

3. Plan enumeration algorithms
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Two Types of Plan
Enumeration Algorithms

* Dynamic programming (in class)
— Based on System R [Selinger 1979]
— Join reordering algorithm

* Rule-based algorithm (will not discuss)
— Database of rules (=algebraic laws)
— Usually: dynamic programming

» Today's systems combine both



System R Optimizer

For each subquery Q c {R,, ..., R }, compute best plan:

Step1:  Q={R}{R}, ..., {R)

Step2:  Q={R,R.}, {Ri,R}, ..., (R, R}

Stepn: Q={R,, ..., R}

Avoid cartesian products; possibly restrict tree shapes



Details

For each subquery Q <{R,, ..., R} store:
« Estimated Size: Size(Q)
« A best plan for Q: Plan(Q)

* The cost of that plan: Cost(Q)



Details

Step 1: single relations {R,}, {R,}, ..., {R.}
» Size = T(R)
» Best plan: scan(R))

* Cost=c*T(R,) // c=the cost to read one tuple



Details

Step k = 2...n:
For each Q = {R; , ..., Ry, } // w/o cartesian product

 Size = estimate the size of Q
* Foreachj=1,...k:

- Let: Q'=Q —{R;}
— Let: Plan(Q’) R;; Cost(Q") + CostOf()

* Plan(Q), Cost(Q) = cheapest of the above



[How good are they]

[Is Dynamic Programming needed? J

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max | median 95% max | median 95% max | median 95% max
Dynamic Programming 1.03 1.85 479 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 1.05 219 729 1.00 1.07 1.14 252 365 186367 1.02 4.72 323
Greedy Operator Ordering 1.19 229 236 1.19 1.64 197 235 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration
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Discussion

» All database systems implement
Selinger’s algorithm for join reorder

* For other operators (group-by, aggregates,
difference): rule-based

 Many search strategies beyond dynamic
programming



Final Discussion

* Optimizer has three components:
— Search space
— Cardinality and cost estimation
— Plan enumeration algorithms

* Optimizer realizes physical data
Independence

» Weakest link: cardinality estimation
— Poor plans are almost always due to that



Spark



Distributed or Parallel Query
Processing

» Clusters:
— More servers = more in main memory
— More servers = more computing power
— Clusters are now cheaply available in the cloud
— Distributed query procesing

* Multicores:
— The end of Moore’s law
— Parallel query processing




Motivation

* Limitations of relational database systems:
— Single server (at least traditionally)
— SQL is a limited language (eg no iteration)
« Spark:
— Distributed system
— Functional language (Java/Scala) good for ML
* Implementation:

— Extension of MapReduce
— Distributed physical operators



Review: Single Client

E.g. data analytics

135



Review: Client-Server

~~—

a

.:‘?L/ .

E.g. accounting, banking, ...
31l

.
=t

Connection:

N TN 7\
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Review: Three-tier

E.g. Web commerce

connection
(ODBC, JDBC)




Review: Distributed Database

\
E.g. large-scale analytics or... il e
7 s
[ EEEE |
T EEEE
—_— Sharded database

Spark, Snowflake

...social networks



Programming in Spark

« A Spark program consists of:
— Transformations (map, reduce, join...). Lazy
— Actions (count, reduce, save...). Eager

« Eager: operators are executed immediately

» Lazy: operators are not executed immediately
— A operator tree is constructed in memory instead
— Similar to a relational algebra tree



Collections in Spark

RDD<T> = an RDD collection of type T
 Distributed on many servers, not nested
* Operations are done in parallel

* Recoverable via lineage; more later

Seq<T> = a sequence
» Local to one server, may be nested
» Operations are done sequentially



Example from paper, new syntax

Search logs stored in HDFS

lines = spark.textFile("hdfs://...”)

errors = lines filter(x -> x.startsWith(“Error”))

errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL")).count()




Example from paper, new syntax

Search logs stored in HDFS

lines = spark.textFile("hdfs://...”)

errors = lines filter(x -> x.startsWith(“Error”))

errors.persist()

errors.collect() | “MOrmation: Not executeoD
errors.filter(x -> x.contains(“MySQL")7.




Example from paper, new syntax

Search logs stored in HDFS

lines = spark.textFile("hdfs://...”)

errors = lines filter(x -> x.startsWith(“Error”))

errors.persist()

errors.collect() | “MOrmation: Not executeD
errors.filter(x -> x.contains(“MySQL")7.
ﬂggers execution
of entire program




Anonymous Functions

A.k.a. lambda expressions, starting in Java 8

errors = lines.filter(x -> x.startsWith(“Error”))




Chaining Style

sqlerrors = spark.textFile("ndfs://...")
filter(x -> x.startsWith("ERROR"))
filter(x -> x.contains(“sqlite”))
.collect();




Example

The RDD s:

Error...

Warning... Warning... Error... Abort... Abort... Error... Error... Warning...

sqlerrors = spark.textFile(*hdfs://...")
filter(x -> x.startsWith("\ERROR"))
filter(x -> x.contains(“sqlite”))
.collect();
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The RDD s: Parallel step 1

sqlerrors = spark.textFile(*hdfs://...")
filter(x -> x.startsWith("\ERROR"))
filter(x -> x.contains(“sqlite”))
.collect();
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The RDD s:

Parallel step 1

sqlerrors = spark.textFile("hdfs://...")

filter(x -> x.startsWith("ERROR?"))

filter(x -> x.contains(“sqlite”))
.collect();
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The RDD s:

Example

Parallel step 1

Error...

Warning...

Warning...

Error...

Abort...

Abort...

Error...

Error...

Warning...

Error...

filter(*ERROR”)

A 4

Error...

fiIter(“squtI")

fiIter(“ERRfR”) fiIter(“ERtOR”) filter("ERROR”)

\ 4

Error...

filter(“sql%”)

fiIter(“ERiOR") filter(“EiROR") filter("BRROR”)

\ 4

filter("ERROR”)

\ 4

Error...

Error...

filter(“sfite”)

fiIter(“silite")

filter(“%RROR”) filter(*ERROR”)

\ 4

Error...

fiIter(“sfite")

Parallel step 2

sqlerrors = spark.textFile("hdfs://...")
filter(x -> x.startsWith("ERROR?"))

filter(x -> x.contains(“sqlite”))
.collect();

DATA516/CSEDS16 - Fall 2022

149




More on Programming Interface

Large set of pre-defined transformations:

* Map, filter, flatMap, sample, groupByKey,
reduceByKey, union, join, cogroup,
crossProduct, ...

Small set of pre-defined actions:
* Count, collect, reduce, lookup, and save

Programming interface includes iterations



Transformations:

map(f : T -> U):

RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)):

RDD<T> -> RDD<U>

filter(f:T->Bool):

RDD<T> -> RDD<T>

groupByKey () :

RDD< (K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V):

RDD< (K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>
join(): (RDD< (K,V)>,RDD<(K,W)>) -> RDD<(K, (V,W))>
cogroup(): (RDD< (K,V)>,RDD<(K,W)>)-> RDD< (K, (Seq<V>,Seq<hW>))>
crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:
count(): RDD<T> -> Long
collect(): RDD<T> -> Seq<T>

reduce(f:(T,T)->T):

RDD<T> -> T

save(path:String):

Outputs RDD to a storage system e.g., HDFS




