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Administrivia

• Email if there might have a runaway 
cluster/instance
– Even if you haven’t received an email, it is 

worth checking (pause clusters + stop labs)

• Don’t fear Late Day Tokens

• Project Sign Ups
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Announcements

• HW2 is posted (pull upstream) 
and due on Oct. 31st

• Project proposals due on Oct. 28th

• Review was due today (How good…?)
Review of three papers due next week

• Jack’s OH: Thursday 10/27 => Monday 10/24
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Outline for Today

• Query Optimization
– How good are they?

• Spark
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Recap

• Optimizer has three components:
– Search space

– Cardinality and cost estimation

– Plan enumeration algorithms
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Recap

• Optimizer has three components:
– Search space

– Cardinality and cost estimation

– Plan enumeration algorithms

• Paper addresses three questions:
– How good are the cardinality estimators?

– How important is the cost model?

– How large does the search space need to be?
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Paper Outline

• How good are the cardinality estimators?

• How important is the cost model?

• How large does the search space need to 
be?
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The Job Benchmark

• Why do they use the IMDB database instead 
of TPC-H?

• IMDB – popular data on the web, can be 
imported into any RDBMS with moderate 
effort

Lesson: you can always import your dataset 
into RDBMS!
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The Job Benchmark

JOB Benchmark: 33 templates, 113 queries
Discuss the difference in class:
• SQL query
• SQL query template (or structure)

Group-by Queries
• None in JOB!
• Important in DS;  we’ll discuss them later
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Review: Cardinality Estimation

Problem: given statistics on base tables and 
a query, estimate size of the answer

What are the statistics on base tables?
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Review: Cardinality Estimation

Problem: given statistics on base tables and 
a query, estimate size of the answer

What are the statistics on base tables?

• Number of tuples (cardinality) T(R)

• Number of values in R.a: V(R,a)

• Histograms (later today)
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Review: Cardinality Estimation

What are the four assumptions that 
database systems do?
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Review: Cardinality Estimation

What are the four assumptions that 
database systems do?

• Uniformity

• Independence

• Containment of values

• Preservation of values
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Single Table Estimation
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A=cσA=c(R) = T(R)/V(R,A)
What assumption
does this make?
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Single Table Estimation
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A=cσA=c(R) = T(R)/V(R,A)
What assumption
does this make?

Uniformity



Histograms

• T(R), V(R,A) too coarse

• Histogram: separate stats per bucket

• In each bucket store:
– T(bucket)

– V(bucket,A)
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Histograms
Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50

Estimate σage=48(Empolyee) = ? 
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Histograms
Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50

Estimate σage=48(Employee) = ? 

Age: 0..20 20..29 30-39 40-49 50-59 > 60

T = 200 800 5000 12000 6500 500

V = 3 10 7 6 5 4

= 12000/6 = 2000

= 25000/50 = 500

Estimate σage=48(Employee) = ? 



Types of Histograms

• Eq-Width

• Eq-Depth

• Compressed: store outliers separately

• “Special”: V-Optimal histograms
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Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

T 200 800 5000 12000 6500 500

V 2 8 10 10 8 3

Eq-width:

Employee(ssn, name, age)
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T 200 800 5000 12000 6500 500

V 2 8 10 10 8 3

Age: 0..32 33..41 42-46 47-52 53-58 > 60

T 1800 2000 2100 2200 1900 1800

V 8 10 9 10 8 6

Eq-width:

Eq-depth:

Employee(ssn, name, age)



Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

T 200 800 5000 12000 6500 500

V 2 8 10 10 8 3

Age: 0..32 33..41 42-46 47-52 53-58 > 60

T 1800 2000 2100 2200 1900 1800

V 8 10 9 10 8 6

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

Employee(ssn, name, age)



V-Optimal Histograms

“Weighed Variance of the source values is minimized”
-Improved Histograms for Selectivity Estimation of Range Predicates

• Pick boundaries that minimize the
variance of frequencies within buckets

• Dynamic programming
• Modern databases systems use V-optimal 

histograms or some variations
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Multiple Predicates

• Independence assumption:
– Simple

– But often leads to major underestimates

• Modeling correlations:
– Solution 1: 2d Histograms

– Solution 2: use sample from the data
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Modeling Correlations

1. Multi-dimensional histograms
– Also called column-group statistics

2. Sample from the data
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2d-Histogram
Supplier(sid, sname, scity, sstate)

scity: A..E F..I J..M N..Q R..U V..Z

T 2000 8000 50000 120000 65000 5000

V 50 40 250 300 130 100

T(Supplier) = 250,000

sstate: A..J K..S T..Z

T 125000 80000 45000

V 20 10 20

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?

1d Histograms



2d-Histogram
Supplier(sid, sname, scity, sstate)

scity: A..E F..I J..M N..Q R..U V..Z

T 2000 8000 50000 120000 65000 5000

V 50 40 250 300 130 100

T(Supplier) = 250,000

sstate: A..J K..S T..Z

T 125000 80000 45000

V 20 10 20

2d Histogram

scity
Sstate

A..E F..I J..M N..Q R..U V..Z

A..J … T,V=…

K..S

T..Z

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?

1d Histograms



2d-Histogram
Supplier(sid, sname, scity, sstate)

scity: A..E F..I J..M N..Q R..U V..Z

T 2000 8000 50000 120000 65000 5000

V 50 40 250 300 130 100

T(Supplier) = 250,000

sstate: A..J K..S T..Z

T 125000 80000 45000

V 20 10 20

2d Histogram

scity
Sstate

A..E F..I J..M N..Q R..U V..Z

A..J … T,V=…

K..S

T..Z

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?

1d Histograms

Answer:  Tbucket / Vbucket



Sample

• Compute a small, 
uniform sample 
from Supplier

Supplier(sid, sname, scity, sstate)

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?



Sample

• Compute a small, 
uniform sample 
from Supplier

• Use Thomson’s 
estimator:

Supplier(sid, sname, scity, sstate)

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?



Sample

• Compute a small, 
uniform sample 
from Supplier

• Use Thomson’s 
estimator:

Supplier(sid, sname, scity, sstate)

∧Estimate σsscity=‘Mtv’ ∧ sstate=‘CA’(Supplier) = ?

Answer: σsscity=‘Mtv’ sstate=‘CA’(Sample) * T(Supplier) / T(Sample)



Correlations

• Solution 1: 2d histograms
– Plus: can be accurate for 2 predicates

– Minus: unclear how to use for 3 or more preds

– Minus: too many 2d histogram candidates

• Solution 2: sampling
– Plus: can be accurate for >2 predicates

– Plus: work for complex preds, e.g. “like”

– Minus: fail for low selectivity predicates
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Correlations

• Solution 1: 2d histograms
– Plus: can be accurate for 2 predicates

– Minus: unclear how to use for 3 or more preds

– Minus: too many 2d histogram candidates

• Solution 2: sampling
– Plus: can be accurate for >2 predicates

– Plus: work for complex preds, e.g. “like”

– Minus: fail for low selectivity predicates
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Discussion

• Paper explains the need for real data

59
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Discussion

• Paper explains the need for real data

• Synthetic data used in benchmarks is 
often generated using uniform, 
independent distributions; formulas for 
cardinality estimation are perfect
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TPC-H v.s. Real Data (IMDB)
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TPC-H v.s. Real Data (IMDB)
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Huge errors Perfect estimates



Paper Outline

• How good are the cardinality estimators?

• How important is the cost model?

• How large does the search space need to 
be?
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Cardinalities to Cost
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Cardinalities to Cost
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Cardinalities to Cost
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Cardinalities to Cost
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Their own
simple
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Postgres
cost

No I/O,
keep only

CPU



Cardinalities to Cost

• Cardinality 
estimation creates 
largest errors

• Complex or 
simple cost 
models don’t differ 
much
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Their own
simple
formula

Postgres
cost

No I/O,
keep only

CPU



Digression: Yet Another Difficulty

SQL Queries issued from applications:

• Query is optimized once: prepare

• Then, executed repeatedly

Query constants are unknown until 
execution: optimized plan is suboptimal
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Not in the paper!
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Jayant Haritsa, ICDE’2019 tutorial

select
o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)

from
(select YEAR(o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where p_partkey = l_partkey and s_suppkey = l_suppkey
and l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01'
and '1996-12-31’
and p_type = 'ECONOMY ANODIZED STEEL'

and s_acctbal ≤ C1 and l_extendedprice ≤ C2 ) as all_nations
group by o_year order by o_year
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Jayant Haritsa, ICDE’2019 tutorial

select
o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)

from
(select YEAR(o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where p_partkey = l_partkey and s_suppkey = l_suppkey
and l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01'
and '1996-12-31’
and p_type = 'ECONOMY ANODIZED STEEL'

and s_acctbal ≤ C1 and l_extendedprice ≤ C2 ) as all_nations
group by o_year order by o_year

Optimize without
knowing C1, C2
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Jayant Haritsa, ICDE’2019 tutorial

Different optimal
plans for different

C1, C2



Paper Outline

• How good are the cardinality estimators?

• How important is the cost model?

• How large does the search space need to 
be?
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Search Space

• The set of alternative plans

• Rewrite rules; examples:
– Push selections down: σC(R S) = σC(R) S

– Join reorder:  (R S) T= R (S T)

– Push aggregates down (later today)

• Types of join trees (next)

79
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Types of Join Trees

• Based on the join condition:
– With cartesian products
– Without cartesian products

• Based on the shape:
– Left deep
– Right deep
– Zig-zag
– Bushy
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Cartesian Product: with or without
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R(A,B) R.B=S.B S(B,C) S.C=T.C T(C,D)

R.B=S.B

S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product
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Cartesian Product: with or without

84

R(A,B) R.B=S.B S(B,C) S.C=T.C T(C,D)

R.B=S.B

S.C=T.C

R(A,B) S(B,C) T(C,D)

R.B=S.B

S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product

×

B=B ∧ C=C

R(A,B) T(C,D) S(B,C)



Cartesian Product: with or without
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Cartesian Product: with or without
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Cartesian Product: with or without
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R(A,B) R.B=S.B S(B,C) S.C=T.C T(C,D)

R.B=S.B

S.C=T.C

R(A,B) S(B,C) T(C,D)

R.B=S.B

S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product

×

B=B ∧ C=C

R(A,B) T(C,D) S(B,C)

With
cartesian
product

When could
this plan be

better?

When R, T are very small,
and S is very large



Shapes of Join Trees
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Shapes of Join Trees

Rn

Rn-1

R2R1

R2

R1

Rn

R3

Left
deep

Right
deep

.  .  .  .  .  .  .  .  .

Bushy
R2

R1

R3 Zig-zag

R4

R5

…

Hash-tables
built on

intermediate

Hash-tables
built on

base tables
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The effect of restricting the search space
Left/right

convention switches:
Depending on 

Author/Convention



Search Space: Discussion

• Search space can be huge

• Database systems often reduce it by 
applying heuristics:
– No cartesian products

– Restrict to left-deep trees (or other restriction)
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Rewrite Rules

• We have seen last time:
– Push selection down: σC(R S) = σC(R) S 

– AND:        σC1 and C2(R S) = σC1(σC2(R S))

– Join associativity: (R S) T= R (S T)

– Join commutativity: R S = S R

• Two more rules
– Push aggregates down

– Remove redundant joins
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Very important
for Data Science!



Motivation
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Motivation
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Motivation
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Answer: 1500000
Time: 2 s      

Answer: 59986052
Time: 1 s

select count(*) from customer, lineitem; Timeout!!!

select count(*) from customer;

select count(*) from lineitem;

But 3rd query is simply the product of the first two!
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Pushing Aggregates Down

𝑿

… …

𝑿

… …

select Y,Z, sum(A*B*C*…) from…where…
group by Y, Z

Group by the attrs
from the left Y,
plus join attrs X

Group by the attrs
from the right Z,
plus join attrs X

Sum only
over the attrs
from the left

Sum only
over the attrs
from the right

Group by Y,Z (again)
multiply the two sums,

and sum again

As data scientists,
you may really need
this optimization; do it
manually, if needed!
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SELECT count(*) from R, S where R.x=S.x

S(x,z)
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SELECT count(*) from R, S where R.x=S.x

S(x,z)

x,y,z

𝒄𝒐𝒖𝒏𝒕(∗)

R(x,y)
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( ∗ )
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b a
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f d

h g
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A: x c
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f 1
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B: x d

b 2

h 1

A B x c d

b 2 2
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Runtime = O(N2)

Runtime = O(N)

Answer = 5

A B



Example 2
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate



Example 2
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

x.sid = y.sid

Part z

y.pno = z.pno

x.sstate, sum(y.quantity*z.price)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate



Example 2
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

x.sid = y.sid

Part z

y.pno = z.pno

x.sstate, sum(y.quantity*z.price)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

Supplier x

Supply y

x.sid = y.sid

Part z

y.pno = z.pno

x.sstate, sum(s)

y.sid, sum(y.quantity*z.price)s



Discussion

• Join-aggregates: common in data science
• Implementation in RDBMS seems spotty:

– Postgres: NO (someone started, abandoned)
– Redshift: NO (I don’t know the status)
– SQL Server: YES (at least a few years back)
– Snowflake: ??

• You may have to force this manually, by 
writing nested SQL queries

• Let’s make sure we understand it (next)
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Redundant Foreign-key / key Joins

• Simple, highly effective

• Almost all engines implement this
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Foreign-Key / Key
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Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

?



Foreign-Key / Key
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Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity

From Supply x



Foreign-Key / Key
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Select x.pno, x.quantity

From Supply x, Supplier y

Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity

From Supply x

1. Supplier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

Only if these constraints hold:



Summary of Rules

• Database optimizers typically have a 
database of rewrite rules

• E.g. SQL Server: 400+ rules

• Rules become complex as they need to 
serve specialized types of queries
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Query Optimization
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1. Search space

2. Cardinality and cost estimation

3. Plan enumeration algorithms

Discussed
already



Two Types of Plan
Enumeration Algorithms

• Dynamic programming  (in class)
– Based on System R [Selinger 1979]

– Join reordering algorithm

• Rule-based algorithm (will not discuss)
– Database of rules (=algebraic laws)

– Usually: dynamic programming

• Today’s systems combine both
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System R Optimizer

For each subquery Q  {R1, …, Rn}, compute best plan:

• Step 1: Q = {R1}, {R2}, …, {Rn}

• Step 2: Q = {R1,R2}, {R1,R3}, …, {Rn-1, Rn}

• …

• Step n: Q = {R1, …, Rn}

Avoid cartesian products; possibly restrict tree shapes
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Details

For each subquery Q {R1, …, Rn} store:

• Estimated Size: Size(Q)

• A best plan for Q: Plan(Q)

• The cost of that plan: Cost(Q)
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Details

Step 1: single relations {R1}, {R2}, …, {Rn}

• Size = T(Ri)

• Best plan: scan(Ri)

• Cost = c*T(Ri)      // c=the cost to read one tuple

DATA516/CSED516 - Fall 2022 127



Details

Step k = 2…n:
For each // w/o cartesian product

• Size = estimate the size of Q

• For each j=1,…,k:
– Let:   

– Let:   

• cheapest of the above
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[How good are they]

Is Dynamic Programming needed?



Discussion

• All database systems implement 
Selinger’s algorithm for join reorder

• For other operators (group-by, aggregates, 
difference): rule-based

• Many search strategies beyond dynamic 
programming
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Final Discussion
• Optimizer has three components:

– Search space

– Cardinality and cost estimation

– Plan enumeration algorithms 

• Optimizer realizes physical data 
independence

• Weakest link: cardinality estimation
– Poor plans are almost always due to that
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Spark
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Distributed or Parallel Query 
Processing

• Clusters:
– More servers  more in main memory

– More servers  more computing power

– Clusters are now cheaply available in the cloud

– Distributed query procesing

• Multicores:
– The end of Moore’s law

– Parallel query processing
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Motivation

• Limitations of relational database systems:
– Single server (at least traditionally)
– SQL is a limited language (eg no iteration)

• Spark:
– Distributed system
– Functional language (Java/Scala) good for ML

• Implementation:
– Extension of MapReduce
– Distributed physical operators
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Review: Single Client
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E.g. data analytics



Review: Client-Server
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Connection:

ODBC, JDBC

E.g. accounting, banking, …



Review: Three-tier

connection

(ODBC, JDBC)

http

E.g. Web commerce



Review: Distributed Database

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database

Spark, Snowflake



Programming in Spark
• A Spark program consists of:

– Transformations (map, reduce, join…).  Lazy
– Actions (count, reduce, save...).  Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree



Collections in Spark

RDD<T> = an RDD collection of type T
• Distributed on many servers, not nested
• Operations are done in parallel
• Recoverable via lineage; more later

Seq<T> = a sequence
• Local to one server, may be nested
• Operations are done sequentially



Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()   
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS



Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()   
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count() 

Transformation: Not executed yet…

Search logs stored in HDFS



// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()   
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program



errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions



sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Chaining Style



Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



More on Programming Interface

Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey, 

reduceByKey, union, join, cogroup, 
crossProduct, …

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations

DATA516/CSED516 - Fall 2022 150



Transformations:

map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>

join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>

cogroup(): (RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>

crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:

count(): RDD<T> -> Long

collect(): RDD<T> -> Seq<T>

reduce(f:(T,T)->T): RDD<T> -> T

save(path:String): Outputs RDD to a storage system e.g., HDFS


