
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 8

Stream Processing and Review

1DATA516/CSED516 - Fall 2021



Final Projects
• Deadlines

– HW4 Due: Friday, December 2nd in Gitlab (+ 2 late days)

– Project milestone: Friday, Nov 25th in Gitlab

– Project presentations: Tuesday, Nov 29th + Dec 6th in class

– Final project reports: Tuesday, December 9th in Gitlab

– NO EXTENSIONS ON PROJECT DATES

• Project presentations (5 min)
– Looking for more volunteers on for Nov 29th (add to spreadsheet)

– TA’s will send out schedule and Google Drive later this week

• Final reports (make sure to include your name)
– 4-5 pages in conference paper format and style

– Suggested outline on the course website.

DATA516/CSED516 - Fall 2021 2



Stream Processing

DATA516/CSED516 - Fall 2021 3



DATA516/CSED516 - Fall 2021 4

Batch vs Stream Processing

• Batch Processing (Databases)
– Data is present before queries are issued
– Application rely on lots of stored information
– Bounded Dataset
– Finite Querying Time

• Stream Processing
– Data is ingested and processed as it comes in
– Applications rely on recent data and stored data
– Unbounded Dataset
– “Queries” can run for months/years/decades…



DATA516/CSED516 - Fall 2021 5

Stream Processing: Early Days

Input streams: 
measurements, data

Output streams: alerts, 
anomalies, trends

Process streams:
filter, correlate, 

aggregate

Data 
source

Data 
source

Data 
source

Data 
source



DATA516/CSED516 - Fall 2021 6

Application Domains
• Network monitoring

– Intrusion, fraud, anomaly detection, click streams

• Financial services
– Market feed processing, ticker failure detection

• Sensor-based environment monitoring
– Weather conditions, air quality, car traffic
– Civil engineering, military applications, etc.

• Medical applications
– Patient monitoring, equipment tracking

• Near real-time data analytics



DATA516/CSED516 - Fall 2021 7

Requirements
• Input data is pushed continuously

– Traditional DBMSs not designed for continuous loading or inserting 
of individual data items

– “DBMS-active, human passive” model

• Users want to execute continuous queries
– Traditional DBMSs have no direct support for such queries. Can 

use triggers, but triggers do not scale

• Low-latency processing
– Need to see results in near real-time

– Data is possibly high-volume and high-rate



DATA516/CSED516 - Fall 2021 8

Other Requirements

• Distribution

• Load management and load shedding

• Approximate processing, approximate answers

• Fault-tolerance



Stream Processing: Today

9

Input streams: 

measurements, data

Output streams: alerts, 

anomalies, trends

Process streams:

filter, correlate, 

aggregate

Data 

source

Data 

source

Data 

source

Data 

source

Application domains: IoT, Web analytics, application telemetry, 
finance, healthcare

Stream processing engines: Kafka, Heron, Trill, StreamInsight, 
Spark Streaming, Beam, Flink, …

DATA516/CSED516 - Fall 2021



Same But Different Stream Processing

• Today, stream processing fundamentally same
– Unbounded streams of tuples, timestamps, windows, …

• But recent systems have different emphases
– Single programming model for batch and streaming

– Parallel, shared-nothing stream processing

– APIs in Python, Java, etc

– Seamless support for user-defined functions

10DATA516/CSED516 - Fall 2021



Streaming Concepts

DATA516/CSED516 - Fall 2021 11



Types of Windows

• Fixed (Tumbling) windows: Static window size
– Hourly windows or daily windows

• Sliding windows: Overlapping static windows
– Defined by a window size and a slide interval

– Hourly window sliding by one min

• Sessions: Data-dependent windows
– Group data by key

– For each key, a window is a burst of data in the stream

– Window ends when a timeout occurs

DATA516/CSED516 - Fall 2021 12



Types of Window Illustration

DATA516/CSED516 - Fall 2021 13

From: Akidau et. al. The dataflow model: a practical 
approach to balancing correctness, latency, and cost 
in massive-scale, unbounded, out-of-order data 
processing. VLDB’15.



Two Notions of Time in Streams

• Event time: Time when event occurred

• Processing time: Time when event observed

• Time domain skew
– Difference between event and processing times

– No skew: Process events immediately when they happen

• Watermark
– Heuristic, lower bound on event time processed

– Semantics: Future tuples should have higher timestamps

– But, sometimes tuples can be late compared with watermark

DATA516/CSED516 - Fall 2021 14



Time Domain Skew Illustrated

DATA516/CSED516 - Fall 2021 15

From: Akidau et. al. The 
dataflow model:... 
VLDB’15.



Watermark Challenges

• Heuristic based

• If too fast, then data may be late
– Tuple with event-time 9 min may arrive after 

watermark for event-time 10 min was emitted

• If too slow, may cause processing latencies
– If we wait for a watermark before processing data

such as in a window aggregation

DATA516/CSED516 - Fall 2021 16



Stream Processing Algorithms

DATA516/CSED516 - Fall 2021 17



Constraints

• Need to process elements as they arrive

• Can only use a small amount of memory

• No time to read from or write to disk

• Often, we will use approximate algorithms

DATA516/CSED516 - Fall 2021 18



General Sampling Approach

• To select a fraction a/b of stream elements

• One attribute in stream is key
– The user ID in the next example

– But it could be the search query or another attribute

• Hash key value into b buckets

• Retain all stream items that hash into first a buckets

DATA516/CSED516 - Fall 2021 19



Sampling from Streams

• Goal: Collect a representative sample of stream data

• Example:
– Search engine receives a stream of queries

– “What fraction of the typical user’s queries were repeated 
over the past month?”

– Wish to store only 1/10th of the stream elements

• Challenge:
– If we pick 1/10th of all queries, hard to reason about complex 

user behavior such as fraction of repeated queries

– Solution: pick 1/10th of users and keep all queries for those 
users

– How? Hash user IDs into 10 buckets. If a user hashes into 
bucket 0, keep the corresponding query

DATA516/CSED516 - Fall 2021 20



Fixed Sample Size

• What if we want to sample N items
– As opposed to N% of all the items?

• Approach: Hash keys into B buckets
– Make B a large number

• Every time get to > N items, drop the last 
bucket and all values that previously hashed 
into that bucket

DATA516/CSED516 - Fall 2021 21



Stream Selection

• Goal: Apply a filter to a stream
– If a tuple meets the selection condition, keep it

– Otherwise, drop it

• Challenge: Some filter predicates are 
expensive to compute
– Example: Look up email address to decide if spam

• Solution: Bloom filters

DATA516/CSED516 - Fall 2021 22



Bloom Filters

DATA516/CSED516 - Fall 2021 23

0 0 0 0 0 0 0 0 0 0

S: Set of key values that pass the filter
For each value v in S, compute hash(v), set corresponding bit to 1

0 1 0 0 1 0 1 1 0 0

For each tuple in the stream with key value w
Compute hash(w)
If corresponding bit is 1, then tuple passes the filter



Bloom Filters

DATA516/CSED516 - Fall 2021 24

0 0 0 0 0 0 0 0 0 0

S: Set of key values that pass the filter
For each value v in S, compute hash(v), set corresponding bit to 1

0 1 0 0 1 0 1 1 0 0

For each tuple in the stream with key value w
Compute hash(w)
If corresponding bit is 1, then tuple passes the filter

Not Perfect?



Bloom Filters

DATA516/CSED516 - Fall 2021 25

0 0 0 0 0 0 0 0 0 0

S: Set of key values that pass the filter
For each value v in S, compute hash(v), set corresponding bit to 1

0 1 0 0 1 0 1 1 0 0

For each tuple in the stream with key value w
Compute hash(w)
If corresponding bit is 1, then tuple passes the filter

Improvement: Use K hash functions instead of one
For each key value, compute K hashes and check K bits



Counting Distinct Elements

• Goal: Compute the number of distinct values of an 
attribute in a stream

• Example: Count number of distinct visitors to website

• Challenge: What if too many distinct elements to hold 
in memory?

• Approach: Flajolet-Martin Algorithm

DATA516/CSED516 - Fall 2021 26



Flajolet-Martin Algorithm

• Tuple in stream with value w

• Compute hash(w)  001010101011000

• R is max tail length seen so far

• Estimate of distinct elements: 2R

– Divided by constant factor ~0.77351

• Extend to many hash functions
– Take median of group averages

DATA516/CSED516 - Fall 2021 27

Tail length



Materialize

DATA516/CSED516 - Fall 2021 28



Building with Real Data

• Sacrificing Speed

• Forgoing Features

• Compromising Cost

29DATA516/CSED516 - Fall 2021



Materialize

Materialize is a streaming database

• Written in Rust

• Maintains results of a SQL query (a materialized 
view) in-memory 

• Provides correct answers even as the underlying 
data changes

30DATA516/CSED516 - Fall 2021



Materialized View

Traditional approaches to data:

1. Collect Data

2. Write to DB

3. Query the DB

31DATA516/CSED516 - Fall 2021



Materialized View

Traditional approaches to data:

1. Collect Data

2. Write to DB

3. Query the DB

Expensive Operations at (3) Querying Time 

(Joins, Group By, etc) increases Latency

32DATA516/CSED516 - Fall 2021



Materialized View

Materialized Views are precomputed query results 
whose output is stored for fast usage

In a streaming setting, these results need to be 
refreshed and updated to include recent data

33DATA516/CSED516 - Fall 2021



Materialized View

Materialized Views are precomputed query results 
whose output is stored for fast usage

In a streaming setting, these results need to be 
refreshed and updated to include recent data

Materialize allows definition of materialized views on 
incoming data and incrementally updates the views

34DATA516/CSED516 - Fall 2021



How does Materialize Work

35DATA516/CSED516 - Fall 2021

SQL

Parallel Dataflow

• Timely Dataflow

• Differential Dataflow

In Memory

• Queries

• Views

• Incremental Updates



Dataflow (High level)

When a query/view/materialized view is created in 
Materialize it is translated to a dataflow.

Dataflow is transformation topology representing 
what/how the query output should be calculated

36DATA516/CSED516 - Fall 2021



Materialize

Benefits

• Standard SQL

• Interoperability

• Complex Join Support
– FULL, OUTER, CROSS, etc

37DATA516/CSED516 - Fall 2021



Materialize

Syntax for Creating a Source

38DATA516/CSED516 - Fall 2021

CREATE SOURCE mz_source
FROM POSTGRES CONNECTION pg_connection

(PUBLICATION 'mz_source')
FOR ALL TABLES
WITH (SIZE = '3xsmall');

•https://materialize.com/docs/sql/create-source/



Materialize

Syntax for Creating a Materialized View

39DATA516/CSED516 - Fall 2021

CREATE MATERIALIZED VIEW winning_bids AS

SELECT auction_id,
bid_id,
item,
amount

FROM highest_bid_per_auction
WHERE end_time < mz_now();

•https://materialize.com/docs/sql/create-materialized-view/



Materialize

Benefits

• High Performance via Dataflow
– Work is proportional to new data (not total volume)

• Correctness over Eventual Consistency
– Via logical update timestamps

• “Efficient Resource Consumption”

40DATA516/CSED516 - Fall 2021



Materialize

Downsides

• If results don’t need to be maintained, just use a 
traditional data processor

• If computations don’t share states, just calculate 
from scratch with fastest executor

41DATA516/CSED516 - Fall 2021



Conclusion

• Stream processing was and still is an active research area

• It is now a key component of big data solutions in industry

• Many algorithms specialized for stream processing

• Today’s systems and techniques build on past work in 
database community

42DATA516/CSED516 - Fall 2021



References
• Abadi et. al. Aurora: a new model and architecture for data 

stream management. The VLDB Journal 12, 2 (2003).

• Akidau et. al. The dataflow model: a practical approach to 
balancing correctness, latency, and cost in massive-scale, 
unbounded, out-of-order data processing. VLDB’15.

• Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 
Mining of Massive Datasets. Chapter 4 (Sections 4.1 - 4.4).

• Brandon Hayes. CSED516 Guest Lecture

• Jonathan Leang. CSE344

• https://materialize.com

43DATA516/CSED516 - Fall 2021



Course Review

DATA516/CSED516 - Fall 2021 44



Topics

• Relational Model

• Query Execution/Optimization

• MapReduce/Spark

• Parallel Query Evaluation

• Graphs

• Column Stores

• Streaming

45DATA516/CSED516 - Fall 2021



Topics

• Relational Model

• Query Execution/Optimization
– Relational Algebra

– Data Independence

– Logical/Physical Query Plans

– Optimization

– Cardinality Estimation

46DATA516/CSED516 - Fall 2021



Topics

• MapReduce/Spark

• Parallel Query Evaluation
– MapReduce 

– Spark

– Parallel Query Plans
• Hashing, Partitioning, Shuffling, etc

47DATA516/CSED516 - Fall 2021



Topics

• Graphs
– Recursions

– SQL Limitations

• Column Stores
– Design Choices

– Efficiency

• Streaming

48DATA516/CSED516 - Fall 2021



Tools

• AWS Redshift, S3, EC2

• ~Databricks

• Snowflake

• Docker

• Souffle

• Vertica

• Materialize

49DATA516/CSED516 - Fall 2021


