DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 8
Column-store DBMSs

DATA516/CSED516 - Fall 2021

Announcements

Project milestones due on Friday
The 3 Mini-homeworks due next Friday

Next Tuesday (this room):

— Individual project discussions

— Kexuan: office hour 5-6pm by zoom
— Dong: office hour 7-8pm this room
— No section

Tuesday, Dec. 7: project presentations

Project Milestone

Hard deadline: Friday night!
Preliminary draft of your final report
2-3 pages.

Include Title and Author!

Suggested structure

— Section 1: what question do you want to ask?
— Section 2: describe the system(s) and the data
— Section 3: briefly report what you have tried

— Section 4: what do you need to do until 12/77?

Class of Tuesday, Nov. 30t

Work on project and |
* Projects:

W4

— Checkout the google spreadsheed

— | will meet with you individually, for 5’

— Prepare a short updated on your project and
plans for the next step(s)

* Project/hw4 technical questions:
— Kexuan: over zoom 5-6pm

— Dong: here 7-8pm

https://docs.google.com/spreadsheets/d/1wv2qoOr7QCOb9qO2Psobe0M8OQyq6CCKfFxQYmeIUw4/edit

Tuesday, Dec. 7t

Project presentations: 5pm — ??pm
* You have 5 minutes (4 + 1 for questions)
* Prepare 4 slides in a google presentation. Suggestions:
— Slide 1: Title slide: project title, your name,
— Slide 2: Question: What question did you investigate?

— Slide 3: Method: How did you go about answering it?
— Slide 4: Results: What did you find?

« VOTE! Everyone votes for every presentation; 3
awards.

| will ask you to place your google slides on a shared
drive; details TBD

More details coming up soon

Today's Lecture

« Columnar Storage

* Recap of DATA 516

References

« Ailamaki et al. Weaving Relations for Cache
Performance, VLDB’2001

* The Design and Implementation of Modern
Column-Oriented Database Systems Daniel
Abadi, et al., Foundations and Trends in
Databases

e Also:

— C-Store: A Column-oriented DBMS. Stonebraker et al.
VLDB’05

— The Vertica Analytic Database: CStore 7 Years Later.
Lamb et. al. VLDB’12

DATA516/CSEDS516 - Fall 2021 7

Column-Oriented Storage

C-store ideas and research since 1970’s
Circa 2000: PAX (will discuss...)

2004 C-store research prototype at MIT
— Started by Mike Stonebraker
— Lead graduate student Daniel Abadi
— 2005: Vertica founded by M. Stonebraker & A. Palmer
— 2011: Vertica acquired by HP

— 2012: As of VLDB’12 paper, 500 production deployments of
Vertica, three over a PB in size

2013: All major DB vendors include some column-store
Implementation

2016: PAX adopted by Snowflake

DBMS Architecture

Admission Control

Connection Mgr

Process Manager

Parser

Query Rewrite

Optimizer

Executor

Query Processor

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

Access Methods

Buffer Manager

Lock Manager

Log Manager

Storage Manager

Shared Ultilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

Review: Data Storage in a Row Store

Consider a relation storing tweets:

Tweets (tid, user, time, content)

low should we store it on disk?

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMSs uses disk directly, with “files” inside

 The OS (or DBMS) provides an API of the form

— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes

File

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMSs uses disk directly, with “files” inside

 The OS (or DBMS) provides an API of the form

— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes
Seek

File

Design Exercise

* Design choice: One OS file for each relation

— Option 1: DBMS creates one big file with “files” inside
— Option 2: DBMSs uses disk directly, with “files” inside

* The OS (or DBMS) provides an API of the form
— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes

Seek Read

A
File N

Working with Pages

* Reading/writing to/from disk
— Seeking takes a long time!
— Reading sequentially is fast
— Read/write entire blocks

* 1 block = typically 4, 8, or 16 KB

« Buffer manager:
— Caches a set of blocks in main memory

— Blocks in MM are called pages
— 1 page = 1 block

DATA516/CSED516 - Fall 2021 14

Working with Main Memory

* The Central Processing Unit (CPU)
reads/writes data from/to main memory

— Read/write entire bytes (= 8 bits)
— Typically: 1 or 2 or 4 or 8 bytes

« CPU much faster than MM

» Solution: CPU cache
— A very fast, associative memory
— Cache line = aka cache block
— Typically: 1 cache line = 64 bytes

Summary so far...

Two bottlenecks:
 The disk I/O bottleneck:

— Disk is much slower than main memory
— Read/write one block at a time (8KB-16KB)
— Buffer pool in main memory: 1page=1block

Summary so far...

Two bottlenecks:
 The disk I/O bottleneck:

— Disk is much slower than main memory
— Read/write one block at a time (8KB-16KB)
— Buffer pool in main memory: 1page=1block

* The main memory bottleneck

— MM is much slower than CPU
— Read/write one byte at a time (or 2/4/8)
— CPU cache: 1 cache line = 64 bytes

Continuing our Design

Key question:
* How should we organize tuples on a page?

Let’s first assume all tuples are of the same size
Tweets (ti1d 1nt, user char (10),

time 1nt, content char(140))

Design Exercise 1

 Think how you would store tuples on a page

— Fixed length tuples
— Variable length tuples

 Requirements
— Insert a new tuple
— Look up a tuple given a RID (= Record ID)
— Remove a tuple given a RID
— Modify a tuple
— Enumerate all tuples

Page Formats

Issues to consider:
* 1 page = 1 disk block = fixed size (e.g. 8KB)
 Records:

— Fixed length
— Variable length

 Recordid = RID
— Typically RID = (PagelD, SlotNumber)

Why do we need RID’s in a relational DBMS ?

20

Page Formats

Issues to consider:
* 1 page = 1 disk block = fixed size (e.g. 8KB)
 Records:

— Fixed length
— Variable length

 Recordid = RID
— Typically RID = (PagelD, SlotNumber)

Why do we need RID’s in a relational DBMS ?
For indexes, and for transactions

21

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|Ot1 SlOtz S|OtN

[Freespce [N

How do we insert a new record? Number of records

DATA516/CSED516 - Fall 2021 22

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SIOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

DATA516/CSEDS516 - Fall 2021 23

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SIOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

How do we delete a record?

DATA516/CSEDS516 - Fall 2021 24

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SlOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

How do we delete a record? Cannot remove record (why?)

25

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SlOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

How do we delete a record? Cannot remove record (why?)

How do we handle variable-length records?

26

Page Format Approach 2

Record ID (RID) for each tuple is (PagelD,SlotNb)

/;///\

4 |F

Free space

\ J
Y

Slot directory

Header contains slot directory
+ Need to keep track of nb of slots
+ Also need to keep track of free space (F)

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 e e Field K

Information about field lengths and types is in the catalog

Record Formats

Variable length records
\)

Field 1 Field 2 e e Field K
\

Record header

Remark: NULLS require no space at all (why ?)

Summary so far...

» Page format:
— Page header
— Record
— Record

 Record format:
— Record header
— Field
— Field

From Row-Store to Column-Store

Rows stored
contiguously on disk
(+ tuple headers)

DATA516/CSED516 - Fall 2021 31

From Row-Store to Column-Store

SN

Rows stored Columns stored
contiguously on disk contiguously on disk
(+ tuple headers) (no headers needed)

DATA516/CSED516 - Fall 2021 32

Two Options

Column Store:
* 1 column = 1 file
* Requires a complete rewrite of query engine

 Potential for major performance gain for some queries,
but need need a lot of work to get there (will see this)

Two Options

Column Store:
* 1 column = 1 file
* Requires a complete rewrite of query engine

 Potential for major performance gain for some queries,
but need need a lot of work to get there (will see this)

PAX:

« Split the table into blocks (original PAX) or chunks
(Snowflake)

* |nside each chunk, store the attribute column-wise

« Obtain most of the performance gain, with very little
update to the query engine

An Intermediate Format: PAX

« PAX = Partition Attributes Across

« Addresses memory access bottleneck (not
the disk bottleneck)

From Row to Column Storage
(Initial Designs - 1985)

- N
PAGE HEADER | RH1| 0962 |! PAGE HEADER | 1] 0962}
l |
Jane | 30 IRH2 7658 | John | <l B e s sub-relation R1
45 |RH3 | 3589 |Jim 2OJRH4 oL LLLL]
[
5525 | Susan['52 |
v / | PAGE HEADER | 1}Jane |
\ \ :
\ \ // | 21 John|3| Jim |4|Susan sub-relation R2
\ \/ I ‘ l I ol ol ol o‘
| A |
N-ary o\ | PAGE HEADER |1|30|2}5
Storage LA | s I il sub-relation R3
Model 6|8 | 6| | [Tl
| Decomposition
NSM Page DSM Pages Storage Model

Figure 2.1: Storage models for storing database records inside disk pages: NSM
(row-store) and DSM (a predecessor to column-stores). Figure taken from [5].

DATA516/CSEDS516 - Fall 2021 36

Current Scheme: Slotted Pages

Formal name: NSM (N-ary Storage Model)

|
R PAGE HEADER |RH1|1237] 1
|
Jane | 30| RH2 [4322| John
RID | SSN | Name | Age : :
1 1237 | Jane 30 45 | RH3 156‘3 Jim | 20| RH4 |,
\ A Y
2 [4322] John | 45 | |7658) Susan y52| | |
. S \
3 [1563] 1m | 20 N N, |
4 | 7658 susan | 52 \ ! |
» \/ I
5 | 2534 | Leon | 43 \\ A |
6 |8791| Dan | 37 N |
\ \o g | wl

o Records are stored sequentially
o Offsets to start of each record at end of page

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237

RH2
RH3|{1563| Jim RH4

7658| Susan 2534

CACHE

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237

e [

RH3|{1563| Jim RH4

7658| Susan 2534

block 1

CACHE

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237

Jim |20| RH4

block 1

RH3|1563] block 2

CACHE

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237

|RHE (4322 John

block 1

RH3|1563] block 2

Jim RH4 block 3
CACHE

select name

from R

where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using NSM

PAGE HEADER |RH1 (1237

|RHE (4322 John

block 1

563 block 2

I
L
w

Jim RH4 block 3

2534|Leon block 4

CACHE

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Need New Data Page Layout

* Eliminates unnecessary memory accesses
* Improves inter-record locality

« Keeps a record’ s fields together
* Does not affect I/O performance

and, most importantly, is...

low-implementation-cost, high-impact

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER |RH1|1237 PAGE HEADER [1237|4322
Jane |30 |RH2|4322| John 1563|7658

45|RH3|1563| Jim |20 |RH4

7658 Susan |52 Jane | John | Jim | Susan

3052|4520

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

PAGE HEADER JRH1|1237 PAGE HEADER 1237|4322

Jane |30 |RH2|4322| John 1563|7658

45|RH3|1563| Jim |20 |RH4

7658 Susan |52 Jane | John | Jim | Susan

3052|4520

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

PAGE HEADER |RH1

PAGE HEADER

Jane | John | Jim | Susan

3052|4520

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

PAGE HEADER PAGE HEADER [1237(4322

1563|7658

3052|4520

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER |RH1[1237 PAGE HEADER |1237/4322
Jane f 300RH2(4322| John 1563|7658

RH3[1563| Jim RH4

7658| Susan Jane | John | Jim | Susan

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE

PAGE HEADER PAGE HEADER [1237(4322

7658| Susan

Jane |30 322| John 1563|7658

Jane | John | Jim | Susan

3052|4520

Partition data within the page for spatial locality

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using PAX

PAGE HEADER (1237|4322
1563|7658

HEER

-] CACHE
select name

EEEE from R

where age > 50

Fewer cache misses, low reconstruction cost

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Predicate Evaluation using PAX

PAGE HEADER [1237/4322
s e

HEER

-] CACHE
select name

EEEE from R

where age > 50

Fewer cache misses, low reconstruction cost

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

A Real NSM Record

HEADER | FIXED-LENGTH VALUES [e¢|e]s]e VABIABLE-LENG%‘I‘H VALUE$

null bitmap, offsets to variable-
record length, etc length fields

NSM: All fields of record stored together + slots

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

PAX: Detailed Design

records free space
attribute

sl

pid |48l 324 |v]|4a]f

}
1237 | 4322
F - Minipage
presence np

Page Header

-------- bits - - -
» Jane | John
V - Minipage
v-offsets
)
| 30 | 45
F - Minipage
presence
bits__ 11"

PAX: Group fields + amortizes record headers

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vidb01 pax talk.ppt

http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

PAX - Summary

* Improves processor cache locality

* Does not affect I/0O behavior
— Same disk accesses for NSM or PAX storage
— No need to change the buffer manager

* Today:
— Most (all?) commercial engines use a PAX layout
of the disk

— Beyond disk: Snowflake partitions tables
horizontally into files, then uses column-store
inside each file (hence, PAX)

Column-Store

o Store an entire attribute in a different file

* While the idea had been around before
PAX, getting all the details right in order to
extract the extra performance took a long
time

C-Store lllustration

Row-based

(4 pages)

Page {

OO0 W > 2> > >

AR BIDNINNN—-

Column-based

(4 pages)
A 1 C-Store also
A 2 avoids large
A 2 tuple headers
A 2
B| [2]
B 4
C 4 ~ Page
C 4 |

Column-Oriented Databases

 Main idea:

— Physical storage: complete vertical partition;
each column stored separately: R.A, R.B, R.A

— Logical schema: remains the same R(A,B,C)

 Main advantage:

— Improved transfer rate: disk to memory,
memory to CPU, better cache locality

Basic Trade-Off

 Row stores
— Quick to update entire tuple (1 page 10)
— Quick to access a single tuple
* Column stores
— Avoid reading unnecessary columns
— Better compression

* Entire system needs a different design
— Not only storage manager
— To achieve high performance

DATA516/CSEDS516 - Fall 2021

58

From Row to Column Storage
(Modern Designs)

—
o

© O NO O WN =

Sales
saleid prodid date region

Sales

saleid prodid date region
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 Z 7 7
8 8 8 8
9 9 9 9
10 10 10 10

Sales
saleid prodid date region

1

2
3
4
5
6
7
8
9
10

(a) Column Store with Virtual Ids

Figure 1.1: Physical layout of column-oriented vs

Basic tradeoffs:

« Reading all attributes of one records, v.s.
 Reading some attributes of many records

(b) Column Store with Explicit Ids

(c) Row Store

row-oriented databases.

Fig. 1.2

Performance of Column-Oriented Optimizations

45 ~ —Late
40 - Materialization
35 1

“ —Compression

o
|

SRS
|

— —Join Optimization

W =Tuple-at-a-time

[
o
I

“ Baseline

U
I

Column Store Row Store

Figure 1.2: Performance of C-Store versus a commercial database system on the
SSBM benchmark, with different column-oriented optimizations enabled.

Key Architectural Trends (Sec.1)

* Virtual IDs
» Block-oriented and vectorized processing
» Late materialization

» Column-specific compression

Key Architectural Trends (Sec.1)

* Virtual IDs
— Offsets (arrays) instead of keys
» Block-oriented and vectorized processing
— lterator model: one tuple—>one block of tuples
» Late materialization
— Postpone tuple reconstruction in query plan
» Column-specific compression
— Much better than row-compression (why?)

Vectorized Processing

Review:

* Volcano-style iterator model

— Next() method

— Pipelining
* Materialization of all intermediate results
* Discuss In class:

select avg(A) from R where A <100

Vectorized Processing

* Vectorized processing:

— Next() returns a block of tuples (e.g. N=1000)
iInstead of single tuple

* Pros:
— No more large intermediate results
— Tight inner loop for selection and/or avg

* Discuss in class:
select avg(A) from R where A <100

Compression (Sec. 4)

* What is the advantage of compression in
databases?

* Discuss main column-at-a-time
compression techniques

Compression (Sec. 4)

* What is the advantage of compression in
databases?

» Discuss main column-at-a-time
compression techniques
— Row-length encoding: F,F,F,F,M,M—=>4F,2M
— Bit-vector (see also bit-map indexes)
— Dictionary. More generally: Ziv-Lempel

Compression (Sec. 4)

Row-based
(4 pages)

Page {

OO0 W > 2> > >

AR BIDNINNN—-

Column-based

(4 pages)
A 1
A 2
A 2
A 2
B 2
B 4
C 4
C 4

Compressed
(2 pages)
4 XA 1X1
2XB 4X2
2XC 5X4
~ Page

Late Materialization (Sec. 4)

 Whatis it?
* Discuss lNg(0a-4 A p=¢(R(A,B,C,D,...))

Late Materialization (Sec. 4)

 Whatis it?
* Discuss lNg(0a-4 A p=¢(R(A,B,C,D,...))
« Early materialization:
— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...

Late Materialization (Sec. 4)

 Whatis it?

* Discuss lNg(0a-4 A p=¢(R(A,B,C,D,...))

« Early materialization:
— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘d’, 'y, ‘'d’, ‘'d’,...

Late Materialization (Sec. 4)

 Whatis it?
* Discuss lNg(0a-4 A p=¢(R(A,B,C,D,...))
« Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...

— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...

— Retain only positions with ‘d’: 4.9, ...

Late Materialization (Sec. 4)

 Whatis it?
* Discuss lNg(0a-4 A p=¢(R(A,B,C,D,...))
« Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late Materialization (Sec. 4)

What is it?
Discuss lNg(0a=4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late materialization
— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...

Late Materialization (Sec. 4)

What is it?
Discuss lNg(0a=4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late materialization

— Retrieve positions with ‘a’ in column A: 2,4, 5,9, 25..

— Retrieve positions with ‘d’ in column D: 3,4, 7,9,12,..

Late Materialization (Sec. 4)

What is it?
Discuss lNg(0a=4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late materialization

— Retrieve positions with ‘a’ in column A: 2,4, 5,9, 25..

— Retrieve positions with ‘d’ in column D: 3,4, 7,9,12,..

— Intersect: 4, 9, ...

Late Materialization (Sec. 4)

What is it?
Discuss lNg(0a=4 A p=¢(R(A,B,C,D,...))
Early materialization:

— Retrieve positions with ‘a’ in column A: 2,4,5,9, 25...
— Retrieve those values in column D: X, ‘'d’, 'y, ‘'d’, ‘'d’,...
— Retain only positions with ‘d’: 4.9, ...

— Lookup values in column B: B[4], B[9], ...

Late materialization

— Retrieve positions with ‘a’ in column A: 2,4, 5,9, 25..

— Retrieve positions with ‘d’ in column D: 3,4, 7,9,12,..

— Intersect: 4, 9, ...
— Lookup values in column B: B[4], B[9], ...

Late Materialization (Sec. 4)

ExX: SELECT R.b from R where R.a=X and R.d=Y

Early materialization Late materialization

Extract values

T
N
0|
b
‘\ i

DATA516/CSEDS16 - Fall 2021 a b C d

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id
42

38
£ 42
42|
i

36
38

DATA516/CSED516 - Fall 2021

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id ~
Tuple positions

= 38 2
o 42 A
2/ W oel = 9
& 36 1
38

DATA516/CSED516 - Fall 2021

FROM emp, dept

Jive Join (Sec. 4)

SELECT emp.age, dept.name

WHERE emp.dept_id = dept.id

emp.dept_id

42

36

38

42

42

44

46

38

36

bo

el Il S0 S

dept.id
Tuple positions

One column will
be out of order

DATA516/CSED516 - Fall 2021

80

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id

42

36

42

44

38

dept.id
Tuple positions

38 2
” 42 4
46 2

6 1 One column will

be out of order

ll B S0 B S I N

Add new indexes DATA516/CSED516 - Fall 2021

81

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id

42

36

42

44

38

dept.id
Tuple positions

38 2
” 42 4
46 2

6 1 One column will

be out of order

ll B S0 B S I N

[DD DD

Add new indexes DATA516/CSED516 - Fall 2021

82

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

emp.dept_id dept.id N
Tuple positions

L 38 2
e 42 4
42(™ 16 5 :
44 36 7 One column will dept.name???"
38 be out of order

2 114 1|4 Smith

4 21 2|1|Johnson

2| 213 2|3 |Johnson

1 112 Fetch 4|2| Jones

dept.name
Add new indexes DATA516/CSED516 - Fall 2021 83

Jive Join (Sec. 4)

SELECT emp.age, dept.name
FROM emp, dept

WHERE emp.dept_id = dept.id I e
emp.dept_id dept.id — 412| Jones
Tuple positions 213 Tohnson
42 35 ’ 5 14| Smith
36
42 4
2| M 46 7. -
44 36 T One column will < dept.name??7?"
38 be out of order y_/
2 114 1{4| Smith
4 21 2(1|{Johnson
2| 213 2(3|Johnson
1 « 112 Fetch 412| Jones

dept.name
Add new indexes DATA516/CSED516 - Fall 2027 84

Late Materialization

select sum(R.a) from R, S
where R.c=S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

Initial Status

Relation R Relation S
Ra Rb Rc Sa Sb
3 12 12 17 11

16 | | 34 34 49 || 35
56 | | 75 53 58 62
9 45 23 99 | | 44
11 49 78 64 29

27 || 58 65 37 78

8 97 33 53 19
41 75 21 61 81
19 | | 42 29 32 26

35 || 55 0 50 23

- ——————————————————————————— —

Late Materialization

select sum(R.a) from R, S
where R.c=S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

select(Ra,5,20)

—————————————————

Late Materialization

select sum(R.a) from R, S
where R.c=S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

_select(Ra,5,20) 1 reconstruct(Rb,inter1)
E Ra inter1 E: inter1 Rb inter2 |
' [3 2 I o 12 ‘2 {34!
' [16 .:41:::4:\‘34 '4 {45 | |
1 :555::5:\75 <TI0 3k
119 7 I 7 \ 45 v 71971
[11 (8 31 (9 49 (9 {42
' |27 ¥ \ 58 e |
|8 ! 97 |
F |41] 75 !
|19 ! 42 |
35 ;! 55 '

Late Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

o A S &
i B mrerar 3 =
o ! - mn o,
B & EIICO |
S 8 "
! "
1
£ |
1
T alesvwor~ao :
w_r34494 _
29 o |
e_.m\ A "
O =NTOND® '
" uuuuuuuuuuuu "
.......................... 23
~
0o~ N j—
N FHLIEE
St~ ®!

___Teconstruct(Rbjinter1) _____

-l -l - -l -

e e O e -

_select(Ra,5,20) _

Late Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

40,50

e W e

0 4"
"t_ _—
I S| Moo d |
|l NN~ "
".m_\ |||||| : |
| I
I e _
- S ;
4 i
o) \
0@, !
(_ I
8 o o ™ © - "
2 x| NI BIYIREBIKo ||
1% :
c' |
O" |
8! |
! "
B piey "
|
B Gl !
ez A |
P ittt &
Pl e ,_ o
|

$ E OO |
R » !
wl |
I |
| |
t "
M\"2 T 0O NN :
R I N R o _
9 o |
e_m\ \ 1
O =NTOND® '
| S ecocccccaccws "
loe oo on an a0 an oo o0 o0 o0 @8 o G5 An o an SD Gb Gb G G G G0 G @b @n @» of
.......................... S
~N
0o~ N j—

N FHLLIGY

St~

reconstruct(Rb,inter1)

Qo o e Vo e f . St w e
e \
I
m_,24579"

e e o o o o - -
7/ —I
o P nccca=® !
Ol M=/ \ !
N Bl o~ o) :
i, Wr-m-=mm===r |
I I
o I
S| |
8 _
| |
|
w"a COpgrhpgoowW| !
B Ve @ - <t =M "

|
|

Late Materialization

select sum(R.a) from R, S
where R.c=S.b

and 5<R.a<20 and 40<R.b<50
and 30<S.a<40

77?7

select(Sa,55,65)

Late Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

77?7

;95,65

reconstruct(Sb,inter4)

||||||||||||||||||||||

) 4
4

select(Sa

Late Materialization

select sum(R.a) from R, S

S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40

where R.c

77?7

ut_S
7)

join_inp
vy~
62 | 3
29 | 5
19 } 7
81
23

____reverse(inter5)
»

lllllllllll

reconstruct(Sb,inter4)

m\ 0;
m",35781"
g e A 4 P S |
.......................... ¢
)“ \Rﬂ.
&..Ms llllllllll \ ll\"
5"..@"3578.@" .
5_om lllllllllll "
' |
|
]
hna NO OO N~ N O |
- g -
w_sm1459M3&635?
| I

-

lllllllllllllllllllllll

Late Materialization

select sum(R.a) from R, S
where R.c=S.b
and 5<R.a<20 and 40<R.b<50

and 30<S.a<40 joingoin_input Rjoin_inputs) voidTail(join_res_R_S) _
E join_input_R join_in_p_ut_s join_res_R_S E E join_res_R_S inter6
1423 62 | 3 | ‘af100 1 i4¥00 7%
! 15|78 29 5:—»:9§55 i :9:5:->:9!
19129 R b NSA
== 81} 8! '
S b .1 S ©
reconstruct(Ra,inter6) sum(inter7?)
;r inter6 Ra inter7 | E inter7 result |
iy AESEAREE: (28]
19 16 : : > (= :
. 56 o |
i 9 N |
: 11 : : :
: 27 | :
: 8 by :
| 41 o :
; 19 P ;
! 35 'y :

More Detalls

» Sort columns according to some criterion
— Helps with range queries on that column
— Helps compressing that column
— But need to sort all the other columns the
same way

» Create additional (redundant) "views”,
called “projections”, by sorting on different
columns

Vertica Data
Model Details

Original Data
sale_id cid

1 11
2 17
3 27
4 28
5 89
1000 89
1001 11

cust
Andrew
Chuck
Nga
Matt
Ben
Ben
Andrew

date

01/01/06
01/05/06
01/02/06
01/03/06
01/01/06
01/02/06
01/03/06

Data organized into projections:
Sorted subsets of the attributes
Each table has one super projection

price
$100
$98
$90
$101
$103
$103
$95

Includes all table attributes

Split in two
projections

Super projection sorted by date
Non-super projection containing only(cust, price)
attributes, sorted by cust

From: The Vertica Analytic Database: CStore 7 Years Later. Lamb

et. Al. VLDB’12

DATA516/CSED516 - Fall 2021 95

Parallel Processing
« Segment data horizontally across nodes
* Organize as column store on each node

Original Data

sale_id cid cust date price

1 11 Andrew 01/01/06 $100 Split in two

3 27 Nga 01/02/06 $90

4 28 Matt 01/03/06 $101 (date) [price | (Teust) [eid | sale_id
5 89 Ben 01/01/06 $103

1000 89 Ben 01/02/06 $103 cust [price

1001 11 Andrew 01/03/06 $95

Super projection sorted by date & segmented by
hash(sale_id)

Non-super projection containing only(cust, price)
attributes, sorted by cust, segmented by hash(cust)

DATA516/CSED516 - Fall 2021 96

Ve rtl Ca Data Split in two

Model Details "o |
I D S -

" ont | D

Segmented on
several nodes

date price cid | cust sale_id date price cid cust sale_id
0102006 $90.00 01/01/06 $100.00 11 Andrew 1
: e 3 01/01/06 $103.00 89 Ben 5
01/03/06 ~ $95.00 11 Andrew 1001 01/02/06 $103.00 89 Ben 1000
01/03/06 $101.00 28 Matt 4 01/05/06 $98.00 17 Chuck 2
cust price
cust price
Andrew $95.00
Ben $103.00
Andrew $100.00 Node 1 Node 2
B 103.00
Chuck $98.00 LU [

DATA516/CSED516 - Fall 2021 97

Vertica Data Partitioning

« Cross-node partitioning called “segmentation”
— Hash-partitioning
— Other expression

« Each node assigned multiple local segments

— To facilitate elasticity
— Enables moving segments as cluster size changes

« Can also replicate all tuples in projection

Vertica Intra-Node Partitioning

« C-store proposed intra-node data partitioning
— Similar to other parallel DBMS such as Teradata

* |n contrast, Vertica divides each on-disk
structure into logical regions at runtime and
processing the regions in parallel

* Vertica also supports explicit data partitioning
— Partitions segments within nodes into smaller pieces
— CREATE TABLE ... PARTITION BY <expr>

— Benefits:
» Fast deletion
» Pruning of partitions during query execution

1
|

Z Juswbag |es0]

cust price cust pice | et P
Andew 510000 u st0s00 | ety st
Andrew $98.00 ga sw300 | Hom $200
Nga $90.00 it
cust price.
Andrew $100.00
Chuck $38.00
Chuck 53000 R O S
Chuck $98.00
containers
Dan $101.0
Dan 593,00
Dan 59950
Dan $99.0
Nga $101
cust price
Chuck $98.00
Noa $90.0(
cust price cust price
Matt $100.00 Ben $10000
Ram 598.00 Ben $98.00
Ram 59000 Matt %000
Mat 593.00 o
Ram $10200 cust]
Ram 101.00 s i) |
Ben $98.00
Matt ss000 |
Matt $99.00
Ram $10200
c s cust price
B SHO | | e $100.00
Ben $98.00 = $38.00
Ben $90.00 — .
Ram | snooo ||V
— [
Andy $10000 = cust price
o two files o su0n
Vivek seo00 | Lyric $98.00
! pe r Shilpa $90.00
Shipa $99.00
column ozt
cust price oo L
el [Andy 10000
Vivek $103.00 Lyrc it
e Lyric $90.00

Shipa $99.00
Shipa $102.00
Shipa $101.00
Shipa $99.00
Vivek $99.50
Vivek $99.00
Vivek $101

/

N

\/

3/2012

4/2012 5/2012
Partitions

6/2012

| Juawbag |e20

¢ Juawbag |e207]

z : - ‘ price |

cust
i i
Andrew $100.00 ! Chuck s10500 | Chuck $96.00 |
Andrew $98.00 Nga $103.00 . Nga $9200 |
|
Nga $90.00 e e
cust price
Andrew $100.00
Chuck $98.00
= ROS

Chuck $99.00
Chuck $102.00

containers

Dan $101.00
i Dan $99.00
| Dan $99.50
Dan $99.00
Nga $101
cust price
Chuck $98.00

Segmentation = horizontal partitioning
across nodes

—> Each projection has own segmentation

- More segments than nodes for elasticity
Partition = horizontal within a node

- Same partition for all projections & nodes
ROS = Read Optimized Store

Each column’s data within its ROS container

is stored as a single file
—> Total of 28 files of user data

Updates

 \What is the issue?

 How does the paper address this?

Updates

 \What is the issue?

— Updates in a sorted column require reordering
of the entire column, and the other columns
as well

 How does the paper address this?

Updates

 \What is the issue?

— Updates in a sorted column require reordering
of the entire column, and the other columns
as well

 How does the paper address this?
— Update to Write Optimized Store (WOS)
— Queries on Read Optimized Store (ROS)

C-Store/Vertica Design

Uncompressed
row-store
compressed
column store

From: C-Store: A Column-oriented DBMS. Stonebraker et. Al.
VLDB’05

Writeable Store (WS)

Tuple Mover

Read-optimized Store (RS)

Figure 1. Architecture of C-Store

Read and Write Optimized Stores
* Write Optimized Store (WOS)

— In memory data: buffer delete/insert/update operations
— Column vs row does not matter

* Tuples never modified in place

— Use “delete vector” to track deleted tuples
— Eventually removed by tuple mover during ROS merge

* Tuple mover
— Move between WOS and ROS
— When moving tuples out, creates a new ROS container
— Merges ROS files together

» Better compression & faster processing (fewer files to merge)

Read and Write Optimized Stores

» Read Optimized Store (ROS)
— Multiple ROS containers

— Stored on standard file system

— Logically contains some number of complete
tuples sorted by the projection’s sort order,
stored as a pair of files per column: position
iIndex & data

* The position index = only metadata per disk block

— Column files may be independently retrieved

Final Thoughts

Simulating a Column-Store in a Row-Store DBMS:

» Vertical partitioning
— Two-column tables: (key, attribute)

* |ndex-only plans
— Create a B+ tree index on each attribute

— Answer queries using indexes only, without reading actual
data

« Materialized views
— Each view contains a subset of columns

Recap of DATA 516

Recap of DATA 516

Relational model, SQL
Query execution/optimization
Query optimization

Spark, MapReduce

Parallel Query Evaluation
Graphs, Datalog

Column Stores

Next, your turn: Projects!

