# DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 5

Parallel Query Execution

#### Announcements

Project proposals were due on Friday

Small review assignment was due today

HW3 is posted, due on Nov. 15

#### Outline

Basic notions

Distributed query processing algorithms

Skew (will continue next lecture)

# Distributed/Parallel Query Processing

Parallel DBs since the 80s

Usually limited to small number of servers Why?

New trend: cloud databases.

E.g. Snowflake

# Distributed/Parallel Query Processing

Parallel DBs since the 80s

Usually limited to small number of servers Why? Transactions!

New trend: cloud databases.

E.g. Snowflake

# Architectures for Parallel Databases

Shared memory

Shared disk

Shared nothing

### **Shared Memory**



- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x ... 100x processors
- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- Easy to use and program
- Expensive to scale

#### **Shared Disk**



- All nodes access same disks
- 10x processors
- Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale

# **Shared Nothing**



- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory&disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

#### Performance Metrics

Nodes = processors = computers

- Speedup:
  - More nodes, same data → higher speed

- Scaleup:
  - More nodes, more data → same speed

Warning: sometimes *Scaleup* is used to mean *Speedup* 

# Linear v.s. Non-linear Speedup



### Linear v.s. Non-linear Scaleup



# Why Sub-linear?

- Startup cost
  - Cost of starting an operation on many nodes
- Interference
  - Contention for resources between nodes

- Skew
  - Slowest node becomes the bottleneck

# "Scalability but at what cost?"



#### Discussion

#### Parallel/distributed data processing:

- Scales up\* to more data:
  - More servers can hold more data

- Speedup w/ number of nodes:
  - Harder to achieve
  - But can get there with very large p

#### More Discussion

New terminology:

Scale-up = speedup w/ shared memory

Scale-out = more data w/ more nodes

Acknowledges that speed comes from shared memory, capacity for large data comes from shared nothing

#### Outline

Basic notions

Distributed query processing algorithms

Skew (will continue next lecture)

# Distributed Query Processing Algorithms

Table

sid name

R

Table

sid name

Table

R











| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

 $R_1$ 



113

- Block Partition, a.k.a. Round Robin:
  - Partition tuples arbitrarily s.t. size(R₁)≈ ... ≈ size(Rp)
- Hash partitioned on attribute A:
  - Tuple t goes to chunk i, where i = h(t.A) mod P + 1
- Range partitioned on attribute A:
  - Partition the range of A into  $-\infty = v_0 < v_1 < ... < v_P = ∞$
  - Tuple t goes to chunk i, if  $v_{i-1} < t.A < v_i$

#### **Notations**

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:

$$R_1$$
  $R_2$   $R_P$ 

Here R<sub>1</sub> is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

#### **Uniform Load and Skew**

• 
$$|R| = N$$
 tuples, then  $|R_1| + |R_2| + ... + |R_p| = N$ 

We say the load is uniform when:
 |R<sub>1</sub>| ≈ |R<sub>2</sub>| ≈ ... ≈ |R<sub>p</sub>| ≈ N/p

Skew means that some load is much larger:
 max<sub>i</sub> |R<sub>i</sub>| >> N/p

We design algorithms for uniform load, discuss skew later

# Parallel Algorithm

Selection σ

Join ⋈

Group by \(\gamma\)

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\sigma_{A=v}(R)$ , or  $\sigma_{v1<A< v2}(R)$ 

- Block partitioned:
- Hash partitioned:

Range partitioned:

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\sigma_{A=v}(R)$ , or  $\sigma_{v1<A< v2}(R)$ 

- Block partitioned:
  - All servers need to scan
- Hash partitioned:

Range partitioned:

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\sigma_{A=v}(R)$ , or  $\sigma_{v1<A< v2}(R)$ 

- Block partitioned:
  - All servers need to scan
- Hash partitioned:
  - Point query: only one server needs to scan
  - Range query: all servers need to scan
- Range partitioned:

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\sigma_{A=v}(R)$ , or  $\sigma_{v1<A< v2}(R)$ 

- Block partitioned:
  - All servers need to scan
- Hash partitioned:
  - Point query: only one server needs to scan
  - Range query: all servers need to scan
- Range partitioned:
  - Only some servers need to scan

# Parallel GroupBy

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

### Parallel GroupBy

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

Discuss in class how to compute in each case:

- R is hash-partitioned on A
  - Each server i computes locally  $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K

### Parallel GroupBy

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

Discuss in class how to compute in each case:

- R is hash-partitioned on A
  - Each server i computes locally  $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
  - Need to reshuffle data on A first (next slide)
  - Then compute locally  $\gamma_{A,sum(C)}(R_i)$

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K

R<sub>1</sub> R<sub>2</sub>

. . .

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

 $R_1$ 

 $R_2$ 

 $R_{P}$ 

. . .

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



DATA516/CSED516 - Fall 2021

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



. . .

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



. . .

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



. . .

### Reshuffling

Nodes send data over the network

Many-many communications possible

- Throughput:
  - Better than disk
  - Worse than main memory

Data:  $R(\underline{K}, A, B, C)$ 

Query:  $\gamma_{A,sum(C)}(R)$ 

R is block-partitioned or hash-partitioned on K



DATA516/CSED516 - Fall 2021

Can you think of an optimization?

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

Q: What is sum for Seattle?

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

Q: What is sum for Seattle?
A: 106

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

Sum here = 40

Q: What is sum for Seattle?

A: 106

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

Sum here = 66

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

Sum here = 40

Q: What is sum for Seattle?

A: 106

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

Sum here = 66

$$\gamma_{city,sum(q)}(R_1 \cup R_2 \cup R_3) =$$

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

Sum here = 40

Q: What is sum for Seattle?

A: 106

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

SELECT city, sum(quant)
FROM R
GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

Sum here = 66

$$\gamma_{city,sum(q)}(R_1 \cup R_2 \cup R_3) =$$

$$= \gamma_{city,sum(q)} \left( \gamma_{city,sum(q)}(R_1) \cup \gamma_{city,sum(q)}(R_2) \cup \gamma_{city,sum(q)}(R_3) \right)$$

Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 

Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

Data:  $R(\underline{K}, A, B, C)$ Query:  $\gamma_{A.sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

**Step 1**: partitions tuples in  $T_i$  using hash function h(A):  $T_{i,1}, T_{i,2}, ..., T_{i,p}$  then send fragment  $T_{i,j}$  to server j

Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

**Step 1**: partitions tuples in  $T_i$  using hash function h(A):  $T_{i,1}, T_{i,2}, ..., T_{i,p}$  then send fragment  $T_{i,j}$  to server j

**Step 2**: receive fragments, union them, then group-by  $R_j' = T_{1,j} \cup ... \cup T_{p,j}$  Answer<sub>j</sub> =  $\gamma_{A, sum(C)}(R_j')$ 

# Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

# Pushing Aggregates Past Union

#### Which other rules can we push past

union?

Sum?

Count?

| • | Avg | ? |
|---|-----|---|
|   |     |   |

- Max?
- Median?

| Distributive                                                                                          | Algebraic                | Holistic  |
|-------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| sum( $a_1+a_2++a_9$ )=<br>sum(sum( $a_1+a_2+a_3$ )+<br>sum( $a_4+a_5+a_6$ )+<br>sum( $a_7+a_8+a_9$ )) | avg(B) = sum(B)/count(B) | median(B) |

#### Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

#### Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a



#### Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

Machine 2

Machine 3

1/3 of R

1/3 of R

1/3 of R





#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a







#### Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

#### Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

Same (chunk sizes remain the same)

#### Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?

Same (chunk sizes remain the same)

#### Parallel/Distributed Join

Three "algorithms":

Hash-partitioned

Broadcast

Combined: "skew-join" or other names

#### Distributed Hash-Join

Data: R(A, C), S(B, D)

Query:  $R \bowtie_{A=B} S$ 

 $R_1, S_1$ 

 $R_2, S_2$ 

R<sub>P</sub>, S<sub>P</sub>

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)

Query:  $R \bowtie_{A=B} S$ 

Reshuffle R on R.A and S on S.B

 $R_1, S_1$ 

 $R_2, S_2$ 

R<sub>P</sub>, S<sub>P</sub>

Initially, R and S are block partitioned.

Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)

Query:  $R \bowtie_{A=B} S$ 



Initially, R and S are block partitioned.

Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)

Query:  $R \bowtie_{A=B} S$ 



Initially, R and S are block partitioned.

Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

#### Step 1

- Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
- Every server holding any chunk of S partitions its chunk using a hash function h(t.B)

#### • Step 2:

 Each server computes the join of its local fragment of R with its local fragment of S

# Broadcast Join A.k.a. "Small Join"

- When joining R and S
- If |R| >> |S|
  - Leave R where it is
  - Replicate entire S relation across R-nodes
- Called a small join or a broadcast join

## **Broadcast Join**

 $R_1$   $R_2$   $R_P$  S

DATA516/CSED516 - Fall 2021







# **Example Query Execution**

Find all orders from today, along with the items ordered











# **Query Execution**



#### Example 2

SELECT \*

FROM R, S, T

WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

Machine 2

Machine 3

1/3 of R, S, T

1/3 of R, S, T

1/3 of R,<sup>8</sup>\$, T

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



DATA516/CSED516 - Fall 2021

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



DATA516/CSED516 - Fall 2021





#### Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)

#### Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)
- Broadcast join
  - One relation must be broadcast (bad)
  - No worry about skew (good)

#### Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)
- Broadcast join
  - One relation must be broadcast (bad)
  - No worry about skew (good)
- Skew join (has other names):
  - Combine both: in class

## Outline

Basic notions

Distributed query processing algorithms

Skew (will continue next lecture)

## Skew

#### Skew

 Skew means that one server runs much longer than the other servers

- Reasons:
  - Computation skew
  - Data skew

# Computation Skew

- All workers receive the same amount of input data, but some need to run much longer than others
- E.g. perform some image processing whose runtimes depends on the image
- Solution: use virtual servers

## Virtual Servers

#### Main idea:

- If we send the data uniformly to the P servers, and one of them is stuck with the complicated image, then we have skew
- Solution: pretend we have many "virtual" servers. (Next slide.)

#### Virtual Servers

Large number P<sub>v</sub> of "virtual servers"

- Design algorithm for P<sub>v</sub> virtual servers
- Scale down to P << P<sub>v</sub> physical servers, by simulating them round-robin

E.g. MapReduce: P=workers, P<sub>v</sub>=map tasks

#### **Data Skew**

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?

#### **Data Skew**

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?
- Answer:
  - Range partition may have many more tuples in one bucket than another
  - Hash partition may suffer from heavy hitters

## **Next Lecture**

Analyze skew: notice hw3 question

New topic: scalable graph processing