DATA516/CSEDS16
Scalable Data Systems and
Algorithms

Lecture 5
Parallel Query Execution

Announcements

* Project proposals were due on Friday
« Small review assignment was due today

« HW3 is posted, due on Nov. 15

DATA516/CSED516 - Fall 2021 2

Outline

 Basic notions

 Distributed query processing algorithms

« Skew (will continue next lecture)

DATA516/CSED516 - Fall 2021

Distributed/Parallel Query
Processing

Parallel DBs since the 80s

Usually limited to small number of servers
Why?

New trend: cloud databases.
E.g. Snowflake

DATA516/CSED516 - Fall 2021 4

Distributed/Parallel Query
Processing

Parallel DBs since the 80s

Usually limited to small number of servers
Why? Transactions!

New trend: cloud databases.
E.g. Snowflake

DATA516/CSED516 - Fall 2021 5

Architectures for Parallel
Databases

* Shared memory

 Shared disk

* Shared nothing

DATA516/CSEDS16 - Fall 2021

Shared Memory

Interconnection J

f

Network

Global Shared
Memory

O

SMP =
symmetric multiprocessor

Nodes share RAM and disk
10x ... 100x processors

Example: SQL Server runs on
a single machine and can
leverage many threads to
speed up a query

Easy to use and program
Expensive to scale

Shared Disk

All nodes access same disks
* 10x processors

M M M Example: Oracle
|
Interconnection » No more memory contention
Network

» Harder to program

@@@ o Still hard to scale

Shared Nothing

Interconnection
Network

» Cluster of commodity machines

« Called "clusters" or "blade servers”
« Each machine: own memory&disk
Up to x1000-x10000 nodes
Example: redshift, spark, snowflake

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on a
single physical machine.

« [Easy to maintain and scale
 Most difficult to administer and tune.

Performance Metrics
Nodes = processors = computers

* Speedup:

— More nodes, same data =» higher speed

» Scaleup:
— More nodes, more data = same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear
Speedup

Speedup

\6"’6\

x1’ x5 x10 x15

nodes (=P)
DATA516/CSED516 - Fall 2021 11

Linear v.s. Non-linear Scaleup

Batch
Scaleup

Ideal

nodes (=P) AND data size
DATA516/CSED516 - Fall 2021 12

Why Sub-linear?

« Startup cost
— Cost of starting an operation on many nodes

* Interference
— Contention for resources between nodes

o« Skew

— Slowest node becomes the bottleneck

DATA516/CSEDS16 - Fall 2021

13

“Scalability but at what cost?”

Speedup 666\
\

Best single-server
algorithm

nodes (=P)
DATA516/CSED516 - Fall 2021 14

Discussion

Parallel/distributed data processing:

* Scales up* to more data:
— More servers can hold more data

« Speedup w/ number of nodes:
— Harder to achieve
— But can get there with very large p

* “Scale-up” is often used informally, like here

15

More Discussion

New terminology:
» Scale-up = speedup w/ shared memory

e Scale-out = more data w/ more nodes

Acknowledges that speed comes from shared memory,
capacity for large data comes from shared nothing

Outline

 Basic notions

 Distributed query processing algorithms

« Skew (will continue next lecture)

DATA516/CSED516 - Fall 2021 17

Distributed Query Processing
Algorithms

18

sid | name

Horizontal Data Partitioning

19

sid | name

Horizontal Data Partitioning

20

Horizontal Data Partitioning

sid

name

—

-

sid

name

Ry

R;

Rs

fragment
chunk
partition

21

Horizontal Data Partitioning

* Block Partition, a.k.a. Round Robin:
— Partition tuples arbitrarily s.t. size(R¢)= ... = size(Rp)

* Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

* Range partitioned on attribute A:
— Partition the range of Ainto -0 =vy<v,<...<Vvp=
— Tuple t goes to chunk i, if v,y <t. A<y,

DATA516/CSED516 - Fall 2021 22

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers,
we draw the picture like this:

R, R, Ry

Here R, is the fragment of R stored on server 1, etc

R=R,UR,U--URp

23

Uniform Load and Skew
* |R[=N tuples, then |[R4| + |Ry| + ... + |R;| =N

* We say the load is uniform when:
IRi| =Ry = ... = [Rp| = N/p

« Skew means that some load is much larger:
max; |R;| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

« Selection o

e Join X

 Group by y

25

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:

* Hash partitioned:

» Range partitioned:

DATA516/CSED516 - Fall 2021

26

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:

» Range partitioned:

DATA516/CSED516 - Fall 2021

27

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

« Range partitioned:

DATA516/CSED516 - Fall 2021

28

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

» Range partitioned:
— Only some servers need to scan

DATA516/CSED516 - Fall 2021

29

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A

* R is block-partitioned or hash-partitioned on K

30

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally ya symc)(Ri)

* R is block-partitioned or hash-partitioned on K

31

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally ya symc)(Ri)

* R is block-partitioned or hash-partitioned on K
— Need to reshuffle data on A first (next slide)
— Then compute locally ya symc)(Ri)

32

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

R, R, R,

DATA516/CSED516 - Fall 2021 33

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

R, R, R,

DATA516/CSED516 - Fall 2021 34

Basic Parallel GroupBy

Data:
Query:
« Ris bloc

Reshuffle R
on attribute A

R(K, A, B, C)

VA,sum(C)(R)
K-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2021 35

Basic Parallel GroupBy

Data:
Query:
« Ris bloc

Reshuffle R
on attribute A

R(K, A, B, C)

VA,sum(C)(R)
K-partitioned or hash-partitioned on K

R,

R,

R,

DATA516/CSED516 - Fall 2021

R,

36

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Ry R, oL Rp’
Reshuffle R
on attribute A

R, R, Re

DATA516/CSED516 - Fall 2021 37

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: Yasumc)(R)

* R is block-partitioned or hash-partitioned on K

R,
Reshuffle R
on attribute A
R,

R,

R,

R,

This is done in one
communication step

DATA516/CSED516 - Fall 2021

Rp

38

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: Yasumc)(R)

* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

N

Ry

R,

R,

R,

This is done in one
communication step

Rp

[Describe the push v.s. pull method } 39

Reshuffling

* Nodes send data over the network
 Many-many communications possible

* Throughput:
— Better than disk
— Worse than main memory

DATA516/CSED516 - Fall 2021

40

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

R’I’ RZ’ L. RP’
Reshuffle R This is d(_)ne.ln one
on attribute A communication step
R1 RZ Rp

Can you think
DATA516/CSED516 - Fall 2021 of an optimization?

Group

Seattle 10
LA 20
Seattle 30
NY 40
city . gant
LA 22
NY 33
LA 44
Austin 55
city . gant
Seattle 66
LA 77
NY 88
LA 99

By/Union Commutativity

SELECT city, sum(quant)
FROM R
GROUP BY city

GroupBy/Union Commutativity

an
Seattle 10 Q: What is sum for Seattle?
LA 20
Seattle 30
NY 40

SELECT city, sum(quant)

v 2 FROM R

Austin 95 GROUP BY Clty

city gant

Seattle 66
LA 77
NY 88

LA 99

GroupBy/Union Commutativity

an
Seattle 10 Q: What is sum for Seattle?
LA 20 A: 106
Seattle 30
NY 40

SELECT city, sum(quant)

v 2 FROM R

Austin 95 GROUP BY Clty

city gant

Seattle 66
LA 77
NY 88

LA 99

GroupBy/Union Commutativity

an
Seattle 10 Q: What is sum for Seattle?
LA 20 A: 106
Seattle 30
NY 40

SELECT city, sum(quant)

v 2 FROM R

Austin 95 GROUP BY Clty

city gant
Seattle 66 Sum here = 66

LA 77

NY 88

LA 99

GroupBy/Union Commutativity

city gant

Seattle 10 Sum here = 40 Q: What is sum for Seattle?
LA 20 A: 106

Seattle 30

NY 40

city gant .

— - SELECT city, sum(quant)
Y f: FROM R

LA

Austin 55 GROUP BY Clty

city gant

Seattle 66 Sum here = 66

LA 77

NY 88

LA 99

Y city,sum(q) (Rl UR, U RB) —

GroupBy/Union Commutativity

city gant

Seattle 10 Q: What is sum for Seattle?
LA 20 A: 106

Seattle 30

NY 40

city gant .

" - SELECT city, sum(quant)
v 2 FROM R

LA 44

Austin 55 GROUP BY city

city gant

Seattle 66 @

LA 77

NY 88

LA 99

Y city,sum(q) (R 1tUR UR 3) —
— YCity,sum(q) (YCity,sum(q) (R 1) U YCity,sum(q) (R 2) U YCity,sum(q) (R 3))

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

DATA516/CSED516 - Fall 2021

48

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

DATA516/CSED516 - Fall 2021 49

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
Tiq, Tio, ... T
then send fragme1nt T2 to ser{)/erj

DATA516/CSED516 - Fall 2021 50

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
Ti1, Tio, ..o, T
then send fragm’e1nt Tzi,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ - T1,J U " U Tp,J
Answerj = YA, sum(C) (Rj’)

DATA516/CSED516 - Fall 2021 51

Pushing Aggregates Past

Union
Which other rules can we push past
union?
e Sum?
* Count?
* Avg?
 Max?
 Median?

DATA516/CSED516 - Fall 2021

Pushing Aggregates Past
Union

Which other rules can we push past

union? Distributive Algebraic Holistic
sum(astayt...+ag)= avg(B) = median(B)

° Sum? sum(sam(2a1+ag+ga3)+ sum(B)/count(B)

sum(astastag)t

¢ COU nt? sum(a;+ag+ag))

* Avg?

« Max?

* Median?

DATA516/CSED516 - Fall 2021 53

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Y a, sum(b)—sb

Gc>0

R

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Machine 1 Machine 2

1/3 of R 1/3 of R

Y a, sum(b)—sb

Gc>0

R

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

SCan SCan SCan

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Coa>

Machine 1

1/3 of R

Y a, sum(b)—b

c>0

A
v

SCan

Y

Machine 2

1/3 of R

Y a, sum(b)—b

—

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Y a, sum(b)—b

)
i)

c>0

A
v

SCan

Y

Machine 1

1/3 of R

hash on a

¢

Y a sum(b)—b

)

c>0

A
v

SCan

Y

Machine 2

1/3 of R

Y a, sum(b)—b

£
i

c>0

Al
v

SCan

Y

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

)

hash on a hash on a hash on a

Y a, sur;@ Y a, sum(b)—b @m(b)—m

scan scan scan

Machine 1 Machine 2 Machine 3

)
£
YUY

)
)
U

Y
Y

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Y a, sum(b)—sb

@ona

Coa>

Machine 1

1/3 of R

Y a, sum(b)— sb

Y a, sum@

hash on a

(b)—b @m(b)—m

Machine 2 Machine 3

hash on a

)
i)

y d, sum

Y'Y

A
v

Y

1/3 of R 1/3 of R

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

DATA516/CSED516 - Fall 2021 63

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %)

If we double both P and size of R, what is the runtime??
* Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2021 64

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %)

If we double both P and size of R, what is the runtime??
* Same (chunk sizes remain the same)

[But only if the data is without skew! } 65

Parallel/Distributed Join

hree “algorithms”:

* Hash-partitioned

 Broadcast

 Combined: “skew-join” or other names

DATA516/CSED516 - Fall 2021 66

Distributed Hash-Join

DATA516/CSED516 - Fall 2021

67

Hash Join: R X,z S

Data: R(A, C), S(B, D)
Query: R X5 S
R1, S1 R2, 82 e Rp, Sp

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S

Reshuffle R on R.A
and Son S.B

R11 S1 R2a 82 - RF” SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S
R,1, 8,1 R’g, 8’2 .. R’p, S’p

Reshuffle R on R.A
and Son S.B

R11 S1 R2a 82 - RP’ SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S

Each server computes R4, S’y R’5, S5 Co. R’p, S’p
the join locally
Reshuffle R on R.A
and Son S.B
R11 S1 R2a 82 - RP’ SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R X,z S

o Step 1
— Every server holding any chunk of R partitions
its chunk using a hash function h(t.A)

— Every server holding any chunk of S partitions
its chunk using a hash function h(t.B)

« Step 2:
— Each server computes the join of its local
fragment of R with its local fragment of S

DATA516/CSED516 - Fall 2021 72

Broadcast Join
A.k.a. “Small Join”

DATA516/CSED516 - Fall 2021

73

Broadcast Join

 When joining Rand S
* IfIR[>>[S]
— Leave R where itis
— Replicate entire S relation across R-nodes

« Called a small join or a broadcast join

DATA516/CSED516 - Fall 2021

74

Query: R S

Broadcast Join

DATA516/CSED516 - Fall 2021

75

Query: R S

Broadcast Join

Keep R in place

R, R, Rp S

Broadcast S

DATA516/CSED516 - Fall 2021 76

Query: R S

Broadcast Join

R R, Rp
R R, Rp S

DATA516/CSED516 - Fall 2021 77

Query: R S

Broadcast Join

RSl [Re3 Re, S

Keep R in place

N

Broadcast S

DATA516/CSED516 - Fall 2021 78

Order(oid, item, date), Line(item, ...)

Example Query Execution

Find all orders from today, along with the items ordered

SELECT * o.item = i.item

FROM Order o, Line i
WHERE o.item = i.item) @
date = today()

AND o.date = today()

DATA516/CSED516 - Fall 2021 79

Order(oid, item, date), Line(item, ...)

Query Executi

Node 1

hash

h(o.item)
select
date=today()

scan
Order o

Node 1

Node 2

hash
\ h(o.item)

d

ate=today()

scan
Order o

Node 2

DATA516/CSED516 - Fall 2021

~

o.item = i.item

date = today()

<scan> Order o /

Node 3

|

hash

CselecD>

Scan

h(o.item)

date=today()

Order o

Node 3

80

Order(oid, item, date), Line(item, ...) . ~

o.item = i.item

Query Executi® o

Node 1 Node 2 Node 3
hash hash hash
h(i.item) h(i.item) h(i.item)
scan . scan scan
ltem | ltem i ltem |
Node 1 Node 2 Node 3

DATA516/CSED516 - Fall 2021 81

Order(oid, item, date), Line(item, ...)

Query Execution

’ o.item = i.item o.item = i.item o.item = i.item

Node 1 Node 2 Node 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

DATA516/CSED516 - Fall 2021 82

Example 2

SELECT *
FROMR, S, T
WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T 1/30f RS, T

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T 1/30fR, S, T

DATA516/CSED516 - Fall 2021 84

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Shuffing R, S, and T

@D @ DA D ERD @ DD | GRDEEDETD

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T 1/30fR, S, T

DATA516/CSED516 - Fall 2021 85

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Shuffling intermediate result from R < S
(G(s.9p D)
R~ S R~ S

Shuffling R, S, and T

Machine 2 Machine 3

h(S.d)

RS

Machine 1

1/30fR, S, T 1/30fR, S, T

DATA516/CSED516 - Fall 2021 86

1/30fR, S, T

... WHERE R.b =S.cAND S.d = T.e AND

R.a-T.f) > 100

——————————————

Shuffling intermediate result from R < S

h(S.d)

RS

@D || @D
@D | | &3

Shuffling R, S, and T

Machine 1

1/30fR, S, T

Machine 3

Machine 2
1/30f R, S, T 1/30f R, S, T

DATA516/CSED516 - Fall 2021 87

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

R
|
|
|
1
|
|

a— 11> a— 11>

0] 0) !
|

1

1

|

LI 1
1

|

1

1

1

1

1

1

1

1

1

1

1

1

1

1

RS

RS
(sean B

5

Broadcasting S and T .

roadcas) Oroadcas

roadcas) Obroadcas

Machine 1 Machine 2 Machine 3
1/30f R, S, T 1/30f R, S, T 1/30f R, S, T
DATA516/CSED516 - Fall 2021 88

Discussion

» Hash-join:
— Both relations are partitioned (good)
— May have skew (bad)

89

Discussion

» Hash-join:
— Both relations are partitioned (good)
— May have skew (bad)

* Broadcast join
— One relation must be broadcast (bad)
— No worry about skew (good)

90

Discussion

» Hash-join:
— Both relations are partitioned (good)
— May have skew (bad)

* Broadcast join
— One relation must be broadcast (bad)
— No worry about skew (good)

* Skew join (has other names):
— Combine both: in class

91

Outline

 Basic notions

 Distributed query processing algorithms

« Skew (will continue next lecture)

DATA516/CSED516 - Fall 2021

92

Skew

DATA516/CSED516 - Fall 2021

93

Skew

« Skew means that one server runs much
longer than the other servers

« Reasons:
— Computation skew
— Data skew

94

Computation Skew

 All workers receive the same amount of
input data, but some need to run much
longer than others

» E.g. perform some image processing
whose runtimes depends on the image

e Solution: use virtual servers

DATA516/CSED516 - Fall 2021 95

Virtual Servers

Main idea:

* |If we send the data uniformly to the P
servers, and one of them is stuck with

the complicated image, then we have
skew

« Solution: pretend we have many
“virtual” servers. (Next slide.)

DATA516/CSED516 - Fall 2021

96

Virtual Servers
Large number P, of “virtual servers”
* Design algorithm for P, virtual servers

» Scale down to P << P, physical servers, by
simulating them round-robin

E.g. MapReduce: P=workers, P,=map tasks

97

Data Skew

» We fail to distribute the data uniformly to
the servers

* Question: why can this happen?

DATA516/CSED516 - Fall 2021 98

Data Skew

» We fail to distribute the data uniformly to
the servers

* Question: why can this happen?

 Answer:

— Range partition may have many more
tuples in one bucket than another

— Hash partition may suffer from heavy
hitters

DATA516/CSED516 - Fall 2021 99

Next Lecture

* Analyze skew: notice hw3 question

* New topic: scalable graph processing

DATA516/CSED516 - Fall 2021 100

