
DATA516/CSED516
Scalable Data Systems and

Algorithms
Lecture 4

Spark, MapReduce, Hive

Announcements

• HW1 is graded and posted (thanks Kexuan!)

• Project proposals due this Friday!
– Working in team? Only one of you submits

• HW2 (Spark) due on Monday

DATA516/CSED516 - Fall 2021 2

Distributed or Parallel Query
Processing

• Clusters:
– More servers à more in main memory
– More servers à more computing power
– Clusters are now cheaply available in the cloud
– Distributed query procesing

• Multicores:
– The end of Moore’s law
– Parallel query processing

DATA516/CSED516 - Fall 2021 3

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases 4

Spark

5

Motivation

• Limitations of relational database systems:
– Single server (at least traditionally)
– SQL is a limited language (eg no iteration)

• Spark:
– Distributed system
– Functional language (Java/Scala) good for ML

• Implementation:
– Extension of MapReduce
– Distributed physical operators

6

Review: Single Client

7

E.g. data analytics

Review: Client-Server

8

Connection:
ODBC, JDBC

E.g. accounting, banking, …

Review: Three-tier

connection
(ODBC, JDBC)

http

E.g. Web commerce

Review: Distributed Database

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database
Spark, Snowflake

Programming in Spark
• A Spark program consists of:

– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T
• Distributed on many servers, not nested
• Operations are done in parallel
• Recoverable via lineage; more later

Seq<T> = a sequence
• Local to one server, may be nested
• Operations are done sequentially

Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Transformation: Not executed yet…

Search logs stored in HDFS

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS
Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program

errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Chaining Style

Example

DATA516/CSED516 - Fall 2021 18

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2021 19

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2021 20

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2021 21

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

More on Programming Interface

Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey,

reduceByKey, union, join, cogroup, crossProduct,
…

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations

DATA516/CSED516 - Fall 2021 22

Transformations:
map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>

join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>

cogroup(): (RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>

crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:
count(): RDD<T> -> Long

collect(): RDD<T> -> Seq<T>

reduce(f:(T,T)->T): RDD<T> -> T

save(path:String): Outputs RDD to a storage system e.g., HDFS

More Complex Example

DATA516/CSED516 - Fall 2021 24[From Zaharia12]

Spark Ecosystem Growth

DATA516/CSED516 - Fall 2021 25

Image from: http://spark.apache.org/

Spark SQL vs Functional Prog. API

• Spark’s original functional programming API
– General
– But limited opportunities for automatic optimization

• Spark SQL simultaneously
– Makes Spark accessible to more users
– Improves opportunities for automatic optimizations

DATA516/CSED516 - Fall 2021 26

Three Java-Spark APIs

• RDDs: Sytnax: JavaRDD<T>
– T = anything, basically untyped
– Distributed, main memory

• Data frames: Dataset<Row>
– <Row> = a record, dynamically typed
– Distributed, main memory or external (e.g. SQL)

• Datasets: Dataset<Person>
– <Person> = user defined type
– Distributed, main memory (not external)

DATA516/CSED516 - Fall 2021 27

DataFrames

• Like RDD: immutable distributed collection

• Organized into named columns
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame

Datasets

• Like DataFrames, but elements must be typed

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of
Spark 2.0)

Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar?

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html

Recap: Programming in Spark

• A Spark/Scala program consists of:
– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• RDD<T> = an RDD collection of type T
– Partitioned, recoverable (through lineage), not

nested
• Seq<T> = a sequence

– Local to a server, may be nested

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases 32

DATA516/CSED516 - Fall 2021 33

MapReduce: References

• Jeffrey Dean and Sanjay Ghemawat,
MapReduce: Simplified Data Processing on
Large Clusters. OSDI’04

• D. DeWitt and M. Stonebraker. Mapreduce –
a major step backward. In Database Column
(Blog), 2008.

MapReduce

• Google:
– Started around 2000
– Paper published 2004
– Discontinued September 2019

• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

34DATA516/CSED516 - Fall 2021

Distributed File System (DFS)

• For very large files: TBs, PBs

• Each file partitioned into chunks (64MB)

• Each chunk replicated (≥3 times) – why?

• Implementations:
– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

DATA516/CSED516 - Fall 2021 35

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs
– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)
– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)
– Output: bag of output (values)

DATA516/CSED516 - Fall 2021 36

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs
– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)
– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)
– Output: bag of output (values)

DATA516/CSED516 - Fall 2021 37

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs
– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)
– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)
– Output: bag of output (values)

DATA516/CSED516 - Fall 2021 38

MapReduce

• Describe the input and output to map reduce
– Input: a bag of (inputkey, value) pairs
– Output: a bag of (outputkey, value) pairs

• Describe the Map function
– Input: (input key, value)
– Ouput: bag of (intermediate key, value)

• Describe the Reduce function
– Input: (intermediate key, bag of values)
– Output: bag of output (values)

DATA516/CSED516 - Fall 2021 39

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in input file

40DATA516/CSED516 - Fall 2021

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

41DATA516/CSED516 - Fall 2021

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

DATA516/CSED516 - Fall 2021 42

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

DATA516/CSED516 - Fall 2021 43

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

DATA516/CSED516 - Fall 2021 44

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Think “Relational”!

DATA516/CSED516 - Fall 2021 45

Documents:

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu

and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in

the industry for business intelligence is growing rapidly, making

traditional warehousing solutions prohibitively expensive.

Hadoop [1] is a popular open-source map-reduce implementation

which is being used in companies like Yahoo, Facebook etc. to

store and process extremely large data sets on commodity

hardware. However, the map-reduce programming model is very

low level and requires developers to write custom programs

which are hard to maintain and reuse. In this paper, we present

Hive, an open-source data warehousing solution built on top of

Hadoop. Hive supports queries expressed in a SQL-like

declarative language - HiveQL, which are compiled into map-

reduce jobs that are executed using Hadoop. In addition, HiveQL

enables users to plug in custom map-reduce scripts into queries.

The language includes a type system with support for tables

containing primitive types, collections like arrays and maps, and

nested compositions of the same. The underlying IO libraries can

be extended to query data in custom formats. Hive also includes

a system catalog - Metastore – that contains schemas and

statistics, which are useful in data exploration, query

optimization and query compilation. In Facebook, the Hive

warehouse contains tens of thousands of tables and stores over

700TB of data and is being used extensively for both reporting

and ad-hoc analyses by more than 200 users per month.

I. INTRODUCTION

Scalable analysis on large data sets has been core to the

functions of a number of teams at Facebook - both

engineering and non-engineering. Apart from ad hoc analysis

and business intelligence applications used by analysts across

the company, a number of Facebook products are also based

on analytics. These products range from simple reporting

applications like Insights for the Facebook Ad Network, to

more advanced kind such as Facebook's Lexicon product [2].

As a result a flexible infrastructure that caters to the needs of

these diverse applications and users and that also scales up in

a cost effective manner with the ever increasing amounts of

data being generated on Facebook, is critical. Hive and
Hadoop are the technologies that we have used to address

these requirements at Facebook.

The entire data processing infrastructure in Facebook prior

to 2008 was built around a data warehouse built using a

commercial RDBMS. The data that we were generating was

growing very fast - as an example we grew from a 15TB data

set in 2007 to a 700TB data set today. The infrastructure at

that time was so inadequate that some daily data processing

jobs were taking more than a day to process and the situation

was just getting worse with every passing day. We had an

urgent need for infrastructure that could scale along with our

data. As a result we started exploring Hadoop as a technology

to address our scaling needs. The fact that Hadoop was

already an open source project that was being used at petabyte

scale and provided scalability using commodity hardware was

a very compelling proposition for us. The same jobs that had

taken more than a day to complete could now be completed

within a few hours using Hadoop.

However, using Hadoop was not easy for end users,

especially for those users who were not familiar with map-

reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop

lacked the expressiveness of popular query languages like

SQL and as a result users ended up spending hours (if not

days) to write programs for even simple analysis. It was very

clear to us that in order to really empower the company to

analyze this data more productively, we had to improve the

query capabilities of Hadoop. Bringing this data closer to

users is what inspired us to build Hive in January 2007. Our

vision was to bring the familiar concepts of tables, columns,

partitions and a subset of SQL to the unstructured world of

Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in

August 2008 and since then has been used and explored by a

number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users

within Facebook. Today, we regularly run thousands of jobs

on the Hadoop/Hive cluster with hundreds of users for a wide

variety of applications starting from simple summarization

jobs to business intelligence, machine learning applications

and to also support Facebook product features.

In the following sections, we provide more details about

Hive architecture and capabilities. Section II describes the
data model, the type systems and the HiveQL. Section III

details how data in Hive tables is stored in the underlying

distributed file system – HDFS(Hadoop file system). Section

IV describes the system architecture and various components

of Hive . In Section V we highlight the usage statistics of Hive

at Facebook and provide related work in Section VI. We

conclude with future work in Section VII.

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE

Hive structures data into the well-understood database

concepts like tables, columns, rows, and partitions. It supports

all the major primitive types – integers, floats, doubles and

strings – as well as complex types such as maps, lists and
structs. The latter can be nested arbitrarily to construct more

complex types. In addition, Hive allows users to extend the

did1
system with their own types and functions. The query

language is very similar to SQL and therefore can be easily

understood by anyone familiar with SQL. There are some

nuances in the data model, type system and HiveQL that are

different from traditional databases and that have been

motivated by the experiences gained at Facebook. We will
highlight these and other details in this section.

A. Data Model and Type System

Similar to traditional databases, Hive stores data in tables,

where each table consists of a number of rows, and each row

consists of a specified number of columns. Each column has

an associated type. The type is either a primitive type or a

complex type. Currently, the following primitive types are

supported:

• Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes),
tinyint(1 byte). All integer types are signed.

• Floating point numbers – float(single precision),

double(double precision)

• String

Hive also natively supports the following complex types:

• Associative arrays – map<key-type, value-type>

• Lists – list<element-type>

• Structs – struct<file-name: field-type, ... >

These complex types are templated and can be composed to
generate types of arbitrary complexity. For example,

list<map<string, struct<p1:int, p2:int>> represents a list of

associative arrays that map strings to structs that in turn

contain two integer fields named p1 and p2. These can all be

put together in a create table statement to create tables with

the desired schema. For example, the following statement

creates a table t1 with a complex schema.

CREATE TABLE t1(st string, fl float, li list<map<string,

struct<p1:int, p2:int>>);

Query expressions can access fields within the structs using a
'.' operator. Values in the associative arrays and lists can be

accessed using '[]' operator. In the previous example, t1.li[0]

gives the first element of the list and t1.li[0]['key'] gives the

struct associated with 'key' in that associative array. Finally

the p2 field of this struct can be accessed by t1.li[0]['key'].p2.

With these constructs Hive is able to support structures of

arbitrary complexity.

The tables created in the manner describe above are

serialized and deserialized using default serializers and

deserializers already present in Hive. However, there are

instances where the data for a table is prepared by some other
programs or may even be legacy data. Hive provides the

flexibility to incorporate that data into a table without having

to transform the data, which can save substantial amount of

time for large data sets. As we will describe in the later

sections, this can be achieved by providing a jar that

implements the SerDe java interface to Hive. In such

situations the type information can also be provided by that jar

by providing a corresponding implementation of the

ObjectInspector java interface and exposing that

implementation through the getObjectInspector method

present in the SerDe interface. More details on these interfaces

can be found on the Hive wiki [3], but the basic takeaway here

is that any arbitrary data format and types encoded therein can

be plugged into Hive by providing a jar that contains the
implementations for the SerDe and ObjectInspector interfaces.

All the native SerDes and complex types supported in Hive

are also implementations of these interfaces. As a result once

the proper associations have been made between the table and

the jar, the query layer treats these on par with the native types

and formats. As an example, the following statement adds a

jar containing the SerDe and ObjectInspector interfaces to the

distributed cache([4]) so that it is available to Hadoop and

then proceeds to create the table with the custom serde.

add jar /jars/myformat.jar;

CREATE TABLE t2
ROW FORMAT SERDE 'com.myformat.MySerDe';

Note that, if possible, the table schema could also be provided

by composing the complex and primitive types.

B. Query Language

The Hive query language(HiveQL) comprises of a subset of

SQL and some extensions that we have found useful in our
environment. Traditional SQL features like from clause sub-

queries, various types of joins – inner, left outer, right outer

and outer joins, cartesian products, group bys and

aggregations, union all, create table as select and many useful

functions on primitive and complex types make the language

very SQL like. In fact for many of the constructs mentioned

before it is exactly like SQL. This enables anyone familiar

with SQL to start a hive cli(command line interface) and begin

querying the system right away. Useful metadata browsing

capabilities like show tables and describe are also present and

so are explain plan capabilities to inspect query plans (though

the plans look very different from what you would see in a
traditional RDBMS). There are some limitations e.g. only

equality predicates are supported in a join predicate and the

joins have to be specified using the ANSI join syntax such as

SELECT t1.a1 as c1, t2.b1 as c2

FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

instead of the more traditional

SELECT t1.a1 as c1, t2.b1 as c2

FROM t1, t2
WHERE t1.a2 = t2.b2;

Another limitation is in how inserts are done. Hive currently

does not support inserting into an existing table or data

partition and all inserts overwrite the existing data.

Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE t1

did2
. . .

Relation

Think “Relational”!

DATA516/CSED516 - Fall 2021 46

Documents:

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu

and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in

the industry for business intelligence is growing rapidly, making

traditional warehousing solutions prohibitively expensive.

Hadoop [1] is a popular open-source map-reduce implementation

which is being used in companies like Yahoo, Facebook etc. to

store and process extremely large data sets on commodity

hardware. However, the map-reduce programming model is very

low level and requires developers to write custom programs

which are hard to maintain and reuse. In this paper, we present

Hive, an open-source data warehousing solution built on top of

Hadoop. Hive supports queries expressed in a SQL-like

declarative language - HiveQL, which are compiled into map-

reduce jobs that are executed using Hadoop. In addition, HiveQL

enables users to plug in custom map-reduce scripts into queries.

The language includes a type system with support for tables

containing primitive types, collections like arrays and maps, and

nested compositions of the same. The underlying IO libraries can

be extended to query data in custom formats. Hive also includes

a system catalog - Metastore – that contains schemas and

statistics, which are useful in data exploration, query

optimization and query compilation. In Facebook, the Hive

warehouse contains tens of thousands of tables and stores over

700TB of data and is being used extensively for both reporting

and ad-hoc analyses by more than 200 users per month.

I. INTRODUCTION

Scalable analysis on large data sets has been core to the

functions of a number of teams at Facebook - both

engineering and non-engineering. Apart from ad hoc analysis

and business intelligence applications used by analysts across

the company, a number of Facebook products are also based

on analytics. These products range from simple reporting

applications like Insights for the Facebook Ad Network, to

more advanced kind such as Facebook's Lexicon product [2].

As a result a flexible infrastructure that caters to the needs of

these diverse applications and users and that also scales up in

a cost effective manner with the ever increasing amounts of

data being generated on Facebook, is critical. Hive and
Hadoop are the technologies that we have used to address

these requirements at Facebook.

The entire data processing infrastructure in Facebook prior

to 2008 was built around a data warehouse built using a

commercial RDBMS. The data that we were generating was

growing very fast - as an example we grew from a 15TB data

set in 2007 to a 700TB data set today. The infrastructure at

that time was so inadequate that some daily data processing

jobs were taking more than a day to process and the situation

was just getting worse with every passing day. We had an

urgent need for infrastructure that could scale along with our

data. As a result we started exploring Hadoop as a technology

to address our scaling needs. The fact that Hadoop was

already an open source project that was being used at petabyte

scale and provided scalability using commodity hardware was

a very compelling proposition for us. The same jobs that had

taken more than a day to complete could now be completed

within a few hours using Hadoop.

However, using Hadoop was not easy for end users,

especially for those users who were not familiar with map-

reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop

lacked the expressiveness of popular query languages like

SQL and as a result users ended up spending hours (if not

days) to write programs for even simple analysis. It was very

clear to us that in order to really empower the company to

analyze this data more productively, we had to improve the

query capabilities of Hadoop. Bringing this data closer to

users is what inspired us to build Hive in January 2007. Our

vision was to bring the familiar concepts of tables, columns,

partitions and a subset of SQL to the unstructured world of

Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in

August 2008 and since then has been used and explored by a

number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users

within Facebook. Today, we regularly run thousands of jobs

on the Hadoop/Hive cluster with hundreds of users for a wide

variety of applications starting from simple summarization

jobs to business intelligence, machine learning applications

and to also support Facebook product features.

In the following sections, we provide more details about

Hive architecture and capabilities. Section II describes the
data model, the type systems and the HiveQL. Section III

details how data in Hive tables is stored in the underlying

distributed file system – HDFS(Hadoop file system). Section

IV describes the system architecture and various components

of Hive . In Section V we highlight the usage statistics of Hive

at Facebook and provide related work in Section VI. We

conclude with future work in Section VII.

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE

Hive structures data into the well-understood database

concepts like tables, columns, rows, and partitions. It supports

all the major primitive types – integers, floats, doubles and

strings – as well as complex types such as maps, lists and
structs. The latter can be nested arbitrarily to construct more

complex types. In addition, Hive allows users to extend the

did1
system with their own types and functions. The query

language is very similar to SQL and therefore can be easily

understood by anyone familiar with SQL. There are some

nuances in the data model, type system and HiveQL that are

different from traditional databases and that have been

motivated by the experiences gained at Facebook. We will
highlight these and other details in this section.

A. Data Model and Type System

Similar to traditional databases, Hive stores data in tables,

where each table consists of a number of rows, and each row

consists of a specified number of columns. Each column has

an associated type. The type is either a primitive type or a

complex type. Currently, the following primitive types are

supported:

• Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes),
tinyint(1 byte). All integer types are signed.

• Floating point numbers – float(single precision),

double(double precision)

• String

Hive also natively supports the following complex types:

• Associative arrays – map<key-type, value-type>

• Lists – list<element-type>

• Structs – struct<file-name: field-type, ... >

These complex types are templated and can be composed to
generate types of arbitrary complexity. For example,

list<map<string, struct<p1:int, p2:int>> represents a list of

associative arrays that map strings to structs that in turn

contain two integer fields named p1 and p2. These can all be

put together in a create table statement to create tables with

the desired schema. For example, the following statement

creates a table t1 with a complex schema.

CREATE TABLE t1(st string, fl float, li list<map<string,

struct<p1:int, p2:int>>);

Query expressions can access fields within the structs using a
'.' operator. Values in the associative arrays and lists can be

accessed using '[]' operator. In the previous example, t1.li[0]

gives the first element of the list and t1.li[0]['key'] gives the

struct associated with 'key' in that associative array. Finally

the p2 field of this struct can be accessed by t1.li[0]['key'].p2.

With these constructs Hive is able to support structures of

arbitrary complexity.

The tables created in the manner describe above are

serialized and deserialized using default serializers and

deserializers already present in Hive. However, there are

instances where the data for a table is prepared by some other
programs or may even be legacy data. Hive provides the

flexibility to incorporate that data into a table without having

to transform the data, which can save substantial amount of

time for large data sets. As we will describe in the later

sections, this can be achieved by providing a jar that

implements the SerDe java interface to Hive. In such

situations the type information can also be provided by that jar

by providing a corresponding implementation of the

ObjectInspector java interface and exposing that

implementation through the getObjectInspector method

present in the SerDe interface. More details on these interfaces

can be found on the Hive wiki [3], but the basic takeaway here

is that any arbitrary data format and types encoded therein can

be plugged into Hive by providing a jar that contains the
implementations for the SerDe and ObjectInspector interfaces.

All the native SerDes and complex types supported in Hive

are also implementations of these interfaces. As a result once

the proper associations have been made between the table and

the jar, the query layer treats these on par with the native types

and formats. As an example, the following statement adds a

jar containing the SerDe and ObjectInspector interfaces to the

distributed cache([4]) so that it is available to Hadoop and

then proceeds to create the table with the custom serde.

add jar /jars/myformat.jar;

CREATE TABLE t2
ROW FORMAT SERDE 'com.myformat.MySerDe';

Note that, if possible, the table schema could also be provided

by composing the complex and primitive types.

B. Query Language

The Hive query language(HiveQL) comprises of a subset of

SQL and some extensions that we have found useful in our
environment. Traditional SQL features like from clause sub-

queries, various types of joins – inner, left outer, right outer

and outer joins, cartesian products, group bys and

aggregations, union all, create table as select and many useful

functions on primitive and complex types make the language

very SQL like. In fact for many of the constructs mentioned

before it is exactly like SQL. This enables anyone familiar

with SQL to start a hive cli(command line interface) and begin

querying the system right away. Useful metadata browsing

capabilities like show tables and describe are also present and

so are explain plan capabilities to inspect query plans (though

the plans look very different from what you would see in a
traditional RDBMS). There are some limitations e.g. only

equality predicates are supported in a join predicate and the

joins have to be specified using the ANSI join syntax such as

SELECT t1.a1 as c1, t2.b1 as c2

FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

instead of the more traditional

SELECT t1.a1 as c1, t2.b1 as c2

FROM t1, t2
WHERE t1.a2 = t2.b2;

Another limitation is in how inserts are done. Hive currently

does not support inserting into an existing table or data

partition and all inserts overwrite the existing data.

Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE t1

did2
. . .

Relation
Did Word
did1 Scalable
did1 analysis
did1 on
did1 large
did1 …
did2 system
did2 with
…

Think “Relational”!

47

select word, count(*)
from Data
group by word

Relation
Did Word
did1 Scalable
did1 analysis
did1 on
did1 large
did1 …
did2 system
did2 with
…

Think “Relational”!

48

select word, count(*)
from Data
group by word

map = group by
reduce = count(…) (or sum(…) or…)

Relation
Did Word
did1 Scalable
did1 analysis
did1 on
did1 large
did1 …
did2 system
did2 with
…

Think “Relational”!

49

select word, count(*)
from Data
group by word

map = group by
reduce = count(…) (or sum(…) or…)

Relation
Did Word
did1 Scalable
did1 analysis
did1 on
did1 large
did1 …
did2 system
did2 with
…

MapReduce = Group-by-aggregate

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

50DATA516/CSED516 - Fall 2021

Examples from the paper

Discuss in class how to implement in MR

• Distributed grep

• Count URL access frequency: (URL, count)

• Reverse web-link graph: (URL, (list of URLs))

• Inverted index: (word, (list of URLs) 51

Jobs v.s. Tasks

• A MapReduce Job
– One simple “query”, e.g. count words in docs
– Complex queries may require many jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, to be scheduled on a single worker

DATA516/CSED516 - Fall 2021 52

Workers

• A worker is a process that executes one task
at a time

• Typically there is one worker per processor,
hence 4 or 8 per node

DATA516/CSED516 - Fall 2021 53

Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

DATA516/CSED516 - Fall 2021 54

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

55

Choosing Parameters in MR

• Number of map tasks (M):
– Default: one map task per chunk
– E.g. data = 64TB, chunk = 64MB è M = 106

• Number of reduce tasks (R):
– No good default; set manually R << M
– E.g. R = 500 or 5000

• In general, MapReduce had very many
parameters that required expertise to tune

56

MapReduce Execution Details

DATA516/CSED516 - Fall 2021 57

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk:
M × R files (why?)

Output to
GFS or HDFS

File system:
GFS or HDFS

Task

Task

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map tasks
finish?

58

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map tasks
finish?

Because each map tasks needs to write its
output into R file; so R must be known before
the map tasks start

59

Local storage`

MapReduce Phases

60DATA516/CSED516 - Fall 2021

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

61

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down

62

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word

63

Temp=
select server, word, count(*) as c
from Data
group by server, word

Riddle

• The combiner function
performs an optimization that
you already know

• Which one?

• Pushing aggregates down:
– Each mapper groups by word
– Reducers perform final group-by

64

Temp=
select server, word, count(*) as c
from Data
group by server, word

Output =
select word, sum(c)
from Temp
group by word

Implementation
• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
• Workers write their output to local disk, partition

into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map

workers’ local disks
65DATA516/CSED516 - Fall 2021

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

66

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”

67

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”

68

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)

69

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)
• The M * R problem – what is it?

70

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)
• The M * R problem – what is it?
• “Parallel databases uses push (to sockets)

instead of pull” – what’s the point?

71

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases 72

Fault Tolerance

DATA516/CSED516 - Fall 2021 73

Fault Tolerance

• Traditional RDBMs:
– Major concern: recover after failure
– FT: not a concern

• Massively distributed systems:
– Probability of failure increases w/ no. of workers

and length of job

DATA516/CSED516 - Fall 2021 74

Fault Tolerance
Example:

• if a server fails once/year…

• … a job with 10000 servers fails once/hour

75

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed
– Its in-progress reduce task needs re-executed:

this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2021 76

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed
– Its in-progress reduce task needs re-executed:

this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2021 77

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed
– Its in-progress reduce task needs re-executed:

this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2021 78

Fault Tolerance

How is fault tolerance handled in each system?

• MapReduce: if a worker fails then
– All its completed map tasks need re-executed
– Its in-progress reduce task needs re-executed:

this is possible because the map tasks still have
intermediate data on their local disks

• Spark: will discuss next

DATA516/CSED516 - Fall 2021 79

Approach
New abstraction: Resilient Distributed Datasets

RDD properties
• Parallel data structure
• Can be persisted in memory
• Fault-tolerant
• Users can manipulate RDDs with rich set of

operators

DATA516/CSED516 - Fall 2021 80

Resilient Distributed Datasets
• RDD = Resilient Distributed Dataset

– Distributed, immutable.
– Records lineage = expression that says how that

relation was computed = a relational algebra plan
• Spark stores intermediate results as RDD
• If a server crashes, its RDD in main memory

is lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

DATA516/CSED516 - Fall 2021 81

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
result = errors.filter(l -> l.contains(“sqlite”))
result.collect();

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
result = errors.filter(l -> l.contains(“sqlite”))
result.collect();

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can recompute the result from errors

hdfs://logfile.log

errors

filter(..startsWith(“ERROR”)

result

filter(...contains(“sqlite”)

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD

Example

85

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting
in memory
or on disk

Example

86

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations

RDD Details

• An RDD is a partitioned collection of records
– RDD’s are typed: RDD[Int] is an RDD of integers
– Records are Java/Python objects

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join

87

RDD Materialization

• Users control persistence and partitioning

• Persistence
– Materialize this RDD in memory

• Partitioning
– Users can specify key for partitioning an RDD

DATA516/CSED516 - Fall 2021 88

Outline

• Spark

• MapReduce and critique

• Fault Tolerance

• Hive (short)

Next lecture: Parallel databases 89

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

90

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

91

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

92

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

93

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

94

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

95

Hive

• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

96

Discussion

• Parallel database systems: since the 80s
– Will discuss next lecture

• MapReduce: around 2000
• Hive: built on MapReuce
• Spark: “better” MapReduce around 2010
• Snowflake, Aurora: cloud, parallel databases;

around 2015 (next lecture)
Quick comparison (next slides)

DATA516/CSED516 - Fall 2021 97

MapReduce v.s. Spark

• Job = Map+Reduce

• Language = Java

• Data = untyped

• Optimization = no

• Job = any query

• Language ≈ RA

• Data = has schema

• Optimization = yes
but limited: missing
stats on base data

98

Spark v.s. RDBMS (e.g. Snowflake)

• Query language = its
own proprietary

• Optimizer = limited

• Runtime = its own
proprietary

• External functions =
yes; very useful in ML

• Query language =
SQL

• Optimizer = full scale

• Runtime = efficient
SQL query engine

• External functions =
no

99

