DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 3
 Query Optimization, Spark

Announcements

- HW2 is posted and due on Nov. $2^{\text {nd }}$
- Project proposals due on Oct. 29th
- Review was due today (How good...?)
- Review of three (!) papers due next week

Quick Recap

- What is data independence?
-What are the ops in the relational algebra?
- What is a logical query plan?
- What is a physical query plan?
- Describe briefly 3 join algorithms

Outline for Today

- Query Optimization
- How good are they?
- Spark
- May run out of time, please come to section!
[How good are they]

Recap

- Optimizer has three components:
- Search space
- Cardinality and cost estimation
- Plan enumeration algorithms
[How good are they]

Recap

- Optimizer has three components:
- Search space
- Cardinality and cost estimation
- Plan enumeration algorithms
- Paper addresses three questions:
- How good are the cardinality estimators?
- How important is the cost model?
- How large does the search space need to be?
[How good are they]

Paper Outline

- How good are the cardinality estimators?
- How important is the cost model?
- How large does the search space need to be?
[How good are they]

The Job Benchmark

- Why do they use the IMDB database instead of TPC-H?
- IMDB - popular data on the web, can be imported into any RDBMS with moderate effort

Lesson: you can always import your dataset into RDBMS!
[How good are they]

The Job Benchmark

JOB Benchmark: 33 templates, 113 queries
Discuss the difference in class:

- SQL query
- SQL query template (or structure)

Group-by Queries

- None in JOB!
- Important in DS; we'll discuss them later

Review: Cardinality Estimation

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

Review: Cardinality Estimation

Problem: given statistics on base tables and a query, estimate size of the answer

What are the statistics on base tables?

- Number of tuples (cardinality)

T(R)

- Number of values in R.a:
$\mathrm{V}(\mathrm{R}, \mathrm{a})$
- Histograms (later today)

Review: Cardinality Estimation

What are the four assumptions that database systems do?

Review: Cardinality Estimation

What are the four assumptions that database systems do?

- Uniformity
- Independence
- Containment of values
- Preservation of values
[How good are they]

Single Table Estimation

$$
\sigma_{A=c}(R)=T(R) / V(R, A)
$$ does this make?

[How good are they]

Single Table Estimation

$$
\sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R})=\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{~A}) \quad \begin{aligned}
& \text { What assumption } \\
& \text { does this make? }
\end{aligned}
$$

[How good are they]

Single Table Estimation

$$
\sigma_{A=c}(R)=T(R) / V(R, A)
$$

Uniformity

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections

Histograms

- $T(R), V(R, A)$ too coarse
- Histogram: separate stats per bucket
- In each bucket store:
- T(bucket)
- V(bucket,A)

Employee(ssn, name, age)

Histograms

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$
Estimate $\sigma_{\text {age }=48}($ Empolyee $)=$?

Employee(ssn, name, age)

Histograms

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$
Estimate $\sigma_{\text {age }=48}($ Empolyee $)=? \quad=25000 / 50=500$

Employee(ssn, name, age)

Histograms

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$
Estimate $\sigma_{\text {age }=48}($ Empolyee $)=? \quad=25000 / 50=500$

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
$\mathrm{~T}=$	200	800	5000	12000	6500	500
$\mathrm{~V}=$	3	10	7	6	5	4

Estimate $\sigma_{\text {age }=48}($ Empolyee $)=$?

Employee(ssn, name, age)

Histograms

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$
Estimate $\sigma_{\text {age }=48}($ Empolyee $)=? \quad=25000 / 50=500$

Age:	0.20	20.29	$30-39$	$40-49$	$50-59$	>60
$\mathrm{~T}=$	200	800	5000	12000	6500	500
$\mathrm{~V}=$	3	10	7	6	5	4

Estimate $\sigma_{\text {age }=48}($ Empolyee $)=? \quad=12000 / 6=2000$

Types of Histograms

- Eq-Width
- Eq-Depth
- Compressed: store outliers separately
- V-Optimal histograms

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
T	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
T	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	$0 . .32$	$33 . .41$	$42-46$	$47-52$	$53-58$	>60
T	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
T	200	800	5000	12000	6500	500
V	2	8	10	10	8	3

Eq-depth:

Age:	$0 . .32$	$33 . .41$	$42-46$	$47-52$	$53-58$	>60
T	1800	2000	2100	2200	1900	1800
V	8	10	9	10	8	6

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Error:

- Bucket boundaries $=\operatorname{argmin}_{\text {Hist }}$ (Error)
- Dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Multiple Predicates

- Independence assumption:
- Simple
- But often leads to major underestimates
- Modeling correlations:
- Solution 1: 2d Histograms
- Solution 2: use sample from the data

Supplier(sid, sname, scity, sstate)
Independence Assumption
T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Supplier(sid, sname, scity, sstate)
Independence Assumption
T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier
Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?
where scity = 'Mountainview' and sstate = 'CA'

Supplier(sid, sname, scity, sstate)
Independence Assumption
T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier
Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$? where scity = 'Mountainview' and sstate = 'CA'

Select random tuple in Supplier, with probability $1 / T$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier
Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?
where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T
$\operatorname{Pr}($ scity $=$ 'Mtv') $=$

Supplier(sid, sname, scity, sstate)
Independence Assumption
T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier

Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?

where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability $1 / T$
$\operatorname{Pr}($ scity $='$ Mtv' $)=\operatorname{Pr}($ scity $=' M t v ’ \mid$ scity $\in J . . M) * P(s c i t y \in J . . M)$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability $1 / T$
$\operatorname{Pr}\left(\right.$ scity $=$ 'Mtv') $=\operatorname{Pr}($ scity $=$ 'Mtv’ \mid scity $\in J . . M) * P(s c i t y \in J . . M)=1 / V_{J . . M} * T_{J . . M} / T$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T
$\operatorname{Pr}\left(\right.$ scity $=‘$ 'Mtv') $=\operatorname{Pr}(s c i t y=' M t v ’ \mid$ scity $\in J . . M) * P(s c i t y \in J . . M)=1 / V_{J . . m}^{*} T_{J . . M} / T$
$\operatorname{Pr}\left(\right.$ sstate $\left.=` \mathrm{CA}{ }^{\prime}\right)=$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T

$\operatorname{Pr}($ sstate $=‘ C A ’)=\operatorname{Pr}($ sstate $=‘ C A ’ \mid$ sstate $\in A . . J){ }^{*} P($ sstate $\in A . . J)$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T
$\operatorname{Pr}\left(\right.$ scity $=$ 'Mtv') $=\operatorname{Pr}($ scity $=$ 'Mtv' \mid scity $\in J . . M) * P(s c i t y ~ \in J . . M)=1 / V_{J . . м ~}{ }^{*} T_{\text {J.m }} / T$
$\operatorname{Pr}\left(\right.$ sstate $=‘$ 'CA') $=\operatorname{Pr}($ sstate $=‘$ 'CA' \mid sstate $\in A . . J) * P($ sstate $\in A . . J)=1 / V_{\text {A..J }} * T_{\text {A..J }} / T$

Supplier(sid, sname, scity, sstate)
Independence Assumption
$\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability $1 / T$

$\operatorname{Pr}\left(\right.$ sstate $=‘$ 'CA') $=\operatorname{Pr}($ sstate $=‘$ 'CA’ \mid sstate $\in A . . J) ~ * P($ sstate $\in A . . J)=1 / V_{\text {A..J }} * T_{\text {A..J }} / T$
$\operatorname{Pr}($ scity $='$ Mtv' \wedge sstate $=‘ C A ')=$

Supplier(sid, sname, scity, sstate)
Independence Assumption
T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T
$\operatorname{Pr}\left(\right.$ scity $=$ 'Mtv') $=\operatorname{Pr}($ scity $=$ 'Mtv' \mid scity $\in J . . M) * P(s c i t y ~ \in J . . M)=1 / V_{J . . M} * T_{\text {J.M }} / T$

$\operatorname{Pr}($ scity $=' M t v ’ \wedge$ sstate $=' C A ')=\left(1 / N_{J . . M}{ }^{*} T_{J . M} / T\right) *\left(1 / N_{A . . J}{ }^{*} T_{A . . J} / T\right) \quad$ Independence

Supplier(sid, sname, scity, sstate)
Independence Assumption T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate = 'CA'

Select random tuple in Supplier, with probability $1 / T$
$\operatorname{Pr}\left(\right.$ scity $=$ 'Mtv') $=\operatorname{Pr}($ scity $=$ 'Mtv' \mid scity $\in J . . M) * P(s c i t y ~ \in J . . M)=1 / V_{J . . м ~}{ }^{*} T_{\text {J.. }} / T$
$\operatorname{Pr}\left(\right.$ sstate $=‘$ 'CA') $=\operatorname{Pr}($ sstate $=‘$ 'CA’ \mid sstate $\in A . . J) ~ * P($ sstate $\in A . . J)=1 / V_{\text {A..J }} * T_{\text {A..J }} / T$

Answer: $\left(1 / V_{J . . M} * T_{J . . M} / T\right) *\left(1 / V_{\text {A..J }} * T_{\text {A..J }} / T\right) * T=1 / 1250 * 1 / 40 * 250000=5$

Supplier(sid, sname, scity, sstate)
Independence Assumption $\mathrm{T}($ Supplier $)=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

select * from Supplier where scity = 'Mountainview' and sstate $=$ 'CA'

Select random tuple in Supplier, with probability 1/T
$\operatorname{Pr}\left(\right.$ scity $=$ 'Mtv') $=\operatorname{Pr}($ scity $=$ 'Mtv' \mid scity $\in J . . M) * P($ scity $\in J . . M)=1 / V_{J . . M ~}^{*} T_{\text {J. } / M / T ~}$

Answer: $\left(1 / V_{J . . M} * T_{J . . M} / T\right) *\left(1 / V_{\text {A..J }} * T_{\text {A..J }} / T\right) * T=1 / 1250 * 1 / 40 * 250000=5$

Modeling Correlations

1. Multi-dimensional histograms

- Also called column-group statitics

2. Sample from the data

Supplier(sid, sname, scity, sstate)

2d-Histogram

T (Supplier) $=250,000$

scity:	A..E	F..I	J..M	N..Q	R..U	V..Z
T	2000	8000	50000	120000	65000	5000
V	50	40	250	300	130	100

sstate:	A..J	K..S	T..Z
T	125000	80000	45000
V	20	10	20

Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?

Supplier(sid, sname, scity, sstate)
T(Supplier) $=250,000$

| scity: | A..E | F..I | J..M | N..Q | R..U | V..Z | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 2000 | 8000 | 50000 | 120000 | 65000 | 5000 | | | | |
| V | 50 | 40 | 250 | 300 | 130 | 100 | sstate: | A..J | K..S | T..Z |

Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?

2d Histogram

Sstate scity	A..E	F..I	J..M	N..Q	R..U	V..Z
A..J	\ldots		T,V $=\ldots$			
K..S						
T..Z						

Supplier(sid, sname, scity, sstate)
T(Supplier) $=250,000$

| scity: | A..E | F..I | J..M | N..Q | R..U | V..Z | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 2000 | 8000 | 50000 | 120000 | 65000 | 5000 | | | | |
| V | 50 | 40 | 250 | 300 | 130 | 100 | sstate: | A..J | K..S | T..Z |

Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime}$ Mtv' $^{\prime} \wedge$ sstate $=' \mathrm{CA}{ }^{\prime}($ Supplier $)=$?

2d Histogram

Sstate scity	A..E	F..I	J..M	N..Q	R..U	V..Z
A..J	\ldots		T,V=...			
K..S						
T..Z						

Answer: $\mathrm{T}_{\text {histogram }} / \mathrm{V}_{\text {histogram }}$

Supplier(sid, sname, scity, sstate)

Sample

- Compute a small, uniform sample from Supplier

[^0]Supplier(sid, sname, scity, sstate)

Sample

- Compute a small, uniform sample from Supplier

$$
\text { Estimate } \quad \sigma_{\text {sscity }=' M t v ' \wedge ~ s s t a t e=‘ C A ' ~}(\text { Supplier })=?
$$

- Use Thomson's estimator:

Supplier(sid, sname, scity, sstate)

Sample

- Compute a small, uniform sample from Supplier

$$
\text { Estimate } \quad \sigma_{\text {sscity }=' M t v^{\prime} \wedge ~} \text { sstate='CA' }(\text { Supplier })=\text { ? }
$$

- Use Thomson's estimator:

Answer: $\quad \sigma_{\text {sscity }}{ }^{\prime M}{ }^{\prime}{ }^{\prime}{ }^{\prime} \wedge$ sstate='CA' ${ }^{\prime}$ (Sample) * T (Supplier) / T(Sample)

Correlations

- Solution 1: 2d histograms
- Plus: can be accurate for 2 predicates
- Minus: unclear how to use for 3 or more preds
- Minus: limited number of buckets (why?)
- Minus: too many 2d histogram candidates

Solution 2: sampling

- Plus: can be accurate for >2 predicates
- Plus: work for complex preds, e.a. "like"
- Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
- Plus: can be accurate for 2 predicates
- Minus: unclear how to use for 3 or more preds
- Minus: limited number of buckets (why?)
- Minus: too many 2d histogram candidates
- Solution 2: sampling
- Plus: can be accurate for >2 predicates
- Plus: work for complex preds, e.g. "like"
- Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
- Plus: can be accurate for 2 predicates
- Minus: unclear how to use for 3 or more preds
- Minus: limited number of buckets (why?)
- Minus: too many 2d histogram candidates
- Solution 2: sampling
- Plus: can be accurate for >2 predicates

- Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
- Plus: can be accurate for 2 predicates
- Minus: unclear how to use for 3 or more preds
- Minus: limited number of buckets (why?)
- Minus: too many 2d histogram candidates
- Solution 2: sampling
- Plus: can be accurate for >2 predicates
- Plus: work for complex preds, e.g. "like"
- Minus: fail for low selectivity predicates

Correlations

- Solution 1: 2d histograms
- Plus: can be accurate for 2 predicates
- Minus: unclear how to use for 3 or more preds
- Minus: limited number of buckets (why?)
- Minus: too many 2d histogram candidates
- Solution 2: sampling
- Plus: can be accurate for >2 predicates
- Plus: work for complex preds, e.g. "like"
- Minus: fail for low selectivity predicates
[How good are they]

Recap: Single Table Estimation

$$
\sigma_{A=c}(R)=T(R) / V(R, A)
$$

Assumes uniformity

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections
[How good are they]

Review: Estimate Join Size

Estimate: $T\left(R \bowtie_{A=B} S\right)=$??
[How good are they]

Review: Estimate Join Size

Estimate: $T\left(R \bowtie_{A=B} S\right)=? ?$
Answer: $\quad T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$
What assumptions do we make?
[How good are they]

Review: Estimate Join Size

Estimate: $T\left(R \bowtie_{A=B} S\right)=? ?$
Answer: $\quad T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$
What assumptions do we make?

- Uniformity
- Containment of values
- Independence:
- less obvious
- reason is that both $T(R), T(S)$ are estimated too

[How good are they]

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

[How good are they]

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)
[How good are they]

Discussion

- Paper explains the need for real data
- Synthetic data used in benchmarks is often generated using uniform, independent distributions; formulas for cardinality estimation are perfect
[How good are they]

TPC-H v.s. Real Data (IMDB)

[How good are they]

TPC-H v.s. Real Data (IMDB)

[How good are they]

Impact of Mis-estimates

- Sec. 4 (probably more than you want to know)
- Simple configuration (key index only):
- Minor performance impact, because the big, "fact" table needs to be scanned anyway
- Most come from nested-loop joins (why?)
- Most of the rest come from hash-join (why?)
- Briefly discuss re-hashing
- More complex configuration
- Higher perf. Impact

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Paper Outline

- How good are the cardinality estimators?
- How important is the cost model?
- How large does the search space need to be?

Review: Cost Model

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join $R \bowtie S$
- Cost $=c_{1}{ }^{*} T(R)+c_{2}{ }^{*} T(R)^{*} T(S)$

Review: Cost Model

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join $R \bowtie S$
- Cost $=c_{1}{ }^{*} T(R)+c_{2}{ }^{*} T(R)^{*} T(S)$
- Example: hash-join $R \bowtie S$

$$
- \text { Cost }=\mathrm{c}_{3}{ }^{*} \mathrm{~T}(\mathrm{R})+\mathrm{c}_{4}{ }^{*} \mathrm{~T}(\mathrm{~S}) \quad / / \mathrm{c}_{3} \neq \mathrm{c}_{4}
$$

Review: Cost Model

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join $R \bowtie S$
- Cost $=c_{1}{ }^{*} T(R)+c_{2}{ }^{*} T(R)^{*} T(S)$
- Example: hash-join $R \bowtie S$
- Cost $=c_{3}{ }^{*} T(R)+c_{4}{ }^{*} T(S) / / c_{3} \neq c_{4}$
- Difficult to choose the right constants!

Review: Cost Model

Cost model: for each physical operator we use a formula to convert cardinality to cost

- Example: nested loop join $R \bowtie S$
- Cost $=c_{1}{ }^{*} T(R)+c_{2}{ }^{*} T(R)^{*} T(S)$
- Example: hash-join $R \bowtie S$
- Cost $=c_{3}{ }^{*} T(R)+c_{4}{ }^{*} T(S) / / c_{3} \neq c_{4}$
- Difficult to choose the right constants!

How important is the cost model?

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

- Cardinality estimation creates largest errors
- Complex or simple cost

Digression: Yet Another Difficulty

SQL Queries issued from applications:

- Query is optimized once: prepare
- Then, executed repeatedly

Query constants are unknow until execution: optimized plan is suboptimal

Jayant Haritsa, ICDE'2019 tutorial

```
select
    o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
    (select YEAR(o_orderdate) as o_year,
                            I_extendedprice * (1 - I_discount) as volume,
    n2.n_name as nation
    from part, supplier, lineitem, orders,
        customer, nation n1, nation n2, region
    where p_partkey = I_partkey and s_suppkey = I_suppkey
        and l_orderkey = o_orderkey and o_custkey = c_custkey
        and c_nationkey = n1.n_nationkey
    and n1.n_regionkey = r_regionkey
    and r_name = 'AMERICA'
    and s_nationkey = n2.n_nationkey
    and o_orderdate between '1995-01-01'
    and '1996-12-31'
    and p_type = 'ECONOMY ANODIZED STEEL'
    and s_acctbal \leq C1 and I_extendedprice \leq C2 ) as all_nations
group by o_year order by o_year
```

Jayant Haritsa, ICDE'2019 tutorial

```
select
    o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
    (select YEAR(o_orderdate) as o_year,
                            I_extendedprice * (1 - I_discount) as volume,
    n2.n_name as nation
    from part, supplier, lineitem, orders,
        customer, nation n1, nation n2, region
    where p_partkey = l_partkey and s_suppkey = l_suppkey
        and l_orderkey = o_orderkey and o_custkey = c_custkey
    and c_nationkey = n1.n_nationkey
    and n1.n_regionkey = r_regionkey
    and r_name = 'AMERICA'
    and s_nationkey = n2.n_nationkey
    and o_orderdate between '1995-01-01'
    and '1996-12-31'
    and p_type = 'ECONOMY ANODIZED STEEL'
    and s_acctbal \leq C1 and I_extendedprice \leq C2 ) as all_nations
group by o_year order by o_year
```


Jayant Haritsa, ICDE'2019 tutorial

Paper Outline

- How good are the cardinality estimators?
- How important is the cost model?
- How large does the search space need to be?

Search Space

- The set of alternative plans
- Rewrite rules; examples:
- Push selections down: $\sigma_{C}(R \bowtie S)=\sigma_{C}(R) \bowtie S$
- Join reorder: $(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)$
- Push aggregates down (later today)
- Types of join trees (next)
[How good are they]
The need for a rich search space

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

Types of Join Trees

- Based on the join condition:
- With cartesian products
- Without cartesian products
- Based on the shape:
- Left deep
- Right deep
- Zig-zag
- Bushy

Cartesian Product: with or without

$$
R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)
$$

Cartesian Product: with or without

$$
R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)
$$

Cartesian Product: with or without

$$
R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)
$$

Cartesian Product: with or without

$$
R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)
$$

Cartesian Product: with or without

$$
R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)
$$

Cartesian Product: with or without

$R(A, B) \bowtie_{R . B=S . B} S(B, C) \bowtie_{S . C=T . C} T(C, D)$

Shapes of Join Trees

Shapes of Join Trees

Shapes of Join Trees

Shapes of Join Trees

[How good are they]

Left/right
convention switched:
Right-deep build all hash tables first. Unclear to me why they are worst.

The effect of restricting the search space PK indexes

	median	95%	max	median	95%	\max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in comparison to the optimal plan (true cardinalities)

Search Space: Discussion

- Search space can be huge
- Database systems often reduce it by applying heuristics:
- No cartesian products
- Restrict to left-deep trees (or other restriction)

Rewrite Rules

- We have seen last time:
- Push selection down: $\sigma_{C}(R \bowtie S)=\sigma_{C}(R) \bowtie S$
- AND: $\quad \sigma_{C 1}$ and $C_{2}(R \bowtie S)=\sigma_{C 1}\left(\sigma_{C 2}(R \bowtie S)\right)$
- Join associativity: $(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)$
- Join commutativity: $R \bowtie S=S \bowtie R$
- Two more rules
- Push aggregates down

- Remove redundant joins

Motivation

- Try this in Redshift

select count(*) from customer;

Answer: 1500000
Time: 2 s

Motivation

- Try this in Redshift

select count(*) from customer;
select count(*) from lineitem;

Answer: 1500000
Time: 2 s

Answer: 59986052
Time: 1 s

Motivation

- Try this in Redshift

select count(*) from customer;
select count(*) from lineitem;
select count(*) from customer, lineitem;

Answer: 1500000 Time: 2 s

Answer: 59986052 Time: 1 s

Motivation

- Try this in Redshift

select count(*) from customer;
select count(*) from lineitem;
select count(*) from customer, lineitem;

Answer: 1500000
Time: 2 s

Answer: 59986052
Time: 1 s

Motivation

- Try this in Redshift

select count(*) from customer;
select count(*) from lineitem;

Answer: 1500000
Time: 2 s

Answer: 59986052
Time: 1 s

Pushing Aggregates Down

```
select Y,Z, sum(A*B*C*...) from...where... group by Y, Z
```

$\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}$

Pushing Aggregates Down

```
select Y,Z, sum(A*B*C*...) from...where... group by Y, Z
```

$\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}$

As data scientists, you may really need this optimization; do it manually, if needed!

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z
$\left.\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}\right)$
$\gamma_{Y, Z, \operatorname{sum}(S 1 * S 2)}$

$\gamma_{X, Y, \operatorname{sum}(A * C * E \ldots) \rightarrow S 1} \quad \gamma_{X, Z, \operatorname{sum}(B * D * F \ldots) \rightarrow S 2}$

As data scientists, you may really need this optimization; do it manually, if needed!

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z
$\left.\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}\right)$
$\gamma_{Y, Z, \operatorname{sum}(S 1 * S 2)}$

$$
\gamma_{X, Y, \operatorname{sum}(A * C * E \ldots) \rightarrow S 1} \quad \gamma_{X, Z, \operatorname{sum}(B * D * F \ldots) \rightarrow S 2}
$$

As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z
$\left.\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}\right)$

$$
\gamma_{X, Y, \operatorname{sum}(A * C * E \ldots) \rightarrow S 1} \quad \gamma_{X, Z, \operatorname{sum}(B * D * F \ldots) \rightarrow S 2}
$$

As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z
$\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}$

As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X
$\gamma_{Y, Z, \operatorname{sum}(S 1 * S 2)}$

Sum only over the attrs from the right

$$
\gamma_{X, Y, \operatorname{sum}}(A * C * E \ldots) \rightarrow S 1
$$

$\boldsymbol{\gamma}_{X, Z, \operatorname{sum}(B * D * F \ldots) \rightarrow S 2}$

Pushing Aggregates Down

select Y, Z, sum $\left(A^{*} B^{*} C^{*} \ldots\right)$ from...where... group by Y, Z
$\gamma_{Y, Z, \operatorname{sum}(A * B * C * \cdots)}$

As data scientists, you may really need this optimization; do it manually, if needed!

Group by the attrs from the left Y, plus join attrs X
$\gamma_{Y, Z, \operatorname{sum}(S 1 * S 2)}$

Sum only over the attrs from the right

$$
\gamma_{X, Y, \operatorname{sum}(A * C * E \ldots) \rightarrow S 1 \quad \gamma_{X, Z, \operatorname{sum}}(B * D * F \ldots) \rightarrow S 2}
$$

Example 1

SELECT count(*) from R, S where R. $x=S . x$

Example 1

SELECT count(*) from R, S where R.x=S. x

$R:$| x | y |
| :---: | :---: |
| b | a |
| b | c |
| f | d |
| h | g |\quad| x | z |
| :---: | :---: |
| b | g |
| b | k |
| h | m |\quad Answer $=? ? ? ?$

Example 1

SELECT count(*) from R, S where R.x=S. x

R: | x | y |
| :---: | :---: |
| b | a |
| b | c |
| f | d |
| h | g |

Answer $=5$
Runtime $=\mathrm{O}\left(\mathrm{N}^{2}\right)$

Example 1

SELECT count(*) from R, S where R.x=S.x

R: | x | y |
| :---: | :---: |
| b | a |
| b | c |
| f | d |
| h | g |

Answer $=5$

Runtime $=\mathrm{O}\left(\mathrm{N}^{2}\right)$

$\gamma_{x, \operatorname{count}(x) \rightarrow c} \quad \gamma_{x, \operatorname{count}(z) \rightarrow d}$

Example 1

SELECT count(*) from R, S where R. $x=S . x$

Answer $=5$

Runtime $=\mathrm{O}\left(\mathrm{N}^{2}\right)$

$A:$| x | c |
| :---: | :---: |
| b | 2 |
| f | 1 |
| h | 1 |

B: | x | d |
| :---: | :---: |
| b | 2 |
| h | 1 |

$A \bowtie B \quad$| x | c | d |
| :---: | :---: | :---: |
| b | 2 | 2 |
| h | 1 | 1 |

Example 1

SELECT count(*) from R, S where R. $x=S . x$

R: | x | y |
| :---: | :---: |
| b | a |
| b | c |
| f | d |
| h | g |

Answer $=5$
Runtime $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
Answer $=5$
Runtime $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
$\gamma_{\text {count (*) }}$
S:

x	z
b	g
b	k
h	m

Answer $=5$
Runtime $=\mathrm{O}(\mathrm{N})$

$A:$| x | c |
| :---: | :---: |
| b | 2 |
| f | 1 |
| h | 1 |

B: | x | d |
| :---: | :---: |
| b | 2 |
| h | 1 |

$A \bowtie B \quad$| x | c | d |
| :---: | :---: | :---: |
| b | 2 | 2 |
| h | 1 | 1 |

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity) Part(pno, pname, pprice)

Example 2

SELECT x.sstate, sum(y.quanity*z.price) FROM Supplier x, Supply y, Part z WHERE x.sid = y.sid and y.pno = z.pno GROUP BY x.sstate

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity) Part(pno, pname, pprice)

SELECT x.sstate, sum(y.quanity*z.price) FROM Supplier x, Supply y, Part z WHERE x.sid = y.sid and y.pno = z.pno GROUP BY x.sstate

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity) Part(pno, pname, pprice)

Supplier x
SELECT x.sstate, sum(y.quanity*z.price) FROM Supplier x, Supply y, Part z WHERE x.sid = y.sid and y.pno = z.pno GROUP BY x.sstate

Example 2

 Supply y

Part z
Supplier x

Part z

Discussion

- Join-aggregates: common in data science
- Implementation in RDBMS seems spotty:
- Postgres: NO (someone started, abandoned)
- Redshift: NO (I don't know the status)
- SQL Server: YES (at least a few years back)
- Snowflake: ??
- You may have to force this manually, by writing nested SQL queries
- Let's make sure we understand it (next)

Redundant Foreign-key / key Joins

- Simple, highly effective
- Almost all engines implement this

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Foreign-Key / Key

Select x.pno, x.quantity
From Supply x, Supplier y
Where x .sid $=\mathrm{y}$. sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Foreign-Key / Key

Select x.pno, x.quantity
From Supply x, Supplier y
Where x .sid $=\mathrm{y}$. sid

Select x.pno, x.quantity
From Supply x

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Foreign-Key / Key

Select x.pno, x.quantity
From Supply x, Supplier y
Where x. sid $=\mathrm{y}$. sid

Select x.pno, x.quantity
From Supply x

Only if these constraints hold:

1. Supplier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

Summary of Rules

- Database optimizers typically have a database of rewrite rules
- E.g. SQL Server: 400+ rules
- Rules become complex as they need to serve specialized types of queries

Query Optimization

1. Search space

2. Cardinality and cost estimation
3. Plan enumeration algorithms

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
- Based on System R [Selinger 1979]
- Join reordering algorithm
- Rule-based algorithm (will not discuss)
- Database of rules (=algebraic laws)
- Usually: dynamic programming
- Today's systems combine both

System R Optimizer

For each subquery $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$, compute best plan:

- Step 1: $Q=\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{n}\right\}$
- Step 2: $Q=\left\{R_{1}, R_{2}\right\},\left\{R_{1}, R_{3}\right\}, \ldots,\left\{R_{n-1}, R_{n}\right\}$
- Step $\mathrm{n}: ~ \mathrm{Q}=\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$

Avoid cartesian products; possibly restrict tree shapes

Details

For each subquery $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$ store:

- Estimated Size(Q)
- A best plan for Q: Plan(Q)
- The cost of that plan: $\operatorname{Cost}(Q)$

Details

Step 1: single relations $\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{n}\right\}$

- Size $=T\left(R_{i}\right)$
- Best plan: $\operatorname{scan}\left(\mathrm{R}_{\mathrm{i}}\right)$
- Cost $=\mathrm{c}^{*} \mathrm{~T}\left(\mathrm{R}_{\mathrm{i}}\right) \quad / / \mathrm{c}=$ the cost to read one tuple

Details

Step $k=2 . . . n:$
For each $\mathrm{Q}=\left\{\mathrm{R}_{\mathrm{i}_{1}}, \ldots, \mathrm{R}_{\mathrm{i}_{\mathrm{k}}}\right\} / / \mathrm{w} / \mathrm{o}$ cartesian product

- Size = estimate the size of Q
- For each $\mathrm{j}=1, \ldots, \mathrm{k}$:
- Let: $\mathrm{Q}^{\prime}=\mathrm{Q}-\left\{\mathrm{R}_{\mathrm{i}_{\mathrm{j}}}\right\}$
- Let: $\operatorname{Plan}\left(\mathrm{Q}^{\prime}\right) \bowtie \mathrm{R}_{\mathrm{i}_{\mathrm{j}}} \quad \operatorname{Cost}\left(\mathrm{Q}^{\prime}\right)+\operatorname{CostOf}(\bowtie)$
- Plan $(Q), \operatorname{Cost}(Q)=$ cheapest of the above

[How good are they]

Is Dynamic Programming needed?

	PK indexes						$\mathrm{PK}+\mathrm{FK}$ indexes					
	PostgreSQL estimates			true cardinalities			PostgreSQL estimates			true cardinalities		
	median	95\%	max									
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Discussion

- All database systems implement Selinger's algorithm for join reorder
- For other operators (group-by, aggregates, difference): rule-based
- Many search strategies beyond dynamic programming

Final Discussion

- Optimizer has three components:
- Search space
- Cardinality and cost estimation
- Plan enumeration algorithms
- Optimizer realizes physical data independence
- Weakest link: cardinality estimation
- Poor plans are almost always due to that

Spark

Motivation

- Limitations of relational database systems:
- Single server (at least traditionally)
- SQL is a limited language (eg no iteration)
- Spark:
- Distributed system
- Functional language (Java/Scala) good for ML
- Implementation:
- Extension of MapReduce
- Distributed physical operators

Review: Single Client

E.g. data analytics

Review: Client-Server

E.g. accounting, banking, ...

Review: Three-tier

E.g. Web commerce

Review: Distributed Database

E.g. large-scale analytics or...

Programming in Spark

- A Spark program consists of:
- Transformations (map, reduce, join...). Lazy
- Actions (count, reduce, save...). Eager
- Eager: operators are executed immediately
- Lazy: operators are not executed immediately
- A operator tree is constructed in memory instead
- Similar to a relational algebra tree

Collections in Spark

RDD<T> = an RDD collection of type T

- Distributed on many servers, not nested
- Operations are done in parallel
- Recoverable via lineage; more later

Seq<T> = a sequence

- Local to one server, may be nested
- Operations are done sequentially

Example from paper, new syntax

Search logs stored in HDFS
// First line defines RDD backed by an HDFS file lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one errors = lines.filter(x -> x.startsWith("Error"))
// Persist the RDD in memory for reuse later
errors.persist() errors.collect() errors.filter(x -> x.contains("MySQL")).count()

Example from paper, new syntax

Search logs stored in HDFS
// First line defines RDD backed by an HDFS file lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one errors = lines.filter(x -> x.startsWith("Error"))

Transformation: Not executed yet..
// Persist the RDD in memory for reuse later
errors.persist() errors.collect() errors.filter(x -> x.contains("MySQL")).count()

Example from paper, new syntax

Search logs stored in HDFS
// First line defines RDD backed by an HDFS file lines = spark.textFile("hdfs://...")
// Now we create a new RDD from the first one errors = lines.filter(x -> x.startsWith("Error"))

Transformation: Not executed yet..
// Persist the RDD in memory for reuse later
errors.persist() errors.collect()

Action: triggers execution of entire program errors.filter(x -> x.contains("MySQL")).count()

Anonymous Functions

A.k.a. lambda expressions, starting in Java 8 errors = lines.filter(x -> x.startsWith("Error"))

Chaining Style

sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

Example

The RDD s:

Error...	Warning...	Warning...	Error...	Abort..	Abort...	Error...	Error...	Warning...	Error...

sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

Example

The RDD s:

Parallel step 1

Error...	Warning...	Warning...	Error...	Abort...	Abort...	Error...	Error...	Warning...	Error...

sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

Example

The RDD s:

Parallel step 1

Error...	Warning...	Warning...	Error...	Abort...	Abort...	Error...	Error...	Warning...	Error...
						filter("ERROR")	filter("ERROR")		
Error...						Error...	Error...		Error...

sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

Example

The RDD s:

Parallel step 1

sqlerrors = spark.textFile("hdfs://...") .filter(x -> x.startsWith("ERROR")) .filter(x -> x.contains("sqlite")) .collect();

More on Programming Interface

Large set of pre-defined transformations:

- Map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, crossProduct, ...

Small set of pre-defined actions:

- Count, collect, reduce, lookup, and save

Programming interface includes iterations

Transformations:	
$\operatorname{map}(\mathrm{f}: \mathrm{T}->\mathrm{U})$:	RDD<T> -> RDD<U>
flatMap(f: T -> Seq(U)) :	$\mathrm{RDD}\langle\mathrm{T}$ > -> RDD<U>
filter(f:T->Bool) :	RDD<T> -> RDD<T>
groupByKey():	$\operatorname{RDD}\langle(\mathrm{K}, \mathrm{V})>->\operatorname{RDD}\langle(\mathrm{K}, \mathrm{Seq}[\mathrm{V}])$ >
reduceByKey(F: V, V)-> V) :	$\operatorname{RDD}\langle(\mathrm{K}, \mathrm{V})\rangle->\operatorname{RDD}\langle(\mathrm{K}, \mathrm{V})$ >
union() :	($\mathrm{RDD}\langle\mathrm{T}\rangle$, RDD<T>) -> RDD<T>
join() :	$(\operatorname{RDD}\langle(\mathrm{K}, \mathrm{V})>, \operatorname{RDD}\langle(\mathrm{K}, \mathrm{W})>$) \rightarrow) $\operatorname{RDD}\langle(\mathrm{K},(\mathrm{V}, \mathrm{W}))$)
cogroup () :	$(\operatorname{RDD}\langle(\mathrm{K}, \mathrm{V})>, \operatorname{RDD}\langle(\mathrm{K}, \mathrm{W})>$) -> $\mathrm{RDD}\langle(\mathrm{K},(\mathrm{Seq}\langle\mathrm{V}\rangle$, Seq<W>)) >
crossProduct() :	$(R D D<T\rangle, R D D<U\rangle)->R D D<(T, U)>$

Actions:

count ()$:$	$R D D\langle T\rangle-\rangle$ Long
collect ()$:$	$R D D\langle T\rangle-\rangle$ Seq〈T>
reduce $(f:(T, T)->T):$	$R D D\langle T\rangle-\rangle T$

save(path:String):
Outputs RDD to a storage system e.g., HDFS

More Complex Example

```
val points = spark.textFile(...)
    .map(parsePoint).persist()
var w = // random initial vector
for (i <- 1 to ITERATIONS) {
    val gradient = points.map{ p =>
        p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
    }.reduce((a,b) => a+b)
    w -= gradient
}
```

[From Zaharia12]

[^0]: Estimate $\quad \sigma_{\text {sscity }}={ }^{\prime \prime}$ Mtv' $^{\prime} \wedge$ sstate $=$ 'CA' $($ Supplier $)=$?

