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Course Staff
• Instructor: Dan Suciu

suciu@cs.washington.edu

• TA: Dong He
donghe@cs.washington.edu

• TA: Kexuan Liu
kx31@cs.washington.edu

mailto:suciu@cs.washington.edu
mailto:donghe@cs.washington.edu
mailto:kx31@cs.washington.edu


COVID-19 UW Policy

• UW requires everyone to wear a mask 
in the classroom. 

• The instructor may temporarily remove 
their face coverings when formally 
instructing
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Course Aims

• Study design of big data systems
– Historical perspective
– Sample of modern systems
– Breadth of designs (relational, streaming, graph, etc.)

• Study key scalable data processing algorithms

• Gain hands-on experience with big data systems
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Course Content

• Query processing: single-sever, distributed

• MapReduce, successors

• Misc: streaming, column stores, graph engines

• See the calendar on the course website
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Course Format

• 5pm-7:50pm: Lectures
• 8pm-8:50pm: Section

– Bring your laptop!
• Office hours: by zoom only

See the course website
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Grading
• 15%: Reading assigned papers

• 60%: Homework assignments

• 25%: Final project

• Class participation
– I reserve the right to add/subtract points



Homeworks

• HW1: Amazon Redshift
• HW2: Spark/AWS
• HW3: Snowflake
• HW4: mini-homeworks – stay tuned

Save free credits for the project!
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Project

Choose a topic:
• Don’t worry about novelty
• Recommended: Benchmark projects
• Other ideas are welcome too
• I posted a few ideas, but you are 

encouraged to come up with your own
See the course website
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Communication

• Course webpage: all important stuff 
https://courses.cs.washington.edu/cours
es/csed516/21au/

• Discussion Board: ED.  Say “hello”!

• Class email: only for important 
announcements
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How to Turn In

Homework and project:
• https://gitlab.cs.washington.edu/

Reviews
• Google forms

See the course website
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Now onward to the world of databases!
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Quick Review

• Database = a collection of files
– Examples: products database; movies database

• Database management system (DBMS) = a 
piece of software to help manage that data
– Examples: Postgres, Oracle, sqlite

DATA516/CSED516 - Fall 2021 13



DBMS Functionality

• DBMS does many things:
– Complex queries, updates, concurrency, 

recovery, access control, integrity checks, 
data distribution, etc, etc

• Some DBMS are more specialized for 
some tasks than others
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DBMS Architectures
and Workloads
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Single Client
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Application and database
on the same computer

E.g. sqlite, postgres

E.g. data analytics



Two-tier Architecture
Client-Server
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Connection:
ODBC, JDBC

Applications:
Java, python

Database server
E.g. postgres, Oracle, DB2,…

E.g. accounting, banking, …



Three-tier Architecture

connection
(ODBC, JDBC)

http

Application server
E.g. java,python,

ruby-on-rails

Database server
E.g. postgres, Oracle, DB2,…

E.g. Web commerce

browser



Cloud Databases

ODBC, JDBC http

E.g. large-scale analytics or…

…social networks

App
server

Sharded database
E.g. Redshift, Spark, Snowflake



Workloads

• OLTP – online transaction processing
– Not interesting for data science

• OLAP – online analytics processing, 
a.k.a. Decision Support
– Critical for scalable data science

DATA516/CSED516 - Fall 2021 20



Relational Data Model
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Relational Data Model

Modeling the data:  schema + data
• Database = collection of relations
• Relation (a.k.a. table) = a set of tuples
• A Tuple (row, record) = (v1, …, vn)

Modeling the query:
• Set-at-a-time, relational query language

DATA516/CSED516 - Fall 2021 22



DATA516/CSED516 - Fall 2021

Schema

• Relation schema: describes column heads
– Relation name
– Name of each field (or column, or attribute)
– Domain of each field
– The arity of the relation = # attributes

• Database schema: set of all relation schemas
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Instance

• Relation instance: concrete table content
– Set of records matching the schema
– The cardinality or size of the relation = # tuples

• Database instance: set of relation instances
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What is the schema?
What is the instance?

DATA516/CSED516 - Fall 2021 25

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX

Supplier



What is the schema?
What is the instance?
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Schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)
Supplier

instance

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX



What is the schema?
What is the instance?
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Schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)
Supplier

instance

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX

In class: discuss keys, foreign keys, FD



Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

Data independence!
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Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is immaterial
– Applications refer to columns by their names

Data independence!
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Or is it?



Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is immaterial
– Applications refer to columns by their names

• Each Domain = a primitive type; no nesting!

Data independence!
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Or is it?



Relational Query Language

• Set-at-a-time:
– Inputs and outputs are relations
– Contrast with python/Julia/java/etc: tuple-at-a-time

• Examples:
– SQL, Relational Algebra, datalog, various graph 

query languages (Sparql, TigerGraph)
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SQL
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SQL

• Standard query language

• Introduced late 70’s, now it ballooned

• We briefly review “core SQL” (whatever 
that means); study more on you own!

• Review: A case against SQL 33



Structured Query Language: SQL

• Data definition language: DDL
– CREATE TABLE …,

CREATE VIEW …, 
ALTER TABLE…

• Data manipulation language: DML
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…, 
DELETE…

Our focus

Review
on your own



SQL Query
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SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>



Quick Review of SQL

What do
these queries

compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
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SELECT   *
FROM Part
WHERE pcolor = ‘red’



Quick Review of SQL

What do
these queries

compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT   x.sno, x.name
FROM Supplier x
WHERE x.sstate = ‘WA’
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SELECT   *
FROM Part
WHERE pcolor = ‘red’



Quick Review of SQL

What does
this query
compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname, x.scity
FROM Supplier x, Supply y, Part z 
WHERE x.sno = y.sno

and y.pno = z.pno
and x.sstate = ‘WA’
and y.price < 100
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Terminology

• Selection/filter: e.g. … WHERE scity=’Seattle’

• Projection: e.g. SELECT sname …

• Join: e.g. …FROM Supplier, Supply, Part …

39

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

This doesn’t work…
Why?



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?

Nope!



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland



Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno
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Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

the SAME part



Semantics
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Semantics

• What does a SQL query compute?

• Simple semantics:
– Nested Loop Semantics

• Allows optimizations
– Physical data independence
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Nested-Loop Semantics of SQL

DATA516/CSED516 - Fall 2021 50

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

This SEMANTICS!
It says what it means.

Doesn’t say how to get it



Nested-Loop Semantics of SQL
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SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

This SEMANTICS!
It says what it means.

Doesn’t say how to get it

Data Independence



Data Independence
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Physical Data Independence

• The query is written independently of 
how it will be evaluated

• We write what data we want;
optimizer decides how to get it
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Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT.  *
FROM Supply y, Part z
WHERE y.price = 100 and z.pcolor = ‘red’ and y.pno = z.pno

Discuss in
class how



Discussion

• Data independence is the main reason 
by the relational data model is the 
dominant data model today

• Reading next week: What Goes Around

DATA516/CSED516 - Fall 2021 60



NULL
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NULLs in SQL

• A NULL value means missing, or 
unknown, or undefined, or inapplicable

• Common in Data Science
• The key should never be NULL
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pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

Part(pno,pname,price,psize,pcolor)



NULLs in WHERE Clause

Predicate in WHERE Clause

• Atomic: e.g. pcolor = ‘red’

• AND / OR / NOT

63

Part(pno,pname,price,psize,pcolor)

When is the WHERE condition satisfied?



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)



Three-Valued Logic

• False=0, Unknown=0.5, True=1
• pcolor = ‘red’

– False or True when pcolor is not NULL
– Unknown when pcolor is NULL

• AND, OR, NOT are min, max, 1- …
WHERE condition: returns the tuple when True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)



Three-Valued Logic

• Problem: A or not(A) ≠ true

select *
from Part
where (price <= 100) or (price > 100)

Part(pno,pname,price,psize,pcolor)

Does it
return all

parts?



Three-Valued Logic

• Problem: A or not(A) ≠ true

select *
from Part
where (price <= 100) or (price > 100)

Part(pno,pname,price,psize,pcolor)

-- solution to return all parts:
select *
from Part
where (price <= 100) or (price > 100) or isNull(price)

Does it
return all

parts?



Aggregates
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Examples
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Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

What do
they compute?



Examples
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Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z 
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

What do
they compute?



Examples
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Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z 
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z 
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity
HAVING count(*) > 200

What do
they compute?



Discussion

• Aggregates = important for data science!
• Semantics:

1. FROM-WHERE (nested-loop semantics)
2. GROUP BY attrs
3. Apply HAVING predicates on groups
4. Apply SELECT aggregates on groups

• count, sum, min, max, avg
• DISTINCT is special case of GROUP BY
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Outer Joins
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Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase

Product(name, category)
Purchase(prodName, store) 

prodName
is foreign Key

Retrieve all products and stores.
Include products that never sold



Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase

Product(name, category)
Purchase(prodName, store) 

prodName
is foreign Key

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all products and stores.
Include products that never sold



Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

missing

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz

Product(name, category)
Purchase(prodName, store) 

prodName
is foreign Key

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all products and stores.
Include products that never sold



Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

Now it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz
OneClick Photo NULL

Product(name, category)
Purchase(prodName, store) 

prodName
is foreign Key

Retrieve all products and stores.
Include products that never sold



Left Outer Join (Details)

from R left outer join S on C1 where C2

1. Compute cross product R×S

2. Filter on C1

3. Add all R records without a match

4. Filter on C2
DATA516/CSED516 - Fall 2021 82



Joins

• Inner join

• Left outer join

• Right outer join

• Full outer join
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SQL: Beyond Relations
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Beyond Relations

• Sparse vectors, matrices

• Graph databases

• Important to data science!
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Sparse Matrix
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𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent
it as a relation?



Sparse Matrix
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𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val
1 1 5
1 3 -2
2 3 -1
3 2 7



Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2021 88

𝐶 = 𝐴 ⋅ 𝐵



Matrix Multiplication in SQL
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𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"



Matrix Multiplication in SQL
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𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

SELECT A.row, B.col, sum(A.val*B.val)
FROM A, B
WHERE A.col = B.row
GROUP BY A.row, B.col;



Discussion

Matrix multiplication = join + group-by

• Try at home: write in SQL
𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶

where the trace is defined as:
𝑇𝑟 𝑋 = ∑! 𝑋!!

Surprisingly, 𝐴 + 𝐵 is a bit harder…
91



Matrix Addition in SQL
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𝐶 = 𝐴 + 𝐵



Matrix Addition in SQL

DATA516/CSED516 - Fall 2021 93

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col



Matrix Addition in SQL
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𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Why is this wrong?



Solution 1: Outer Joins
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𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END)  as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;
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Solution 2: Group By
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𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)
FROM (SELECT * FROM A 

UNION ALL
SELECT * FROM B) as m

GROUP BY m.row, m.col;



Graph Databases

A graph is a simple relational database

• Niche area: graph databases/languages
– E.g. Neo4J, TigerGraph, Sparql

• Do we need specialized graph engines?
– My answer: NO
– We may need better languages: datalog
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Graph Databases
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A graph:
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Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src; 

A relation:
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Crash Course in Formal Logic

• The Relational Data Model is founded
on first order logic (”What goes around”)

• SQL was designed as a more friendly 
language than FO

• Complex SQL queries are sometimes 
best understood in the framework of FO

105



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

∀x (∃y Likes(x,y) ⇒ Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob



Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)  

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true
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∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

∀x (∃y Likes(x,y) ⇒ Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Everybody who likes somebody
also likes Alice



Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src; 

A relation:

1

2

4

3

5

Now this should
be clear



Other Representation

src dst
Alice Bob
Bob Alice
Bob Chris

Alice David

Chris David
David Eve

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Representing nodes separately;
needed for “isolated nodes” e.g. Frank



Other Representation

src dst weight
Alice Bob 3
Bob Alice 1
Bob Chris 2

Alice David 9

Chris David 5
David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Adding edge labels
Adding node labels…

2

5
3

1

9
1



Limitations of SQL

• No recursion!
• Data Science often requires recursion
• Datalog is designed for recursion

– later in the quarter
• Practical solution

– Use some external driver, e.g. pyton
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Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
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ℓ'(,-
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Lecture Summary

• One line takeaway:
– Relational model à data independence

• What you should do next:
– Review SQL (recommended: postgres)
– Write reviews for next lecture
– Start working on HW1 (redshift)
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