
Faster exact match searches with Bloom filters in PostgreSQL
Jacob Warwick

University of Washington
Seattle WA, USA

jacobw42@uw.edu

Introduction
Across distributed and non-distributed database systems, nearly
every query plan begins with a scan operation. And regardless of
the specific system, query, or data storage format, scans are
expensive; the physical limits of hardware impose non-negotiable
constraints. To overcome this, databases create indices, data
structures that allow the database engine to locate and retrieve only
the relevant data from the disk. Commonly, these indices are
implemented as binary trees or hash tables. However, in cases
where data are extremely large and diverse, building and
maintaining an index can be expensive.

Bloom filters are a statistical data structure that allow for efficient
existence queries of sets with constant complexity. They also allow
for the addition, but not deletion, of new data after the filter has
been constructed. Querying a bloom filter may produce a false
positive; the false positive rate is a function of the size of the bloom
filter and the number of hash functions used.

This project was motivated by a need to search for exact matches
across a large set of highly unique strings. Unlike a web search
problem, searching for exact matches meant that Bloom filters
could theoretically be used to remove groups of strings from
consideration, effectively reducing the scope of the search space
before running a traditional scan on the smaller space.

Evaluated Systems
The functionality to create or query Bloom filters does not currently
exist in either traditional or distributed database systems. The
natural choice of programming language for a custom
implementation was C, for its fluency with low-level memory
operations, and its speed. Choosing C necessitated that I work
within the PostgreSQL database, which in my research was one of
two database systems supporting user-defined functions in C (the
other was Apache Impala).

PostgreSQL 12 is the most recent stable release, and it includes
support for parallel scan query plans, where parallel threads are
used on large scans within the same query. I hoped that by
implementing my bloom filters in C and querying them through
Postgres, I could take advantage of Postgres’ parallelism and
storage manager.

Problem Statement and Method
Implementing a custom index for PostgreSQL was beyond my
capabilities and scope, so instead I implemented a C library and a
C++ program to create a bloom filter for each biological sample in
my dataset, and load them into the PostgreSQL database as byte
arrays. I then reused my library to build a UDF to query for search
sequences within those byte arrays. Bloom filter creation and
database ingestion took about 1 hour for 1.6 billion sequences
across 22,827 samples, with each bloom filter constructed for a 1e-
12 false positive rate. The resulting data structures were
approximately 11GB on disk.

I conducted my tests on a large virtual machine, with 32 virtual
cores and 250GB of RAM. I configured my Postgres server to take
advantage of all available resources.

Figure 1: Ingestion process and resulting schema

I wrote a SQL query that uses the Bloom filters to narrow the search
space to just samples with matching sequences, and then performs
an exhaustive search on that subset of samples. In the next section,
I compare the performance of that query to that of a simple
parallelized hash-join.

While PostgreSQL is not a distributed system, the problem is
trivially parallelizable, so my intent is to explore the effectiveness
of this approach, with the understanding that it could be applied to
parallel systems too. I ran experiments on a virtual machine with
32 virtual processors and 256 GB of RAM, and modified my server
config as follows, to take advantage of the available resources
(once my test query was established, I experimented with several
versions of these hyperparameters):

shared_buffers = 30GB # from the default 128MB
temp_buffers = 16GB # min 800kB
work_mem = 20GB # min 64kB
effective_io_concurrency = 8
max_worker_processes = 32
max_parallel_maintenance_workers = 32
max_parallel_workers_per_gather = 32

DATA 590, December, 2019, Seattle, WA USA J. Warwick

max_parallel_workers = 32
enable_partitionwise_join = on
enable_partitionwise_aggregate = on
parallel_setup_cost = 1.0
min_parallel_table_scan_size = 16kB
min_parallel_index_scan_size = 16kB

My initial attempts resulted in vastly degraded performance due to
the schema of the “sequences” table. While Postgres was able to
scan the bloom filters relatively quickly in my initial tests, it wasn’t
effectively using the results to reduce the amount of table scanning
on the sequences table. To address this, I used a CLUSTER index
on sample_name, which was also a btree index. This re-sorted the
data on disk by sample_name, which gave the Postgres query
planner the ability to scan only the blocks containing samples
relevant to the query.

Even when the sequences table was sorted, it took several tries to
construct a query where the query planner took advantage of the
reduction in sample space. Compare the following queries and their
corresponding query-plans (tcrs50 is a table of search terms, tcr_bf
is the bloom filter table, and test_tcrs is the equivalent of the
sequences table previous described):

WITH matching_samples AS (
 SELECT tcr_bf.sample_name, tcrs.nucleotide
 FROM tcr_bf, tcrs50 as tcrs
 WHERE bf_contains(nucleotide, bloom, bf_hashes)
)
SELECT test_tcrs.nucleotide, count(*) as matches
FROM test_tcrs, matching_samples
WHERE test_tcrs.nucleotide = matching_samples.nucleotide
AND test_tcrs.sample_name = matching_samples.sample_name
GROUP BY 1;

Figure 2: Naïve search query

Figure 3: Naïve search query plan visualized

WITH matching_samples AS (
 SELECT tcr_bf.sample_name, tcrs.nucleotide
 FROM tcr_bf, tcrs50 as tcrs
 WHERE bf_contains(nucleotide, bloom, bf_hashes)
)
SELECT test_tcrs.nucleotide, count(*) as matches
FROM test_tcrs, matching_samples
WHERE test_tcrs.sample_name IN (
 select distinct sample_name from matching_samples
)
AND test_tcrs.nucleotide = matching_samples.nucleotide
AND test_tcrs.sample_name = matching_samples.sample_name
GROUP BY 1;

Figure 4: Improved search query taking advantage of bloom filter reduction

Figure 5: Improved search query plan visualized

Postgres’ query planner has two ways to address “WITH”
statements: either the named reference is substituted into the query
transparently, as a standard subquery, or in cases where the named
query is used in a more complicated way or contains side effects,
the WITH clause is treated as a common table expression (CTE).
CTEs are evaluated and materialized into memory before the rest
of the query is run. The critical difference between the query in
Figures 2 and 4 is the additional constraint on the final join:

 WHERE test_tcrs.sample_name IN (
 select distinct sample_name from matching_samples
)

Without it, the query is simple enough that the WITH clause is
translated into a subquery, and Postgres’ query planner assumes
that a hash join between the full sequences table and the search
terms is the fastest logical plan. When the extra constraint is
applied, Postgres has to materialize the result of the WITH
statement before it can begin work on the rest of the query. This
materialization allows Postgres to dramatically cut down the
amount of scanning on the sequences table, but at the cost of
materializing the common table expression.

The goal of this experiment was to measure speedup compared to
Postgres’ preferred query plan for this situation, a parallelized hash
join. To accomplish this, I ran three versions of the search query
against the same test set (of size 16B sequences over 21,755
samples): once using a naïve hash join, one using the bloom filter
approach described above, and once just materializing the common

Faster exact match searches with Bloom filters in PostgreSQL DATA 590, December, 2019, Seattle, WA USA

table expression. All durations represented a “warm cache” on the
bloom filters table.

The initial test sets consisted of 10, 50, 100, 500, and 1000
sequences that were randomly sampled (uniformly) from the
sequences table. This approach produced test sets that actually
violated my motivating assumption: that the diversity of my data
was high enough, and contamination rare enough, that any set of
previously unseen search terms would have very little overlap
within the searchable universe. By testing my filter this way, I was
effectively testing its performance as the number of matches (or
“contaminants”) increased. Detecting 1000 or even 100 matches
spread uniformly across the searched universe should be a rare
occurrence for which I am not attempting to optimize, and an
extremely concerning result in a contamination scenario. By
reporting results from this test set, I was able to explore the effect
of varying “hit rates” on the filter. In the next section, I refer to
matches from this test set as “hits” to clarify that 100% of the test
set exists in the search space.

To better understand the scaling properties of my process, I then
created more test sets of sizes 100, 1000, 10K, 100K, 1M, and 10M
sequences, where each test set contained only 10 sequences in the
search space, and the rest of the sequences were randomly
generated strings. The matching nucleotides were randomly
distributed throughout the test sets.

Results
In the following chart, the blue bars show the query duration for the
hash join, the red bars show the equivalent operation using bloom
filters, and the gold bars show just the CTE portion of the bloom
filter search query, to aid in the subsequent analysis.

Figure 6: Query duration with various numbers of query sequences

(initial test set)

Unsurprisingly, Postgres’ parallelized hash join against the full
sequences table took a relatively consistent amount of time: each
query took about 5 minutes, but that number did not change
significantly as the number of search sequences increased. I
hypothesize this is because I only tested up to 1000 matching
sequences - at a much higher number of search sequences, I would
expect hash join to show somewhat degraded performance.

At only 10 matching sequences, the bloom filter query was able to
limit the subsequent table scan to 77 samples, or 0.4% of the
sequences table, which allowed the entire query to take only 27

seconds compared to the approximately 600 seconds required by
hash join. However, as the number of matching sequences
increased, so did the time required to scan the bloom filters and
materialize the respective matches before the rest of the search
could begin. At 500 hits, the bloom filter query exceeded the
amount of time taken by the hash join, and at 1000 hits it took
almost three times as long as the hash join. Examining the
breakdown of CTE-vs-join in the bloom filter query, we can see
that just querying and returning 1000 hits from the bloom filters
took about 400 seconds. However, it’s hard to tell if that latency
was caused by the added overhead of searching for the additional
sequences in the bloom filters, or by materializing the significantly
longer CTE result.

To figure out the answer, and to gain a better understanding of the
scaling characteristics of this approach, examine the results from
the same test on the second test set. While I had initially hoped that
most of the query time was being spent on tasks other than the
bloom filter search, the first test of 10 hits among 100 search terms
took 50.95 seconds, and 10 hits out of 1000 search terms took
414.998 seconds. At this point I stopped the test, because it was
clear that the search query was scaling along with the number of
search terms, not the number of hits, as observed in the previous
part of the experiment.

Conclusion
While the prefiltering approach demonstrated in this paper showed
promise with a small number of search terms, it ultimately yielded
diminishing returns as the number of search terms increased. In
order for this approach to work, it would need to be applied in huge
search spaces, with relatively few search terms, and likely in a
system with a native integration of the feature.

The computational burden imposed by bloom filter search could
likely have been reduced had I chosen to pursue a less extreme false
positive rate, or increased the effective IO parallelism parameter of
the PostgreSQL server. However, as the intent of this paper was to
examine the feasibility of this approach, I felt that further tuning
was unnecessary. I have come to feel that the combined prefilter
approach - which I originally hoped would be an interesting way to
speed up a search query - is only effective in a very narrow window
of edge case situations. As such, it is probably better left to a
custom-built implementation outside a database system.

References
Kirsch, Adam, and Michael Mitzenmacher. 2007. "Less Hashing,

Same Performance:Building a Better Bloom Filter."
Random Structures and Algorithms 187-218.

Schmatz, Michael. 2016. How to write a Bloom filter in C++. 04
19. Accessed 12 09, 2019.
https://blog.michaelschmatz.com/2016/04/11/how-to-
write-a-bloom-filter-cpp/.

The PostgreSQL Global Development Group. n.d. 37.10. C-
Language Functions . Accessed 12 09, 2019.
https://www.postgresql.org/docs/current/xfunc-c.html.

DATA 590, December, 2019, Seattle, WA USA J. Warwick

—. 2019. 11.2 Index Types. 12 09. www.postgresql.org.
—. n.d. CLUSTER. Accessed 12 06, 2019.

https://www.postgresql.org/docs/9.1/sql-cluster.html.

