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Introduction 
Across distributed and non-distributed database systems, nearly 
every query plan begins with a scan operation. And regardless of 
the specific system, query, or data storage format, scans are 
expensive; the physical limits of hardware impose non-negotiable 
constraints. To overcome this, databases create indices, data 
structures that allow the database engine to locate and retrieve only 
the relevant data from the disk. Commonly, these indices are 
implemented as binary trees or hash tables. However, in cases 
where data are extremely large and diverse, building and 
maintaining an index can be expensive. 
 
Bloom filters are a statistical data structure that allow for efficient 
existence queries of sets with constant complexity. They also allow 
for the addition, but not deletion, of new data after the filter has 
been constructed. Querying a bloom filter may produce a false 
positive; the false positive rate is a function of the size of the bloom 
filter and the number of hash functions used. 
 
This project was motivated by a need to search for exact matches 
across a large set of highly unique strings. Unlike a web search 
problem, searching for exact matches meant that Bloom filters 
could theoretically be used to remove groups of strings from 
consideration, effectively reducing the scope of the search space 
before running a traditional scan on the smaller space. 

Evaluated Systems 
The functionality to create or query Bloom filters does not currently 
exist in either traditional or distributed database systems. The 
natural choice of programming language for a custom 
implementation was C, for its fluency with low-level memory 
operations, and its speed. Choosing C necessitated that I work 
within the PostgreSQL database, which in my research was one of 
two database systems supporting user-defined functions in C (the 
other was Apache Impala). 
 
PostgreSQL 12 is the most recent stable release, and it includes 
support for parallel scan query plans, where parallel threads are 
used on large scans within the same query. I hoped that by 
implementing my bloom filters in C and querying them through 
Postgres, I could take advantage of Postgres’ parallelism and 
storage manager. 
 
 

Problem Statement and Method 
Implementing a custom index for PostgreSQL was beyond my 
capabilities and scope, so instead I implemented a C library and a 
C++ program to create a bloom filter for each biological sample in 
my dataset, and load them into the PostgreSQL database as byte 
arrays. I then reused my library to build a UDF to query for search 
sequences within those byte arrays. Bloom filter creation and 
database ingestion took about 1 hour for 1.6 billion sequences 
across 22,827 samples, with each bloom filter constructed for a 1e-
12 false positive rate. The resulting data structures were 
approximately 11GB on disk. 
 
I conducted my tests on a large virtual machine, with 32 virtual 
cores and 250GB of RAM. I configured my Postgres server to take 
advantage of all available resources. 
 

 
Figure 1: Ingestion process and resulting schema 

 
I wrote a SQL query that uses the Bloom filters to narrow the search 
space to just samples with matching sequences, and then performs 
an exhaustive search on that subset of samples. In the next section, 
I compare the performance of that query to that of a simple 
parallelized hash-join. 
 
While PostgreSQL is not a distributed system, the problem is 
trivially parallelizable, so my intent is to explore the effectiveness 
of this approach, with the understanding that it could be applied to 
parallel systems too. I ran experiments on a virtual machine with 
32 virtual processors and 256 GB of RAM, and modified my server 
config as follows, to take advantage of the available resources 
(once my test query was established, I experimented with several 
versions of these hyperparameters): 
 
shared_buffers = 30GB # from the default 128MB 
temp_buffers = 16GB                     # min 800kB 
work_mem = 20GB                         # min 64kB 
effective_io_concurrency = 8 
max_worker_processes = 32 
max_parallel_maintenance_workers = 32 
max_parallel_workers_per_gather = 32 
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max_parallel_workers = 32 
enable_partitionwise_join = on 
enable_partitionwise_aggregate = on 
parallel_setup_cost = 1.0 
min_parallel_table_scan_size = 16kB 
min_parallel_index_scan_size = 16kB 

 
My initial attempts resulted in vastly degraded performance due to 
the schema of the “sequences” table. While Postgres was able to 
scan the bloom filters relatively quickly in my initial tests, it wasn’t 
effectively using the results to reduce the amount of table scanning 
on the sequences table. To address this, I used a CLUSTER index 
on sample_name, which was also a btree index. This re-sorted the 
data on disk by sample_name, which gave the Postgres query 
planner the ability to scan only the blocks containing samples 
relevant to the query. 
 
Even when the sequences table was sorted, it took several tries to 
construct a query where the query planner took advantage of the 
reduction in sample space. Compare the following queries and their 
corresponding query-plans (tcrs50 is a table of search terms, tcr_bf 
is the bloom filter table, and test_tcrs is the equivalent of the 
sequences table previous described): 
 
WITH matching_samples AS ( 
    SELECT tcr_bf.sample_name, tcrs.nucleotide 
    FROM tcr_bf, tcrs50 as tcrs 
   WHERE bf_contains(nucleotide, bloom, bf_hashes) 
)  
SELECT test_tcrs.nucleotide, count(*) as matches 
FROM test_tcrs, matching_samples 
WHERE test_tcrs.nucleotide = matching_samples.nucleotide 
AND test_tcrs.sample_name = matching_samples.sample_name 
GROUP BY 1; 

Figure 2: Naïve search query 
 

 
Figure 3: Naïve search query plan visualized 

 
 
 
 
 
 
 
 

WITH matching_samples AS ( 
    SELECT tcr_bf.sample_name, tcrs.nucleotide 
    FROM tcr_bf, tcrs50 as tcrs 
   WHERE bf_contains(nucleotide, bloom, bf_hashes) 
)  
SELECT test_tcrs.nucleotide, count(*) as matches 
FROM test_tcrs, matching_samples 
WHERE test_tcrs.sample_name IN ( 
    select distinct sample_name from matching_samples 
) 
AND test_tcrs.nucleotide = matching_samples.nucleotide 
AND test_tcrs.sample_name = matching_samples.sample_name 
GROUP BY 1; 

Figure 4: Improved search query taking advantage of bloom filter reduction 
 

 
Figure 5: Improved search query plan visualized 

 
Postgres’ query planner has two ways to address “WITH” 
statements: either the named reference is substituted into the query 
transparently, as a standard subquery, or in cases where the named 
query is used in a more complicated way or contains side effects, 
the WITH clause is treated as a common table expression (CTE). 
CTEs are evaluated and materialized into memory before the rest 
of the query is run. The critical difference between the query in 
Figures 2 and 4 is the additional constraint on the final join:  
 
    WHERE test_tcrs.sample_name IN ( 
        select distinct sample_name from matching_samples 
    ) 
 
Without it, the query is simple enough that the WITH clause is 
translated into a subquery, and Postgres’ query planner assumes 
that a hash join between the full sequences table and the search 
terms is the fastest logical plan. When the extra constraint is 
applied, Postgres has to materialize the result of the WITH 
statement before it can begin work on the rest of the query. This 
materialization allows Postgres to dramatically cut down the 
amount of scanning on the sequences table, but at the cost of 
materializing the common table expression. 
 
The goal of this experiment was to measure speedup compared to 
Postgres’ preferred query plan for this situation, a parallelized hash 
join. To accomplish this, I ran three versions of the search query 
against the same test set (of size 16B sequences over 21,755 
samples): once using a naïve hash join, one using the bloom filter 
approach described above, and once just materializing the common 
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table expression. All durations represented a “warm cache” on the 
bloom filters table. 
 
The initial test sets consisted of 10, 50, 100, 500, and 1000 
sequences that were randomly sampled (uniformly) from the 
sequences table. This approach produced test sets that actually 
violated my motivating assumption: that the diversity of my data 
was high enough, and contamination rare enough, that any set of 
previously unseen search terms would have very little overlap 
within the searchable universe. By testing my filter this way, I was 
effectively testing its performance as the number of matches (or 
“contaminants”) increased. Detecting 1000 or even 100 matches 
spread uniformly across the searched universe should be a rare 
occurrence for which I am not attempting to optimize, and an 
extremely concerning result in a contamination scenario. By 
reporting results from this test set, I was able to explore the effect 
of varying “hit rates” on the filter. In the next section, I refer to 
matches from this test set as “hits” to clarify that 100% of the test 
set exists in the search space. 
 
To better understand the scaling properties of my process, I then 
created more test sets of sizes 100, 1000, 10K, 100K, 1M, and 10M 
sequences, where each test set contained only 10 sequences in the 
search space, and the rest of the sequences were randomly 
generated strings. The matching nucleotides were randomly 
distributed throughout the test sets. 

Results 
In the following chart, the blue bars show the query duration for the 
hash join, the red bars show the equivalent operation using bloom 
filters, and the gold bars show just the CTE portion of the bloom 
filter search query, to aid in the subsequent analysis. 
 

 
Figure 6: Query duration with various numbers of query sequences  

(initial test set) 
 
Unsurprisingly, Postgres’ parallelized hash join against the full 
sequences table took a relatively consistent amount of time: each 
query took about 5 minutes, but that number did not change 
significantly as the number of search sequences increased. I 
hypothesize this is because I only tested up to 1000 matching 
sequences - at a much higher number of search sequences, I would 
expect hash join to show somewhat degraded performance. 
 
At only 10 matching sequences, the bloom filter query was able to 
limit the subsequent table scan to 77 samples, or 0.4% of the 
sequences table, which allowed the entire query to take only 27 

seconds compared to the approximately 600 seconds required by 
hash join. However, as the number of matching sequences 
increased, so did the time required to scan the bloom filters and 
materialize the respective matches before the rest of the search 
could begin. At 500 hits, the bloom filter query exceeded the 
amount of time taken by the hash join, and at 1000 hits it took 
almost three times as long as the hash join. Examining the 
breakdown of CTE-vs-join in the bloom filter query, we can see 
that just querying and returning 1000 hits from the bloom filters 
took about 400 seconds. However, it’s hard to tell if that latency 
was caused by the added overhead of searching for the additional 
sequences in the bloom filters, or by materializing the significantly 
longer CTE result. 
 
To figure out the answer, and to gain a better understanding of the 
scaling characteristics of this approach, examine the results from 
the same test on the second test set.  While I had initially hoped that 
most of the query time was being spent on tasks other than the 
bloom filter search, the first test of 10 hits among 100 search terms 
took 50.95 seconds, and 10 hits out of 1000 search terms took 
414.998 seconds. At this point I stopped the test, because it was 
clear that the search query was scaling along with the number of 
search terms, not the number of hits, as observed in the previous 
part of the experiment. 

Conclusion 
While the prefiltering approach demonstrated in this paper showed 
promise with a small number of search terms, it ultimately yielded 
diminishing returns as the number of search terms increased. In 
order for this approach to work, it would need to be applied in huge 
search spaces, with relatively few search terms, and likely in a 
system with a native integration of the feature. 
 
The computational burden imposed by bloom filter search could 
likely have been reduced had I chosen to pursue a less extreme false 
positive rate, or increased the effective IO parallelism parameter of 
the PostgreSQL server. However, as the intent of this paper was to 
examine the feasibility of this approach, I felt that further tuning 
was unnecessary. I have come to feel that the combined prefilter 
approach - which I originally hoped would be an interesting way to 
speed up a search query - is only effective in a very narrow window 
of edge case situations. As such, it is probably better left to a 
custom-built implementation outside a database system. 

References 
Kirsch, Adam, and Michael Mitzenmacher. 2007. "Less Hashing, 

Same Performance:Building a Better Bloom Filter." 
Random Structures and Algorithms 187-218. 

Schmatz, Michael. 2016. How to write a Bloom filter in C++. 04 
19. Accessed 12 09, 2019. 
https://blog.michaelschmatz.com/2016/04/11/how-to-
write-a-bloom-filter-cpp/. 

The PostgreSQL Global Development Group. n.d. 37.10. C-
Language Functions . Accessed 12 09, 2019. 
https://www.postgresql.org/docs/current/xfunc-c.html. 



DATA 590, December, 2019, Seattle, WA USA J. Warwick 
 

 
 

—. 2019. 11.2 Index Types. 12 09. www.postgresql.org. 
—. n.d. CLUSTER. Accessed 12 06, 2019. 

https://www.postgresql.org/docs/9.1/sql-cluster.html. 
 
 
 


