
Benchmarking data parallel distributed training of
deep learning models on PyTorch and TensorFlow

Roshan Ramkeesoon
University of Washington

Data Science
roshanr@uw.edu

ABSTRACT
We vary the dataset size, model size, batch size, and number of
GPUs and train using two data parallel deep learning frameworks:
PyTorch DataParallel and TensorFlow MirroredStrategy. We
observe TensorFlow has higher processing rates and increased
scaleup, but recognize a fairer comparison would be between
TensorFlow MirroredStrategy and PyTorch
DistributedDataParallel. We observe that GPUs improve
performance when models have many parameters and batch size
is high.

1. INTRODUCTION
In recent years, deep learning models have become state-of-the-art
models for learning from increasing volume and complexity of
data. Deep learning models require large volumes of data to
extract useful features. This process can require large amounts of
time to train -- on the order of weeks. Because of the
repetitiveness of some of the computations, distributed computing
has presented value in this domain. Distributed deep learning can
be divided into two potentially overlapping subcategories: model
parallelism and data parallelism.

Figure 1. (left) The DistBelief model is an early example of
model parallelism. (right) the parameter server method for
data parallelism. [1]

1.1 Model Parallelism
In model parallelism, parts of the model sit on different
processors. Only the nodes with edges that cross partition
boundaries will need to have their state transmitted between
machines. If a model is too big to fit on a single GPU, training
almost certainly requires some form of model parallelism. A
prominent early successful example of data parallelism is
Google’s DistBelief model [1].

1.2 Data Parallelism
In data parallelism, the training data is divided across processors
and each model is replicated on the different machines. Each
machine trains its replica on the data contained locally and
parameter updates are shared. The method of sharing weight
updates is a subject of research. These methods can be performed
synchronously or asynchronously, each presenting their own
challenges.

In the parameter server method, each processor shares its weight
updates with the parameter server. The parameter server is
responsible for storing the current global state of the model.
Processors write weight updates to the parameter server after
training and read the newest weights before training. This method
runs into bottleneck issues reading and writing to the parameter
server.

A more efficient method is ring all-reduce. This was popularized
by Uber Horovod software [4], but is now implemented natively
in other packages including TensorFlow. In this method, there is
no central parameter server, but the machines form a ring and
each machine only listens from one other machine and sends
element-wise updates to one other machine.

Figure 2. Ring allreduce diagram from Uber Horovod paper.
During state transmission phase, elements of the updated
states are shared one at a time in a ring formation. [4]

2. EVALUATED SYSTEMS
There are many software packages for performing data parallel
distributed deep learning. Two of the most prominent ones are
TensorFlow [5] and PyTorch [2], which will be evaluated in this
work.
TensorFlow distributed [5] offers a variety of distribution
strategies. I evaluate the synchronous MirroredStrategy on the
Keras API. In the MirroredStrategy, each GPU receives a portion
of the training data as well as a replica of the model. Each GPU
trains locally and then communicates variable updates using
efficient all-reduce algorithms.

PyTorch offers DataParallel for data parallel training on a single
machine with multiple cores. It works similarly to TensorFlow
MirroredStrategy where each core contains a replica of the model.
However, I observed two key differences. Whereas in TensorFlow
MirroredStrategy, each GPU trains on a static shard of data, in
PyTorch DataParallel each GPU is served a batch of data on each
batch iteration, which may result in increased communication
costs. In addition, PyTorch uses a parameter server strategy and
does not give options for changing the communication strategy

[3]. The all-reduce strategy has been seen in prior work to be
more efficient than parameter server. [4]

After running my experiments, I later found that PyTorch does
have a framework that is expected to be faster than DataParallel
called DistributedDataParallel. One optimization is that it shards
data before train time instead on each batch iteration. In a future
study, it would be appropriate to compare its performance with
TensorFlow MirroredStrategy.

3. PROBLEM STATEMENT & METHOD
For my experiments, I trained on the MNIST digits dataset. I
varied the number of GPUs, batch size, dataset size, and model
size. I recorded the time to train the first epoch and the second
epoch. During the first epoch, the model may incur one-time
startup costs, for example to shard data. The model will likely
have a similar run time during the second epoch and all future
epochs because the operations of synchronous data parallel
training are deterministic: forward pass, calculate loss,
backpropagate error, gradient step, with many resources becoming
free between epochs. For this reason, I only record the first and
second epoch train time.
I vary the batch size between 128, 256, and 512 images per batch.
I use two sizes of model: a smaller model with 402,442 trainable
parameters, and a larger model with 2,636,554 trainable
parameters. Both use cross entropy loss and adam optimizer with
parameters: learning rate=0.001, betas=(0.9, 0.999), eps=1e-07,
weight_decay=0, and amsgrad=False.

Figure 4. Small and large model architectures for image
classification. The small model contains 402,442 trainable
parameters and the large model contains 2,636,554 trainable
parameters.

The MNIST dataset contains 60k train set images and 10k test set
images. When I vary the train set size, I simply concatenate the
MNIST dataset to duplicates of itself. I run experiments on 1x
MNIST, 4x MNIST, and 8x MNIST which correspond to 60k,
240k, and 480k images.

The number of GPUs vary between 1, 2 and 4. All experiments
were run on the Google Cloud Platform on machines composed of
n1-highmem-2 (2 vCPUs, 13 GB memory) with a variable number
of NVIDIA Tesla K80 GPUs. TensorFlow experiments were run
on instances with the Google, Intel® optimized Deep Learning
Image: TensorFlow 2.0.0. PyTorch experiments were run on
instances with Google, Deep Learning Image: PyTorch 1.2.0.

4. RESULTS
(a)

(b)

(c)

(d)

(e)

Figure 5. (a) Second epoch processing speed for varied model
size. (b) varied batch sizes for large model on 8x MNIST. (c)
Second epoch train time with various sizes of dataset. (d) First
and second epoch processing rates for large model. (e) Second
epoch processing speed for varied dataset size for same model.

Overall we note that TensorFlow MirroredStrategy outperforms
PyTorch DataParallel, and that the different strategies have
notable effects on processing speed, especially when comparing
first and second epoch training processing speed (Figure 5d),
where it appears TensorFlow is slower in the first epoch likely
due to data sharding. For this reason, the other plots only show the
second epoch times, which are also more representative of the
average training epoch.

In Figure 5a, for TensorFlow on the small model with the 1x
MNIST dataset, second epoch processing rate unintuitively
decreases as the number of GPUs increase. On PyTorch we see
the second epoch processing rate increases marginally with
additional GPU’s. The result indicates that for TensorFlow, either
the dataset size or model size is so small the overhead from
parallelization outweighs the increased speed from parallelization.
However we also see in Figure 5a, when using the large model on
Tensorflow, we see performance increases with increased GPU. I
believe this effect may be related to the balance between increased
computation and communication time with increased number of
parameters. As the number of parameters increases, it may be the
case that computation time scales faster than communication time
which would make using additional GPU’s advantageous only for
large models. Future studies looking at the computation and
communication time on each device is necessary to confirm this
hypothesis.
We see in Figure 5c that the total second epoch train time
decreases with increased GPU’s, and that the effect is more
pronounced when we use a larger dataset. However we see in
Figure 5e that the processing speed remains constant when we
only vary the dataset size. This contrasts the results from Figure
5a which show that the processing rate increases with increased
GPUs when we increase the model size. This effect appears to
become parabolic with optimal performance at 2 GPUs. Perhaps

the large model used in this experiment with ~2.6 million
parameters is still not large enough to take advantage of data
parallelism at 4 GPUs.

In addition we see in Figure 5b that increased batch size increases
processing rates for a given number of GPUs but that this effect is
more pronounced with increased number of GPUs. Data
parallelism works best when the batch size maximizes the
memory available on each device. (Batch size is a learning
parameter and should not be adjusted without making adjustments
to learning rate.)

5. CONCLUSION
In terms of ease-of-use, it was simpler to implement data
parallelism in PyTorch than in TensorFlow. However, we observe
that TensorFlow MirroredStrategy has faster processing speeds
and scaleup than PyTorch DataParallel. This is likely due in part
to its initial slow epoch in which it shards data. However, this may
not have been an apples-to-apples comparison and future studies
should compare TensorFlow MirroredStrategy to PyTorch
DistributedDataParallel.

6. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed. Thanks to all the open source bloggers who

provided information on implementing PyTorch and
TensorFlows. Thanks to Brandon Haynes and Dan Siciu for all
the mentorship.

7. REFERENCES
[1] Dean, Jeffrey, et al. "Large scale distributed deep networks."

Advances in neural information processing systems. 2012.

[2] PyTorch (2019) version 1.2.0. Github repository.
https://github.com/pytorch/pytorch

[3] Raschka, Sebastian, and Erick Guan. “How PyTorch's
Parallel Raschka, Sebastian, and Erick Guan. “How
PyTorch's Parallel Method and Distributed Method Works?”
PyTorch, Nov. 2018, discuss.pytorch.org/t/how-pytorchs-
parallel-method-and-distributed-method-works/30349/16.

[4] Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and
easy distributed deep learning in TensorFlow." arXiv
preprint arXiv:1802.05799 (2018).

[5] TensorFlow (2019) version 2.0.0. Github repository. Code:
https://github.com/tensorflow/tensorflow Documentation:
https://www.tensorflow.org/guide/distributed_training

