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ABSTRACT 
We vary the dataset size, model size, batch size, and number of 
GPUs and train using two data parallel deep learning frameworks: 
PyTorch DataParallel and TensorFlow MirroredStrategy. We 
observe TensorFlow has higher processing rates and increased 
scaleup, but recognize a fairer comparison would be between 
TensorFlow MirroredStrategy and PyTorch 
DistributedDataParallel. We observe that GPUs improve 
performance when models have many parameters and batch size 
is high.  

1. INTRODUCTION 
In recent years, deep learning models have become state-of-the-art 
models for learning from increasing volume and complexity of 
data. Deep learning models require large volumes of data to 
extract useful features. This process can require large amounts of 
time to train -- on the order of weeks. Because of the 
repetitiveness of some of the computations, distributed computing 
has presented value in this domain. Distributed deep learning can 
be divided into two potentially overlapping subcategories: model 
parallelism and data parallelism.  

 
Figure 1. (left) The DistBelief model is an early example of 
model parallelism. (right) the parameter server method for 
data parallelism. [1] 

1.1 Model Parallelism 
In model parallelism, parts of the model sit on different 
processors. Only the nodes with edges that cross partition 
boundaries will need to have their state transmitted between 
machines. If a model is too big to fit on a single GPU, training 
almost certainly requires some form of model parallelism. A 
prominent early successful example of data parallelism is 
Google’s DistBelief model [1].  

1.2 Data Parallelism 
In data parallelism, the training data is divided across processors 
and each model is replicated on the different machines. Each 
machine trains its replica on the data contained locally and 
parameter updates are shared. The method of sharing weight 
updates is a subject of research. These methods can be performed 
synchronously or asynchronously, each presenting their own 
challenges.  

In the parameter server method, each processor shares its weight 
updates with the parameter server. The parameter server is 
responsible for storing the current global state of the model. 
Processors write weight updates to the parameter server after 
training and read the newest weights before training. This method 
runs into bottleneck issues reading and writing to the parameter 
server.  
 
A more efficient method is ring all-reduce. This was popularized 
by Uber Horovod software [4], but is now implemented natively 
in other packages including TensorFlow. In this method, there is 
no central parameter server, but the machines form a ring and 
each machine only listens from one other machine and sends 
element-wise updates to one other machine.  

 
Figure 2. Ring allreduce diagram from Uber Horovod paper. 
During state transmission phase, elements of the updated 
states are shared one at a time in a ring formation. [4] 
 

2. EVALUATED SYSTEMS 
There are many software packages for performing data parallel 
distributed deep learning. Two of the most prominent ones are 
TensorFlow [5] and PyTorch [2], which will be evaluated in this 
work.  
TensorFlow distributed [5] offers a variety of distribution 
strategies. I evaluate the synchronous MirroredStrategy on the 
Keras API. In the MirroredStrategy, each GPU receives a portion 
of the training data as well as a replica of the model. Each GPU 
trains locally and then communicates variable updates using 
efficient all-reduce algorithms. 

PyTorch offers DataParallel for data parallel training on a single 
machine with multiple cores. It works similarly to TensorFlow 
MirroredStrategy where each core contains a replica of the model. 
However, I observed two key differences. Whereas in TensorFlow 
MirroredStrategy, each GPU trains on a static shard of data, in 
PyTorch DataParallel each GPU is served a batch of data on each 
batch iteration, which may result in increased communication 
costs. In addition, PyTorch uses a parameter server strategy and 
does not give options for changing the communication strategy 



[3]. The all-reduce strategy has been seen in prior work to be 
more efficient than parameter server. [4] 

 
After running my experiments, I later found that PyTorch does 
have a framework that is expected to be faster than DataParallel 
called DistributedDataParallel. One optimization is that it shards 
data before train time instead on each batch iteration. In a future 
study, it would be appropriate to compare its performance with 
TensorFlow MirroredStrategy. 

 

3. PROBLEM STATEMENT & METHOD 
For my experiments, I trained on the MNIST digits dataset. I 
varied the number of GPUs, batch size, dataset size, and model 
size. I recorded the time to train the first epoch and the second 
epoch. During the first epoch, the model may incur one-time 
startup costs, for example to shard data. The model will likely 
have a similar run time during the second epoch and all future 
epochs because the operations of synchronous data parallel 
training are deterministic: forward pass, calculate loss, 
backpropagate error, gradient step, with many resources becoming 
free between epochs. For this reason, I only record the first and 
second epoch train time. 
I vary the batch size between 128, 256, and 512 images per batch. 
I use two sizes of model: a smaller model with 402,442 trainable 
parameters, and a larger model with 2,636,554 trainable 
parameters. Both use cross entropy loss and adam optimizer with 
parameters: learning rate=0.001, betas=(0.9, 0.999), eps=1e-07, 
weight_decay=0, and amsgrad=False. 

 

 
Figure 4. Small and large model architectures for image 
classification. The small model contains 402,442 trainable 
parameters and the large model contains 2,636,554 trainable 
parameters. 
 
The MNIST dataset contains 60k train set images and 10k test set 
images. When I vary the train set size, I simply concatenate the 
MNIST dataset to duplicates of itself. I run experiments on 1x 
MNIST, 4x MNIST, and 8x MNIST which correspond to 60k, 
240k, and 480k images.  

The number of GPUs vary between 1, 2 and 4. All experiments 
were run on the Google Cloud Platform on machines composed of 
n1-highmem-2 (2 vCPUs, 13 GB memory) with a variable number 
of NVIDIA Tesla K80 GPUs. TensorFlow experiments were run 
on instances with the Google, Intel® optimized Deep Learning 
Image: TensorFlow 2.0.0. PyTorch experiments were run on 
instances with Google, Deep Learning Image: PyTorch 1.2.0.  
 

4. RESULTS 
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Figure 5. (a) Second epoch processing speed for varied model 
size. (b) varied batch sizes for large model on 8x MNIST. (c) 
Second epoch train time with various sizes of dataset. (d) First 
and second epoch processing rates for large model. (e) Second 
epoch processing speed for varied dataset size for same model. 

 
Overall we note that TensorFlow MirroredStrategy outperforms 
PyTorch DataParallel, and that the different strategies have 
notable effects on processing speed, especially when comparing 
first and second epoch training processing speed (Figure 5d), 
where it appears TensorFlow is slower in the first epoch likely 
due to data sharding. For this reason, the other plots only show the 
second epoch times, which are also more representative of the 
average training epoch. 

In Figure 5a, for TensorFlow on the small model with the 1x 
MNIST dataset, second epoch processing rate unintuitively 
decreases as the number of GPUs increase. On PyTorch we see 
the second epoch processing rate increases marginally with 
additional GPU’s. The result indicates that for TensorFlow, either 
the dataset size or model size is so small the overhead from 
parallelization outweighs the increased speed from parallelization. 
However we also see in Figure 5a, when using the large model on 
Tensorflow, we see performance increases with increased GPU. I 
believe this effect may be related to the balance between increased 
computation and communication time with increased number of 
parameters. As the number of parameters increases, it may be the 
case that computation time scales faster than communication time 
which would make using additional GPU’s advantageous only for 
large models. Future studies looking at the computation and 
communication time on each device is necessary to confirm this 
hypothesis. 
We see in Figure 5c that the total second epoch train time 
decreases with increased GPU’s, and that the effect is more 
pronounced when we use a larger dataset. However we see in 
Figure 5e that the processing speed remains constant when we 
only vary the dataset size. This contrasts the results from Figure 
5a which show that the processing rate increases with increased 
GPUs when we increase the model size. This effect appears to 
become parabolic with optimal performance at 2 GPUs. Perhaps 



the large model used in this experiment with ~2.6 million 
parameters is still not large enough to take advantage of data 
parallelism at 4 GPUs.  

In addition we see in Figure 5b that increased batch size increases 
processing rates for a given number of GPUs but that this effect is 
more pronounced with increased number of GPUs. Data 
parallelism works best when the batch size maximizes the 
memory available on each device. (Batch size is a learning 
parameter and should not be adjusted without making adjustments 
to learning rate.)  
 

5. CONCLUSION 
In terms of ease-of-use, it was simpler to implement data 
parallelism in PyTorch than in TensorFlow. However, we observe 
that TensorFlow MirroredStrategy has faster processing speeds 
and scaleup than PyTorch DataParallel. This is likely due in part 
to its initial slow epoch in which it shards data. However, this may 
not have been an apples-to-apples comparison and future studies 
should compare TensorFlow MirroredStrategy to PyTorch 
DistributedDataParallel. 
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