
Approximate Query Processing in Spark
Accuracy tradeoffs and performance gains.

Francisco Javier Salido Magos
 MS in Data Science

 University of Washington
 Seattle WA, USA

 javiers@uw.edu

ABSTRACT
In this report we analyze the use of Approximate Query Processing
(AQP) on GROUP BY queries that compute aggregates on dataset
attributes. We employ two Core Spark API sampling functions,
rdd.sample() and rdd.sampleByKey(), and two
equivalent Spark SQL functions df.sample() and
df.sampleBy(), to extract smaller, representative samples of
various sizes from a dataset of commercial flights in the USA. We
run a set of preselected queries on the full dataset and on the
samples and compare the accuracy of the results along with the time
it takes to process the queries.

We conclude that, for this type of query, performance gains can be
significant, up to two orders of magnitude when running on RDDs,
and one order of magnitude for DataFrames and Spark SQL, with
acceptable levels of accuracy. We further conclude that
DataFrames and Spark SQL are actually an order of magnitude
faster than the Core Spark API in query execution, albeit with a
possibly larger error in some cases. We explain some of the
particulars of implementing this approach on Amazon Web
Services (AWS), provide and discuss our results. While part of the
original scope of this project, we were not able to run the queries
on Azure Databricks, having been unable to sort out its security
features on time.

KEYWORDS
Approximate Query Processing, AQP, OLAP, Spark, uniform
sampling, stratified sampling

1 Introduction

The past two decades have seen an explosion in the size of
datasets employed by organizations to meet all sorts of business,
government and research challenges. While technology has played
a significant role as enabler of this growth, we are just beginning

to understand that, for some scenarios, big data datasets may
indeed constitute too much of a good thing.

One of these scenarios surfaces in the use of Online Analytics
Processing (OLAP), where users may need quick and approximate
answers to specific queries that can help guide decision making or
market research, and don’t have the hours or days it would take to
get 100% accurate answers. OLAP professionals may be able to
leverage Approximate Query Processing (AQP) in this type of
scenario, by randomly selecting representative samples of very
large datasets and making them available for analysts to query.

For our analysis we employ a dataset from the Bureau of
Transportation Statistics, an office of the U.S. Department of
Transportation, in which each record contains the details of one of
approximately 61.5 million commercial flights scheduled in the
U.S. between 2009 and 2018 [1].

The overall approach is quite simple; we compute the four selected
queries on the entire dataset, all 61.5 million flights, employing
Resilient Distributed Datasets (RDD) and the Core Spark API, and
establish the correct responses and runtime on the full dataset. We
then proceed to collect sets of rows selected uniformly at random
and without replacement, to create samples of various sizes. We
collect a second set of random samples of the same sizes, but this
time employ uniform distributions, also without replacement, over
the flights flown by each individual carrier. Next, we run the
queries on each of the random samples. We compare the resulting
runtimes and results, using a metric proposed in [3], to those from
the full dataset. We repeat the above flow by running two of the
four queries on DataFrames and using Spark SQL functions. All
tests were carried out on Spark/Hadoop clusters with 2, 4 and 8
instances, running on the AWS cloud.

Section 2 of this report will discuss our process in detail, Section 3
will focus on our results and in Section 4 we present conclusions
and directions for future work.

2 Evaluated System
Hadoop is a data storage and processing platform with the key
distinction that it applies the data locality principle. That is, the
computation must take place where the data is located, as opposed
to having the data travel to where processing will take place. There
are two main components to Hadoop, the Hadoop Distributed File

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s).
DATA 516, December 2019, Seattle, WA USA
© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/10.1145/1234567890

DATA 516, December 2019, Seattle, Washington USA F.J. Salido Magos.

System (HDFS), and a resource management and scheduling
system called Yet Another Resource Negotiator (YARN).

Hadoop was built originally with a MapReduce programming
model that seemed unsuited for real-time or low-latency
applications. As a result, a project led by Matei Zaharia at U.C.
Berkeley developed Spark, a cluster computing framework that
incorporates data parallelism and fault tolerance in its design. [4]

Foundational components to Spark were Resilient Distributed
Datasets (RDDs), read-only data structures that are distributed
throughout the instances of a cluster and operate in fault-tolerant
fashion using Hadoop’s HDFS and YARN. There are two types of
operations that can be executed on RDDs; transformations and
actions. Transformations create new RDDs from previously
existing ones, and actions are operations meant to generate an
output. Execution of transformations is lazy, which in practical
terms means that these are operations that will not actually be
materialized until an operation of the action type is requested, at
which point the query plan will be drawn up and executed by Spark.

Over time, a number of abstractions, like DataFrames and datasets,
and APIs like the Spark Core API, PySpark, Spark SQL, Spark
Streaming, the MLlib and SparkR were developed for use with
Spark. Our analysis employs Spark Core API and Spark SQL.

Figure 1 shows the components and data flow of a Spark standalone
application.

Figure 1. Components of a Spark standalone application. A
client submits the application to the Spark cluster through the
Driver. The Driver interacts with the Cluster Master, an
instance running in the Cluster Manager, and the Executors
that run in the Worker instances, of which there can be two or
more. Executors run the application and communicate results
through the Master, back to the client. [5]

The Driver creates the SparkSession/SparkContext, and plans the
execution of the application by creating a Directed Acyclic Graph
(DAG), a graphical representation of the transformations and
actions that are to be executed as part of the application, and the
order in which they are to be executed. The Driver also keeps track
of available resources and returns results to the client.

Spark Executors will run the tasks mapped in the DAG and are
terminated once the application completes execution. Finally, the
Master is the process that requests resources available within the
cluster and makes them available to the Driver.

3 Problem Statement and Method

We wish to establish whether the use of randomly chosen samples
of a large dataset can be used to obtain reasonably accurate
answers to GROUP BY queries, with aggregations, in
significantly shorter periods of time. We would like to know how
big those samples need to be in order to provide an adequate level
of accuracy, and how much faster we can expect those answers to
arrive. We also wish to establish if there is a significant difference
between using the Core Spark API or Spark SQL functions in this
context.

As indicated before, we employed a dataset where each of the
61.5 million rows represents a single flight by a major U.S. carrier
between 2009 and 2018. Most flights took place as planned, with
some been delayed or even cancelled. Schema for the dataset is:

rdd((year, int), (month, int), (day, int),
(carrier, str), (flightNum, int),
(origin, str), (dest, str),
(depTime, float), (arrTime, float),
(cancelled, bool), (diverted, bool),
(actualTime, float), (airTime, float),
(distance, float), (delay, float))

The full dataset was uploaded using GZIP compression to a S3
bucket in AWS, taking advantage of the fact that Spark has native
support for various lossless compression formats, by
decompressing the data when uploading to memory.

3.1 Core Spark API and RDDs

The first step we took was to identify the sampling functions that
are available through the different Spark programming tools.
There are Core Spark API functions for sampling RDDs, Spark
SQL functions for sampling DataFrames and also functions in
SparkR. The Core Spark API functions rdd.sample() for
uniform random sampling, and rdd.sampleByKey()for
stratified sampling were chosen for the first set of tests. For Spark
SQL, running on DataFrames, we chose the equivalent functions
df.sample() and df.sampleBy(). SparkR was left for
future work.

A general overview of the state of AQP was provided by [2], after
which we settled on four queries to be computed on the dataset,
all of them GROUP BY queries that compute aggregate metrics
on some attribute. Two of the queries group flights by carrier, the
attribute used for sampling, and the other two group by the
attributes year and month. The RDD code for all four is shown
below, where the full dataset RDD is designated “rdd.”

rdd1 = rdd.map(lambda x:(str(x[0]), 1))\
.reduceByKey(lambda x, y:(x + y), 100)

Query 1: Compute the total number of flights for each of the
23 carriers, over the whole period from 2009 to 2018.

rdd1 = rdd.map(lambda x:(str(x[0]),\
float(x[4]))).mapValues(lambda x:(x, 1))\
.reduceByKey(lambda x, y:(x[0]+y[0],\
x[1]+y[1]),\ 100).map(lambda x:(x[0],\
x[1][0]/x[1][1]))
Query 2: Compute the average flight delay for each of the 23
carriers, over the full period of time.

Approximate Query Processing in Spark Data 516, December 2019, Seattle, Washington USA

rdd1 = rdd.map(lambda x: (int(x[1]), 0 if\
x[3] == 'False' else 1))\
.reduceByKey(lambda x, y: (x + y), 100)
Query 3: Compute the total number of flight cancellations for
each year over the full period of time.

rdd1 = rdd.map(lambda x: (int(x[2]), 0 if\
x[3] == 'False' else 1))\
.reduceByKey(lambda x, y: (x + y), 100)
Query 4: Compute the total number of flight cancellations for
each month over the full period of time.

Here we note the use of the rdd.reduceByKey() function to
group by carrier because, unlike the rdd.groupByKey()Core
Spark API function, the former combines records locally in each
worker node before shuffling, which should improve query
performance.

To extract the desired uniform and stratified random samples we
used the following functions:

 rddU = rdd.sample(False, 0.1, seed=None)

Uniform random sample of 10% the size of the full dataset,
sampled with no replacement.

fx = 0.1
fractions = {'F9': fx, '9E': fx, 'CO': fx,\
'OH': fx, 'EV': fx, 'B6': fx, 'XE': fx,\
'UA': fx, 'NK': fx, 'WN': fx, 'YV': fx,\
'DL': fx, 'VX': fx, 'NW': fx, 'AS': fx,\
'MQ': fx, 'FL': fx, 'US': fx, 'HA': fx,\
'AA': fx, 'YX': fx, 'G4': fx, 'OO': fx}

rddS = rdd.map(lambda x: (str(x[0]),\
(int(x[1]),\ int(x[2]), str(x[3]),\
float(x[4]))))

rddS = rddS.sampleByKey(False, fractions,\
seed = 3)
Stratified random sample function in the Core Spark API.
Rows in each bucket/carrier are selected through Bernoulli
trials with success probability 0.1. We use the two-character
IATA code for each carrier. The map() function maps tuples
to the format required by rdd.sampleByKey(), which is
(key, [list of attributes]).

Random samples were of sizes 0.1, 0.01, 0.001 and 0.00001 of the
full dataset.

Spark transformations are not executed until an action is
requested. Thus, left on its own, queries reported execution times
that included the time it took for Spark to read and decompress
data from S3, or the time it took to extract the relevant sample.
We fixed this by executing the first query after reading the full
dataset, or after taking a sample, twice. The resulting RDD was
cached with the first execution of the first query and would
remain in memory for subsequent query execution.

After running the queries, we compared runtimes and results using
the error metric originally proposed by Acharya et al. in [3]:

∈ = ∑ ∈ (1)

Where n denotes the number of groups in the query, 23 carriers in
this case, 𝜖 denotes the total error in the query result from the
sample, as compared to that from the same query on the full
dataset, and 𝜖i represents the error in the computation for
group i, which is in turn computed by:

∈ =
| |

 100 (2)

Here, ci is the actual result from computing the query on group i,
and 𝑐 is the result of computing the query on the sample group i.

This process was executed on AWS Spark/Hadoop clusters with
2, 4 and 8 instances.

3.2 Spark SQL and DataFrames

For this portion of the project we re-wrote the program using
Spark SQL functions. The general flow is similar, and we used the
same measure of error as we did in the previous section. In this
case, we limited our tests to taking samples of 0.01 of the original
dataset and ran only the first two queries. The full dataset is
represented below by the DataFrame “df.”

total = df.groupBy("carrier").count()
Query 1: Compute the total number of flights for each of the
23 carriers, over the whole period from 2009 to 2018.

mean = df.groupBy("carrier").mean("delay")
Query 2: Compute the average flight delay for each of the 23
carriers, over the full period of time.

The sampling functions are:

 dfU = df.sample(False, 0.01, seed=None)
Uniform random sample of 1% the size of the full dataset and
sampled with no replacement.

fx = 0.01
fractions = {'F9': fx, '9E': fx, 'CO': fx,\
'OH': fx, 'EV': fx, 'B6': fx, 'XE': fx,\
'UA': fx, 'NK': fx, 'WN': fx, 'YV': fx,\
'DL': fx, 'VX': fx, 'NW': fx, 'AS': fx,\
'MQ': fx, 'FL': fx, 'US': fx, 'HA': fx,\
'AA': fx, 'YX': fx, 'G4': fx, 'OO': fx}

dfS = df.sampleBy("carrier", fractions,\
seed=None)
Stratified random sample in Spark SQL. Elements in each
bucket are selected through Bernoulli trials with success
probability 0.01. Unlike its Core Spark API equivalent, this
function did not require remapping attributes.

We dealt with Spark SQL’s lazy execution of transformations in
the same way we did for RDDs.

4 Results

4.1 RDD and Core Spark API Results

We first look at the time it took for each of the four queries to
execute on the full dataset, and on the uniform and stratified
samples, using a sample size of 10% the full dataset, as shown in
Table 1.

DATA 516, December 2019, Seattle, Washington USA F.J. Salido Magos.

There is a drop of one to two orders of magnitude depending on
the query, between the time it takes to obtain answers on the full
dataset, and the time on either type of sample. Nevertheless, we
see no real performance improvement when increasing the
number of instances in the cluster to 4 or 8 workers.

Table 1: Time is measured in seconds. We can see a significant
reduction from the time it takes to execute any of the queries
on the full dataset, to the time it takes to execute on any either
type of sample of size 0.1.

Table 2 shows running times for each of the four queries, using
different sample sizes on both uniform and stratified random
samples. Running time decreases along with the sample size, but
the magnitude of the gains in processing time stabilizes quickly
reaching what, looking at execution time alone, seems an ideal
sample size of 1% that of the full dataset.

Table 2: Times above are measured in seconds. This is a
comparison of running times for each query on the full
dataset, and on samples of various sizes for both uniform and
stratified samples.

We then turn our attention to the quality of the results we got from
the queries. Table 3 shows the measure of error, computed using
expressions (1) and (2), in the estimation of the number of flights
for each carrier, at the different sample sizes, for both uniform and
stratified samples.

We can clearly appreciate how total error decreases as the size of
the sample grows, with relatively little difference between the
results obtained from the uniform and stratified samples.

Table 3: Numbers show the individual group (carrier) error
for each type/size of sample, when computing the total
number of flights in the dataset for each carrier. The bottom
row shows total error for each type/size sample, as computed
using equations (1) and (2). Column headers represent the size
of each sample as a fraction of the total dataset.

Figure 1: Total error observed for each query by uniform
sample size. Sample sizes are fractions of the full data set.

Figures 1 and 2 illustrate how total error decreases as the sample
size increases, for all four queries and with both types of samples.
Deciding what an acceptable level of accuracy or, in other terms,
what an acceptable magnitude for total error should be, is a
scenario-dependent decision. Certain error magnitudes may be
acceptable in some instances and not in others, or the criteria may
be set based not on total error but on a maximum acceptable error
for each group/carrier.

Cluster
Instances

Sample
Type

Num
Flights by
Airline

Avg Delay
by Airline

Cancelled
Flights/ Year

Cancelled
Flights/
Month

Full Dataset 76 121 82 77
Uniform 8.89 13.4 9.47 10.1
Stratified 8.45 13.7 9.86 9.32
Full Dataset 78 124 84 80
Uniform 9.13 13.7 9.79 9.34
Stratified 8.38 13.7 9.83 9.37
Full Dataset 76 120 82 78
Uniform 9.02 13.4 9.58 9.14
Stratified 8.26 13.5 9.69 9.17

2 instances

4 instances

8 instances

Sample Size Sample Type
Num Flights
by Airline

Avg Delay
by Airline

Distrib
Cancelled
Flights
Year

Distrib
Cancelled
Flights
Month

Full Dataset 76 121 82 77
Uniform 8.89 13.4 9.47 10.1
Stratified 8.45 13.7 9.86 9.32
Uniform 2.15 2.63 2.25 2.21
Stratified 2.03 2.62 2.23 2.24
Uniform 1.46 1.43 1.47 1.56
Stratified 1.42 1.5 1.57 1.56
Uniform 1.38 1.54 1.57 1.53
Stratified 1.47 1.43 1.47 1.51

0.1

0.01

0.001

0.00001

0.00001 0.001 0.01 0.1 0.00001 0.001 0.01 0.1
OH 10.7884 2.4597 1.7778 0.1900 45.6292 2.1071 1.2203 0.8500
XE 15.6228 2.7893 0.8004 0.4188 33.5070 1.2807 0.3491 0.1458
MQ 30.6243 2.7386 0.8199 0.0562 27.3776 0.6813 0.8034 0.0334
VX 64.3232 3.8877 2.2075 0.5606 19.0001 0.1958 1.3656 0.7019
G4 89.8355 0.4303 1.3670 0.5056 100.0000 3.6387 1.4391 0.1208
NK 22.4135 3.7710 5.0232 0.0198 42.7804 3.7863 0.5866 0.7421
US 17.5121 1.6390 0.1466 0.2180 26.5002 1.0762 0.9574 0.3135
WN 1.0929 0.8587 0.1412 0.1412 3.3393 0.3041 0.5739 0.0247
AA 41.2282 1.0809 0.1343 0.1509 11.6146 0.8707 0.2381 0.0119
UA 13.5330 0.1368 0.5753 0.1275 17.2979 0.7900 0.0371 0.0686
YX 42.2122 2.1239 2.8888 0.0317 66.7671 2.8244 3.3766 0.2706
CO 48.0044 2.0203 0.1862 0.2577 56.0445 5.9596 0.3358 0.2060
NW 6.2953 10.2430 0.5443 0.5655 43.7018 7.4045 1.3384 0.2452
YV 48.4763 6.3150 0.3632 0.1217 18.5222 6.3020 0.2682 0.0558
AS 0.9987 1.3291 1.0772 0.2414 17.7618 2.0748 0.6569 0.0883
DL 5.9836 1.5995 0.2111 0.1352 4.8919 0.5012 0.2312 0.0279
EV 0.4815 2.5543 0.2904 0.0434 15.5444 0.3221 0.2569 0.1685
9E 2.7872 2.5645 1.2997 0.1437 11.3329 1.9193 1.1875 0.3717
F9 8.9946 1.3217 0.0686 0.1895 4.6718 8.4936 1.2374 0.0925
B6 0.7261 0.4409 0.9487 0.1211 11.1919 1.0225 0.1699 0.0173
OO 6.4521 1.3492 0.7685 0.1519 4.3977 0.0322 0.3794 0.0670
FL 64.9127 1.2978 2.3782 0.0663 20.7040 0.2513 0.1624 0.3259
HA 1.9255 0.7357 0.8174 0.1811 85.8997 0.1014 1.5987 0.2208
Error 23.7054 2.3342 1.0798 0.2017 29.9338 2.2583 0.8161 0.2248

Uniform Samples Stratified SamplesCarrier

Approximate Query Processing in Spark Data 516, December 2019, Seattle, Washington USA

Figure 2: Total error observed for each query by stratified
sample size. Sample sizes are fractions of the full data set.

4.2 Spark SQL Results

Given that a sample size of 0.01 of the total dataset seemed to be
the sweet spot in our Core Spark API tests, yielding the shortest
runtimes and low error measures, we extracted a sample of this
size for our Spark SQL tests, and ran queries 1 and 2 on clusters
with 2, 4 and 8 workers.

The results surprised us, as runtimes were an order of magnitude
less, and the error measurements roughly similar to those obtained
from the Core Spark API, for uniformly chosen samples.
Runtimes were similar and error larger, but still acceptable, for
stratified samples. Once again, there were no relevant differences
in runtimes when we increased the number of workers in the
setup. The results are summarized and compared to those obtained
with the Core Spark API, in table 4 below.

Table 4: Comparison in runtimes and error measurements for
Core Spark API and Spark SQL. Error measurements are
close in the first query, but double for the second query. More
testing will be required to establish if this is significant. For
runtimes, DataFrames and Spark SQL are the faster option.

5 Conclusions

Our results show the significant advantage of using Spark SQL
over RDDs and the Core Spark API for this type of task. Spark
SQL is a higher-level language, as a declarative language it
abstracts much of the complexity of dealing with RDDs and the
Spark/Hadoop architecture, and it is clear that the use of
DataFrames and query optimization in Spark SQL yield a
significant advantage. We have to further analyze and understand
Spark SQL’s seemingly higher error when running the Average
Delay by Airline query.

An interesting takeaway is the fact that runtime improvements and
optimal use of resources in Spark require application of the
principle of “data minimization.” That is, avoid using data that is
not essential for query execution and results. Application of this
principle is clear in Core Spark API, where we only use attributes
that are relevant to the computation. It is reasonable to assume
that the query optimizer for Spark SQL takes similar measures.

Dealing with Spark’s lazy execution of transformations in order to
obtain accurate measurements of query runtimes was another
important takeaway.

With respect to the fact that increasing the number of worker
nodes had no effect on query runtimes, we concluded that the size
of the dataset is probably the reason. Each record from the full
dataset is approximately 64 bytes long, and in the Core Spark API
version, the RDD rows are further reduced to 20 bytes. Thus, the
full dataset is no bigger than 4 GB, which fits in the memory of
the worker nodes with plenty of space left available. The basic
configuration with two workers is more than enough to cache the
full dataset and the samples, and to execute the requested queries.
Adding workers will increase communication costs, and likely
eliminate any performance gains that might be achieved with an
additional 2 or more workers.

Our conclusion is that using AQP is a feasible option to reduce
runtimes and maintain an acceptable level of accuracy for
decision making, when running GROUP BY queries with
aggregation. Given the size of the datasets traditionally used in
Spark applications, both methods of sampling, uniform and
stratified seem to yield similarly adequate results, unless group
size for the smaller groups is a fraction of a percent the size of
larger groups. Samples of 1% the size of the dataset seemed to be
enough in this case, though it may be possible to use smaller sizes
or necessary to use larger sizes, depending on the distribution of
the different attributes in the dataset. Using 1% samples,
improved response time by as much as an order of magnitude and
using DataFrames and Spark SQL would definitely be the right
choice.

ACKNOWLEDGMENTS
Thank you very much Dan, Brandon and Deepanshu. It’s been great
to have the opportunity to learn about big data algorithms and
systems from you.

REFERENCES
[1] Reporting on carrier on-time performance. Bureau of Transportation Statistics,

Department of Transportation. Washington DC, USA.
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_
Name=On-Time

[2] Surajit Chaudhuri, Bolin Ding, Srikanth Kandula, 2017. Approximate Query
Processing: No Silver Bullet. SIGMOD’17 May, 2017, Chicago, IL, USA.
DOI: https://doi.org/10.1145/3035918.3056097.

[3] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala. 2000. Congressional
Samples for Approximate Query Processing of Group-By Queries. ACM
SIGMOD 2000, Dallas, TX, USA.

[4] Matei Zaharia et al, 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. USENIX NSDI’12, San Jose, CA,
USA.

[5] Jeffrey Aven, 2018. Data Analytics with Spark Using Python. Addison Wesley
Data & Analytics Series, USA.

Core Spark API Spark SQL Core Spark API Spark SQL
Uniform 1.0798 0.8175 1.5530 3.2217
Stratified 0.8161 0.9455 2.0941 3.6834
Full
dataset 76 s 4.4 s 121 s 5.72 s
Uniform 8.89 s 702 ms 13.4 s 812 ms
Stratified 8.45 s 649 ms 13.7 s 666 ms

Num. Flights by Airline Average Delay by Airline

Error

2 instances,
1% sample size

Time

