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ABSTRACT 
In this report we analyze the use of Approximate Query Processing 
(AQP) on GROUP BY queries that compute aggregates on dataset 
attributes. We employ two Core Spark API sampling functions, 
rdd.sample() and rdd.sampleByKey(), and two 
equivalent Spark SQL functions df.sample() and 
df.sampleBy(), to extract smaller, representative samples of 
various sizes from a dataset of commercial flights in the USA. We 
run a set of preselected queries on the full dataset and on the 
samples and compare the accuracy of the results along with the time 
it takes to process the queries. 

We conclude that, for this type of query, performance gains can be 
significant, up to two orders of magnitude when running on RDDs, 
and one order of magnitude for DataFrames and Spark SQL, with 
acceptable levels of accuracy. We further conclude that 
DataFrames and Spark SQL are actually an order of magnitude 
faster than the Core Spark API in query execution, albeit with a 
possibly larger error in some cases. We explain some of the 
particulars of implementing this approach on Amazon Web 
Services (AWS), provide and discuss our results. While part of the 
original scope of this project, we were not able to run the queries 
on Azure Databricks, having been unable to sort out its security 
features on time. 
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1 Introduction 

The past two decades have seen an explosion in the size of 
datasets employed by organizations to meet all sorts of business, 
government and research challenges. While technology has played 
a significant role as enabler of this growth, we are just beginning 

to understand that, for some scenarios, big data datasets may 
indeed constitute too much of a good thing.  

One of these scenarios surfaces in the use of Online Analytics 
Processing (OLAP), where users may need quick and approximate 
answers to specific queries that can help guide decision making or 
market research, and don’t have the hours or days it would take to 
get 100% accurate answers. OLAP professionals may be able to 
leverage Approximate Query Processing (AQP) in this type of 
scenario, by randomly selecting representative samples of very 
large datasets and making them available for analysts to query. 

For our analysis we employ a dataset from the Bureau of 
Transportation Statistics, an office of the U.S. Department of 
Transportation, in which each record contains the details of one of 
approximately 61.5 million commercial flights scheduled in the 
U.S. between 2009 and 2018 [1]. 

The overall approach is quite simple; we compute the four selected 
queries on the entire dataset, all 61.5 million flights, employing 
Resilient Distributed Datasets (RDD) and the Core Spark API, and 
establish the correct responses and runtime on the full dataset. We 
then proceed to collect sets of rows selected uniformly at random 
and without replacement, to create samples of various sizes. We 
collect a second set of random samples of the same sizes, but this 
time employ uniform distributions, also without replacement, over 
the flights flown by each individual carrier. Next, we run the 
queries on each of the random samples. We compare the resulting 
runtimes and results, using a metric proposed in [3], to those from 
the full dataset. We repeat the above flow by running two of the 
four queries on DataFrames and using Spark SQL functions. All 
tests were carried out on Spark/Hadoop clusters with 2, 4 and 8 
instances, running on the AWS cloud.  

Section 2 of this report will discuss our process in detail, Section 3 
will focus on our results and in Section 4 we present conclusions 
and directions for future work.  

2 Evaluated System 
Hadoop is a data storage and processing platform with the key 
distinction that it applies the data locality principle. That is, the 
computation must take place where the data is located, as opposed 
to having the data travel to where processing will take place. There 
are two main components to Hadoop, the Hadoop Distributed File 
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System (HDFS), and a resource management and scheduling 
system called Yet Another Resource Negotiator (YARN).  

Hadoop was built originally with a MapReduce programming 
model that seemed unsuited for real-time or low-latency 
applications. As a result, a project led by Matei Zaharia at U.C. 
Berkeley developed Spark, a cluster computing framework that 
incorporates data parallelism and fault tolerance in its design. [4] 

Foundational components to Spark were Resilient Distributed 
Datasets (RDDs), read-only data structures that are distributed 
throughout the instances of a cluster and operate in fault-tolerant 
fashion using Hadoop’s HDFS and YARN. There are two types of 
operations that can be executed on RDDs; transformations and 
actions. Transformations create new RDDs from previously 
existing ones, and actions are operations meant to generate an 
output. Execution of transformations is lazy, which in practical 
terms means that these are operations that will not actually be 
materialized until an operation of the action type is requested, at 
which point the query plan will be drawn up and executed by Spark. 

Over time, a number of abstractions, like DataFrames and datasets, 
and APIs like the Spark Core API, PySpark, Spark SQL, Spark 
Streaming, the MLlib and SparkR were developed for use with 
Spark. Our analysis employs Spark Core API and Spark SQL. 

Figure 1 shows the components and data flow of a Spark standalone 
application. 

 

Figure 1. Components of a Spark standalone application. A 
client submits the application to the Spark cluster through the 
Driver. The Driver interacts with the Cluster Master, an 
instance running in the Cluster Manager, and the Executors 
that run in the Worker instances, of which there can be two or 
more. Executors run the application and communicate results 
through the Master, back to the client. [5] 

The Driver creates the SparkSession/SparkContext, and plans the 
execution of the application by creating a Directed Acyclic Graph 
(DAG), a graphical representation of the transformations and 
actions that are to be executed as part of the application, and the 
order in which they are to be executed. The Driver also keeps track 
of available resources and returns results to the client.  

Spark Executors will run the tasks mapped in the DAG and are 
terminated once the application completes execution. Finally, the 
Master is the process that requests resources available within the 
cluster and makes them available to the Driver. 

3 Problem Statement and Method 

We wish to establish whether the use of randomly chosen samples 
of a large dataset can be used to obtain reasonably accurate 
answers to GROUP BY queries, with aggregations, in 
significantly shorter periods of time. We would like to know how 
big those samples need to be in order to provide an adequate level 
of accuracy, and how much faster we can expect those answers to 
arrive. We also wish to establish if there is a significant difference 
between using the Core Spark API or Spark SQL functions in this 
context. 

As indicated before, we employed a dataset where each of the 
61.5 million rows represents a single flight by a major U.S. carrier 
between 2009 and 2018. Most flights took place as planned, with 
some been delayed or even cancelled. Schema for the dataset is: 

rdd((year, int), (month, int), (day, int), 
(carrier, str), (flightNum, int),  
(origin, str), (dest, str),  
(depTime, float), (arrTime, float), 
(cancelled, bool), (diverted, bool), 
(actualTime, float), (airTime, float), 
(distance, float), (delay, float)) 

The full dataset was uploaded using GZIP compression to a S3 
bucket in AWS, taking advantage of the fact that Spark has native 
support for various lossless compression formats, by 
decompressing the data when uploading to memory. 

3.1 Core Spark API and RDDs 

The first step we took was to identify the sampling functions that 
are available through the different Spark programming tools. 
There are Core Spark API functions for sampling RDDs, Spark 
SQL functions for sampling DataFrames and also functions in 
SparkR. The Core Spark API functions rdd.sample() for 
uniform random sampling, and rdd.sampleByKey()for 
stratified sampling were chosen for the first set of tests. For Spark 
SQL, running on DataFrames, we chose the equivalent functions 
df.sample() and df.sampleBy(). SparkR was left for 
future work. 

A general overview of the state of AQP was provided by [2], after 
which we settled on four queries to be computed on the dataset, 
all of them GROUP BY queries that compute aggregate metrics 
on some attribute. Two of the queries group flights by carrier, the 
attribute used for sampling, and the other two group by the 
attributes year and month. The RDD code for all four is shown 
below, where the full dataset RDD is designated “rdd.” 

rdd1 = rdd.map(lambda x:(str(x[0]), 1))\ 
.reduceByKey(lambda x, y:(x + y), 100) 

Query 1: Compute the total number of flights for each of the 
23 carriers, over the whole period from 2009 to 2018. 

rdd1 = rdd.map(lambda x:(str(x[0]),\ 
float(x[4]))).mapValues(lambda x:(x, 1))\ 
.reduceByKey(lambda x, y:(x[0]+y[0],\ 
x[1]+y[1]),\ 100).map(lambda x:(x[0],\ 
x[1][0]/x[1][1])) 
Query 2: Compute the average flight delay for each of the 23 
carriers, over the full period of time. 



Approximate Query Processing in Spark Data 516, December 2019, Seattle, Washington USA 
 

 

rdd1 = rdd.map(lambda x: (int(x[1]), 0 if\ 
x[3] == 'False' else 1))\ 
.reduceByKey(lambda x, y: (x + y), 100) 
Query 3: Compute the total number of flight cancellations for 
each year over the full period of time. 

rdd1 = rdd.map(lambda x: (int(x[2]), 0 if\ 
x[3] == 'False' else 1))\ 
.reduceByKey(lambda x, y: (x + y), 100) 
Query 4: Compute the total number of flight cancellations for 
each month over the full period of time. 

Here we note the use of the rdd.reduceByKey() function to 
group by carrier because, unlike the rdd.groupByKey()Core 
Spark API function, the former combines records locally in each 
worker node before shuffling, which should improve query 
performance. 

To extract the desired uniform and stratified random samples we 
used the following functions: 

 rddU = rdd.sample(False, 0.1, seed=None) 

Uniform random sample of 10% the size of the full dataset, 
sampled with no replacement. 

fx = 0.1 
fractions = {'F9': fx, '9E': fx, 'CO': fx,\ 
'OH': fx, 'EV': fx, 'B6': fx, 'XE': fx,\ 
'UA': fx, 'NK': fx, 'WN': fx, 'YV': fx,\ 
'DL': fx, 'VX':  fx, 'NW': fx, 'AS': fx,\ 
'MQ': fx, 'FL': fx, 'US': fx, 'HA': fx,\  
'AA': fx, 'YX': fx, 'G4': fx, 'OO': fx} 
 
rddS = rdd.map(lambda x: (str(x[0]),\ 
(int(x[1]),\ int(x[2]), str(x[3]),\ 
float(x[4])))) 
 
rddS = rddS.sampleByKey(False, fractions,\ 
seed = 3) 
Stratified random sample function in the Core Spark API. 
Rows in each bucket/carrier are selected through Bernoulli 
trials with success probability 0.1. We use the two-character 
IATA code for each carrier. The map() function maps tuples 
to the format required by rdd.sampleByKey(), which is 
(key, [list of attributes]). 

Random samples were of sizes 0.1, 0.01, 0.001 and 0.00001 of the 
full dataset. 

Spark transformations are not executed until an action is 
requested. Thus, left on its own, queries reported execution times 
that included the time it took for Spark to read and decompress 
data from S3, or the time it took to extract the relevant sample. 
We fixed this by executing the first query after reading the full 
dataset, or after taking a sample, twice. The resulting RDD was 
cached with the first execution of the first query and would 
remain in memory for subsequent query execution. 

After running the queries, we compared runtimes and results using 
the error metric originally proposed by Acharya et al. in [3]: 

∈ =  ∑ ∈             (1) 

Where n denotes the number of groups in the query, 23 carriers in 
this case, 𝜖 denotes the total error in the query result from the 
sample, as compared to that from the same query on the full 
dataset, and 𝜖i  represents the error in the computation for 
group i, which is in turn computed by: 

∈ =  
| |

 100    (2) 

Here, ci is the actual result from computing the query on group i, 
and 𝑐  is the result of computing the query on the sample group i.  

This process was executed on AWS Spark/Hadoop clusters with 
2, 4 and 8 instances. 

3.2 Spark SQL and DataFrames 

For this portion of the project we re-wrote the program using 
Spark SQL functions. The general flow is similar, and we used the 
same measure of error as we did in the previous section. In this 
case, we limited our tests to taking samples of 0.01 of the original 
dataset and ran only the first two queries. The full dataset is 
represented below by the DataFrame “df.” 

total = df.groupBy("carrier").count() 
Query 1: Compute the total number of flights for each of the 
23 carriers, over the whole period from 2009 to 2018. 

mean = df.groupBy("carrier").mean("delay") 
Query 2: Compute the average flight delay for each of the 23 
carriers, over the full period of time. 

The sampling functions are: 

  dfU = df.sample(False, 0.01, seed=None) 
Uniform random sample of 1% the size of the full dataset and 
sampled with no replacement. 

fx = 0.01 
fractions = {'F9': fx, '9E': fx, 'CO': fx,\ 
'OH': fx, 'EV': fx, 'B6': fx, 'XE': fx,\ 
'UA': fx, 'NK': fx, 'WN': fx, 'YV': fx,\ 
'DL': fx, 'VX':  fx, 'NW': fx, 'AS': fx,\ 
'MQ': fx, 'FL': fx, 'US': fx, 'HA': fx,\ 
'AA': fx, 'YX': fx, 'G4': fx, 'OO': fx} 
 
dfS = df.sampleBy("carrier", fractions,\ 
seed=None) 
Stratified random sample in Spark SQL. Elements in each 
bucket are selected through Bernoulli trials with success 
probability 0.01. Unlike its Core Spark API equivalent, this 
function did not require remapping attributes. 

We dealt with Spark SQL’s lazy execution of transformations in 
the same way we did for RDDs. 

4 Results 

4.1 RDD and Core Spark API Results 

We first look at the time it took for each of the four queries to 
execute on the full dataset, and on the uniform and stratified 
samples, using a sample size of 10% the full dataset, as shown in 
Table 1. 
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There is a drop of one to two orders of magnitude depending on 
the query, between the time it takes to obtain answers on the full 
dataset, and the time on either type of sample. Nevertheless, we 
see no real performance improvement when increasing the 
number of instances in the cluster to 4 or 8 workers. 

 

Table 1: Time is measured in seconds. We can see a significant 
reduction from the time it takes to execute any of the queries 
on the full dataset, to the time it takes to execute on any either 
type of sample of size 0.1. 

Table 2 shows running times for each of the four queries, using 
different sample sizes on both uniform and stratified random 
samples. Running time decreases along with the sample size, but 
the magnitude of the gains in processing time stabilizes quickly 
reaching what, looking at execution time alone, seems an ideal 
sample size of 1% that of the full dataset. 

 

Table 2: Times above are measured in seconds. This is a 
comparison of running times for each query on the full 
dataset, and on samples of various sizes for both uniform and 
stratified samples. 

We then turn our attention to the quality of the results we got from 
the queries. Table 3 shows the measure of error, computed using 
expressions (1) and (2), in the estimation of the number of flights 
for each carrier, at the different sample sizes, for both uniform and 
stratified samples. 

We can clearly appreciate how total error decreases as the size of 
the sample grows, with relatively little difference between the 
results obtained from the uniform and stratified samples. 

 

Table 3: Numbers show the individual group (carrier) error 
for each type/size of sample, when computing the total 
number of flights in the dataset for each carrier. The bottom 
row shows total error for each type/size sample, as computed 
using equations (1) and (2). Column headers represent the size 
of each sample as a fraction of the total dataset. 

 

Figure 1: Total error observed for each query by uniform 
sample size. Sample sizes are fractions of the full data set. 

Figures 1 and 2 illustrate how total error decreases as the sample 
size increases, for all four queries and with both types of samples. 
Deciding what an acceptable level of accuracy or, in other terms, 
what an acceptable magnitude for total error should be, is a 
scenario-dependent decision. Certain error magnitudes may be 
acceptable in some instances and not in others, or the criteria may 
be set based not on total error but on a maximum acceptable error 
for each group/carrier. 

Cluster 
Instances

Sample 
Type

Num 
Flights by 
Airline

Avg Delay 
by Airline

Cancelled 
Flights/ Year

Cancelled 
Flights/ 
Month

Full Dataset 76 121 82 77
Uniform 8.89 13.4 9.47 10.1
Stratified 8.45 13.7 9.86 9.32
Full Dataset 78 124 84 80
Uniform 9.13 13.7 9.79 9.34
Stratified 8.38 13.7 9.83 9.37
Full Dataset 76 120 82 78
Uniform 9.02 13.4 9.58 9.14
Stratified 8.26 13.5 9.69 9.17

2 instances

4 instances

8 instances

Sample Size Sample Type
Num Flights 
by Airline

Avg Delay 
by Airline

Distrib 
Cancelled 
Flights 
Year

Distrib 
Cancelled 
Flights 
Month

Full Dataset 76 121 82 77
Uniform 8.89 13.4 9.47 10.1
Stratified 8.45 13.7 9.86 9.32
Uniform 2.15 2.63 2.25 2.21
Stratified 2.03 2.62 2.23 2.24
Uniform 1.46 1.43 1.47 1.56
Stratified 1.42 1.5 1.57 1.56
Uniform 1.38 1.54 1.57 1.53
Stratified 1.47 1.43 1.47 1.51

0.1

0.01

0.001

0.00001

0.00001 0.001 0.01 0.1 0.00001 0.001 0.01 0.1
OH 10.7884     2.4597    1.7778 0.1900 45.6292    2.1071    1.2203 0.8500      
XE 15.6228     2.7893    0.8004 0.4188 33.5070    1.2807    0.3491 0.1458      
MQ 30.6243     2.7386    0.8199 0.0562 27.3776    0.6813    0.8034 0.0334      
VX 64.3232     3.8877    2.2075 0.5606 19.0001    0.1958    1.3656 0.7019      
G4 89.8355     0.4303    1.3670 0.5056 100.0000 3.6387    1.4391 0.1208      
NK 22.4135     3.7710    5.0232 0.0198 42.7804    3.7863    0.5866 0.7421      
US 17.5121     1.6390    0.1466 0.2180 26.5002    1.0762    0.9574 0.3135      
WN 1.0929       0.8587    0.1412 0.1412 3.3393      0.3041    0.5739 0.0247      
AA 41.2282     1.0809    0.1343 0.1509 11.6146    0.8707    0.2381 0.0119      
UA 13.5330     0.1368    0.5753 0.1275 17.2979    0.7900    0.0371 0.0686      
YX 42.2122     2.1239    2.8888 0.0317 66.7671    2.8244    3.3766 0.2706      
CO 48.0044     2.0203    0.1862 0.2577 56.0445    5.9596    0.3358 0.2060      
NW 6.2953       10.2430 0.5443 0.5655 43.7018    7.4045    1.3384 0.2452      
YV 48.4763     6.3150    0.3632 0.1217 18.5222    6.3020    0.2682 0.0558      
AS 0.9987       1.3291    1.0772 0.2414 17.7618    2.0748    0.6569 0.0883      
DL 5.9836       1.5995    0.2111 0.1352 4.8919      0.5012    0.2312 0.0279      
EV 0.4815       2.5543    0.2904 0.0434 15.5444    0.3221    0.2569 0.1685      
9E 2.7872       2.5645    1.2997 0.1437 11.3329    1.9193    1.1875 0.3717      
F9 8.9946       1.3217    0.0686 0.1895 4.6718      8.4936    1.2374 0.0925      
B6 0.7261       0.4409    0.9487 0.1211 11.1919    1.0225    0.1699 0.0173      
OO 6.4521       1.3492    0.7685 0.1519 4.3977      0.0322    0.3794 0.0670      
FL 64.9127     1.2978    2.3782 0.0663 20.7040    0.2513    0.1624 0.3259      
HA 1.9255       0.7357    0.8174 0.1811 85.8997    0.1014    1.5987 0.2208      
Error 23.7054     2.3342    1.0798 0.2017 29.9338    2.2583    0.8161 0.2248      

Uniform Samples Stratified SamplesCarrier
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Figure 2: Total error observed for each query by stratified 
sample size. Sample sizes are fractions of the full data set. 

4.2 Spark SQL Results 

Given that a sample size of 0.01 of the total dataset seemed to be 
the sweet spot in our Core Spark API tests, yielding the shortest 
runtimes and low error measures, we extracted a sample of this 
size for our Spark SQL tests, and ran queries 1 and 2 on clusters 
with 2, 4 and 8 workers. 

The results surprised us, as runtimes were an order of magnitude 
less, and the error measurements roughly similar to those obtained 
from the Core Spark API, for uniformly chosen samples. 
Runtimes were similar and error larger, but still acceptable, for 
stratified samples. Once again, there were no relevant differences 
in runtimes when we increased the number of workers in the 
setup. The results are summarized and compared to those obtained 
with the Core Spark API, in table 4 below. 

 

Table 4: Comparison in runtimes and error measurements for 
Core Spark API and Spark SQL. Error measurements are 
close in the first query, but double for the second query. More 
testing will be required to establish if this is significant. For 
runtimes, DataFrames and Spark SQL are the faster option. 

5 Conclusions 

Our results show the significant advantage of using Spark SQL 
over RDDs and the Core Spark API for this type of task. Spark 
SQL is a higher-level language, as a declarative language it 
abstracts much of the complexity of dealing with RDDs and the 
Spark/Hadoop architecture, and it is clear that the use of 
DataFrames and query optimization in Spark SQL yield a 
significant advantage. We have to further analyze and understand 
Spark SQL’s seemingly higher error when running the Average 
Delay by Airline query.  

An interesting takeaway is the fact that runtime improvements and 
optimal use of resources in Spark require application of the 
principle of “data minimization.” That is, avoid using data that is 
not essential for query execution and results. Application of this 
principle is clear in Core Spark API, where we only use attributes 
that are relevant to the computation. It is reasonable to assume 
that the query optimizer for Spark SQL takes similar measures. 

Dealing with Spark’s lazy execution of transformations in order to 
obtain accurate measurements of query runtimes was another 
important takeaway. 

With respect to the fact that increasing the number of worker 
nodes had no effect on query runtimes, we concluded that the size 
of the dataset is probably the reason. Each record from the full 
dataset is approximately 64 bytes long, and in the Core Spark API 
version, the RDD rows are further reduced to 20 bytes. Thus, the 
full dataset is no bigger than 4 GB, which fits in the memory of 
the worker nodes with plenty of space left available. The basic 
configuration with two workers is more than enough to cache the 
full dataset and the samples, and to execute the requested queries. 
Adding workers will increase communication costs, and likely 
eliminate any performance gains that might be achieved with an 
additional 2 or more workers. 

Our conclusion is that using AQP is a feasible option to reduce 
runtimes and maintain an acceptable level of accuracy for 
decision making, when running GROUP BY queries with 
aggregation. Given the size of the datasets traditionally used in 
Spark applications, both methods of sampling, uniform and 
stratified seem to yield similarly adequate results, unless group 
size for the smaller groups is a fraction of a percent the size of 
larger groups. Samples of 1% the size of the dataset seemed to be 
enough in this case, though it may be possible to use smaller sizes 
or necessary to use larger sizes, depending on the distribution of 
the different attributes in the dataset. Using 1% samples, 
improved response time by as much as an order of magnitude and 
using DataFrames and Spark SQL would definitely be the right 
choice. 
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Uniform 1.0798       0.8175 1.5530               3.2217 
Stratified 0.8161       0.9455 2.0941               3.6834 
Full 
dataset 76 s  4.4 s 121 s 5.72 s
Uniform 8.89 s 702 ms 13.4 s 812 ms
Stratified 8.45 s 649 ms 13.7 s 666 ms

Num. Flights by Airline Average Delay by Airline

Error
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