
How does the performance of a graph database such as Neo4j
compare to the performance of a relational database such as

Postgres?
Tharun Sikhinam

University of Washington
Seattle, Washington
tharun@uw.edu

1 INTRODUCTION
Relational databases have been the default choice for data storage
and transaction processing applications in enterprises for a long
time. In the current landscape, other database technologies are
taking up a larger slice of the database market. Choosing the right
database for an application is a challenging task, and this project
aims to solve that challenge by comparing a relational database to
a graph database.

Neo4j is chosen as the Graph database and Postgres as the rela-
tional database. The data model used to test the capabilities of these
databases is the TPC-H benchmark. The TPC-H is a decision sup-
port benchmark. It consists of a suite of business-oriented ad-hoc
queries and the data populating the database have been chosen to
have broad industry-wide relevance. A subset of the TPC-H queries
is used to compare the performance, with a focus on join heavy
queries.

AWS is used to setup Neo4j and Postgres databases on EC2
instances with similar system specifications. 1GB and 10GB datasets
of TPC-H data are generated to test the queries against and the
query times will be reported against the database and instance type.

2 EVALUATED SYSTEM(S)
2.1 Relational Database (Postgres)
PostgreSQL is a powerful, open-source object-relational database
system. It is one of the oldest relational databases and runs on all
major operating systems with support for a variety of programming
languages and data types. Postgres stores data in a relational model
and uses SQL as its query language. Like all relational databases,
the data is stored in tables in the form of rows and columns. Foreign
keys are used to represent relationships between different tables.
Postgres is not natively distributed and needs to be scaled up to
handle more data volume. It is widely used as an OLTP database
and is ACID compliant.

2.2 Graph Database (Neo4j)
Graph databases are a new type of NoSQL database that stores the
data in the form of a graph model. In such databases, the nodes of a
graph depict the entities while the relationships depict the associa-
tion between these nodes. "Unlike other databases, graph databases
store relationships and connections as first-class entities.” This is
the most distinguishing feature of graph databases compared to
relational databases. This also translates to better performance in
join related queries, and the purpose of this project is to test this
claim. Neo4j is chosen as the graph database since it is one of the

most widely adopted graph databases in the industry. It uses a Prop-
erty Graph (PG) Model and Cypher as the query language. Similar
to Postgres, Neo4j is not natively distributed. Neo4j is also ACID
compliant which makes it an ideal database to compare Postgres
against.

2.3 Data Model
TPC-H is a decision support benchmark. It consists of a suite of
business-oriented ad-hoc queries and concurrent data modifica-
tions. The queries and the data populating the database have been
chosen to have broad industry-wide relevance. This benchmark
illustrates decision support systems that examine large volumes
of data, execute queries with a high degree of complexity, and
give answers to critical business questions. The data model mimics
a real-world OLTP application and the schema for the relational
model is shown below. TPC-H dbgen tool is used to generate 1GB
and 10GB datasets.

3 PROBLEM STATEMENT
How does the performance of a graph database such as Neo4j com-
pare to the performance of a relational database such as Postgres?

The performance of both of these databases are compared in the
following 5 categories

(1) Data Ingestion
(2) Size on disk
(3) Memory-constrained environment
(4) Queries
(5) Different data sizes

4 METHODOLOGY
4.1 Allocate Resources
AWS EC2 instances are used to set up the databases. Care is taken
to maintain the same specifications and database configurations
for both databases. A t2.micro instance (1GB RAM) is used to load
the 1GB data. This test checks how the databases compare under
a memory-constrained environment. t2.2xlarge ec2 instance with
32gb ram is used to compare the actual query times with the 1GB
and 10gb datasets.

4.2 Data Ingestion
4.2.1 Postgres: There are many guides available that show how to
load data TPC-H data onto Postgres. The first step in the process is
to create the tables. A shell script is written to load the data into
Postgres tables. The query ingestion times are recorded for 1 and

10GB datasets. Queries are run against this database instance using
SQL.

4.2.2 Neo4j: To migrate TPC-H data model from relational to
graph model, the following guide is used

(1) Table to Node Label
(2) Row to Node
(3) Column to Node Property
(4) Constraints/Indexes remain the same
(5) Foreign keys to Relationships
(6) Clean up any duplicates
(7) Join tables to relationships

Figure 1: TPC-H graph schema

We have 8 entities in the TPCH data model but we create only 7
node labels (Supplier, Customer, Order, Nation, Region, Lineitem,
and Part). Partsupp entity is replaced by a relationship. There are
a total of 6 relationship types (Contains, CreatedBy, From, Locate-
din, Hasdetails, and SuppliedBy) that represent all the relationships
between the different entities in the TPCH model. Hasdetails re-
lationship replaces the Partsupp entity in the TPC-H model and
availqty, supplycost are stored as relationship attributes.

4.3 Query
A subset of TPC-H queries is chosen with a focus on join heavy
queries. The queries are described below

(1) Large table scan TPCH-Query 6
(2) Group by, projection TPCH-Query 1
(3) 3 tables join TPCH-Query 3
(4) 4 tables join TPCH-Query 10
(5) 5 tables join TPCH-Query 7
(6) 6 tables join TPCH-Query 5
(7) 7 tables join TPCH-Query 8

SQL queries are converted to their corresponding Cypher queries
and run against 1GB and 10GB datasets. The query times are re-
ported along with data load times for both databases.

5 RESULTS
Postgres is marked in blue color and Neo4j in Maroon color in the
graphs. The time along the Y-axis is in seconds.

5.1 Data Ingestion

Data Size Postgres Neo4j
1GB <2 minutes >20 minutes
10GB <15 minutes >3 hours

Table 1: Data ingestion times for 1GB and 10GB datasets

5.2 Size on disk

Data Size Postgres Neo4j
1GB 1.3GB 12.3GB
10GB 12.1GB 114.2GB

Table 2: Size on disk for 1GB and 10GB datasets

5.3 Memory-constrained environment

Figure 2: 1GB dataset and 1GB RAM

5.4 Query times for 1GB dataset 32GB RAM

Figure 3: 1GB dataset and 1GB RAM

2

5.5 Query times for 10GB dataset 32GB RAM

Figure 4: 1GB dataset and 1GB RAM

6 CONCLUSION
(1) Data Ingestion: Loading data was much easier in Postgres

compared to Neo4j. Neo4j takes a lot more time in creating
relationships and bulk load csv in Neo4j is not performant
for large datasets.

(2) Size on disk: Neo4j increased the raw data size to almost
10x, with 1GB of data growing to 10GB. This increase can

be attributed to the relationship information graph database
stores along with nodes. Postgres had less than 1.5x increase
in raw data to data stored on disk.

(3) Memory-constrained environment:With 1GBRAMNeo4j
ran out of memory for 4 out of the 7 queries. Postgres per-
forms much better with limited resources.

(4) Queries: Postgres outperformedNeo4j in almost every query
under various settings. Neo4j performance benefits were ob-
served only with joins involving more than 5 tables and for
larger datasets. Large single table scans in Neo4j are very
expensive. Adding indices to properties in Neo4j drastically
speeds up performance. This can be a part of future work.

(5) Data Size:As the data size increased 10x, Postgres and Neo4j
query times also increased at approximately the same rate.
Neo4j seemed to perform better with larger data table joins.

Postgres performs better against Neo4j in all of the above cate-
gories. The performance benefits of Neo4j are noticed only for
large datasets and joins involving more than 5 tables. These perfor-
mance benefits were not significant enough to Postgres, to consider
replacing relational databases in an enterprise. Overall, I would
prefer to use graph databases for problems such as community
detection, pathing analysis and problems involving deep recursion
and continue to use relational databases for enterprise applications

3

	1 Introduction
	2 Evaluated System(s)
	2.1 Relational Database (Postgres)
	2.2 Graph Database (Neo4j)
	2.3 Data Model

	3 Problem Statement
	4 Methodology
	4.1 Allocate Resources
	4.2 Data Ingestion
	4.3 Query

	5 Results
	5.1 Data Ingestion
	5.2 Size on disk
	5.3 Memory-constrained environment
	5.4 Query times for 1GB dataset 32GB RAM
	5.5 Query times for 10GB dataset 32GB RAM

	6 Conclusion

