
Join Order Benchmark on Snowflake and Postgres
Frank Chen

Data 516, Fall 2019
kfrankc@uw.edu

 

1. INTRODUCTION
After being introduced to Snowflake DB in class, I am intrigued
by Snowflake's query optimization engine. It looks like Snowflake
should be able to perform very well in warm cache runtime
scenarios. For my project, I analyzed the IMDB Join Order
Benchmark on Snowflake, and comparing the results to Postgres
running on my laptop. I found that Snowflake consistently
outperforms Postgres in terms of both cold and warm cache query
time, but that is also dependent on the cluster and machine setup
(more on that in the results section). I also found that as the
number of joins in a query increase, the cold cache runtime
steadily increases, but the warm cache time remained steady,
further showcasing Snowflake's query optimization.

2. EVALUATED SYSTEM(S)
For this study, I am using Snowflake and Postgres. I am using the
DATA 516 Snowflake instance, which has a DEMO_WH
warehouse with size Small, and 1 server per cluster. I am also
running Postgres on my 2015 MacBook Pro, with 2.7 GHz Intel
Core i5, and 8 GB 1867 MHz DDR3.

2.1. Snowflake
Snowflake Inc, founded in 2012, offers Snowflake Elastic Data
Warehouse (Snowflake for short), a cloud-based data warehouse
solution, generally termed as ‘data warehouse-as-a-service’.
Snowflake has a multi-clustered, shared-data architecture [1], and
is multi-tenant, transactional, secure, highly scalable and elastic
system with support for both semi-structured and schema-less
data.

Figure 1: Snowflake Data Warehouse Architecture [2]

2.2. Postgres
PostgreSQL (Postgres for short) is a free and open-source
relational database management system (RDBMS). It features
transactions with ACID properties, updatable views, foreign keys,
and stored procedures, optimal for a range of workloads, from
single machines to data warehouses with concurrent users [3].

Figure 2: Postgres Architecture [4]

3. PROBLEM STATEMENT & METHOD
The follow questions outline the goals of my study:

1. How much does Snowflake DB optimize runtime when it uses
warm caching?

2. How does Snowflake DB’s query runtime vary as the # of joins
increase or decrease?

3. How does Snowflake DB’s query runtime compare with other
database systems, such as Postgres?

I will be performing analysis to try and answer these questions by
running the Join Order Benchmark (JOB) on the IMDB dataset.
This benchmark tests the quality of cardinality estimators [5], and
the queries are a good measure for analyzing a SQL data
warehouse solution’s runtime when it comes to large numbers of
joins.

3.1. The Data
The IMDB dataset used in JOB has the following data profile:

• Size: 1.26 GB gzipped

• 21 tables (details in section 3.1 on data ingestion)

3.2. Join Order Benchmark Queries
I am using the Join Order Benchmark (JOB) queries to perform
my analysis. The queries are publicly available at this Github
Repo: https://github.com/gregrahn/join-order-benchmark. There
are 114 queries in JOB. In order to perform my benchmark
analysis on Snowflake, I first need to upload the IMDB dataset
into the Snowflake, then run the JOB queries. I downloaded the
IMDB dataset, and created tables with defined schemas in my
Snowflake database. I then created staging for each of my tables
using snowsql, and loaded the data in.

https://github.com/gregrahn/join-order-benchmark

3.3. Ingesting Data
After running the ingestion commands in snowsql, I have the
following rows loaded in. Note: some of the data from IMDB
were not formatted correctly, so there were errors in loading them
in. I've recorded which tables had those errors, and how many
rows were affected. It is unclear if the original paper also had
those errors.

• aka_name: 676 rows error, 900662 rows success

• aka_title: 3 rows error, 361376 rows success

• cast_info: 118792 rows error, 36124530 rows success

• char_name: 3412 rows error, 3136382 rows success

• company_name: 172 rows error, 234825 rows success

• company_type: 4 rows success

• complete_cast: 135086 rows success

• comp_cast_type: 4 rows success

• info_type: 113 rows success

• keyword: 60 rows error, 134110 rows success

• kind_type: 7 rows success

• link_type: 18 rows success

• movie_companies: 5062 rows error, 2604067 rows success

• movie_info: 355462 rows error, 14355706 rows success

• movie_info_idx: 1380035 rows success

• movie_keyword: 4523930 rows success

• movie_link: 29997 rows success

• name: 38 rows error, 4167453 rows success

• person_info: 802506 rows error, 2024951 rows success

• row_type: 12 rows success

• title: 170 rows error, 2527799 rows success

Next, I did a similar exercise for ingesting data into Postgres.
Unfortunately, due to data size constraints and my personal
computer's space limitations, I could only load in parts of the
dataset, and run a subset of the queries. I ran the JOB queries on
both Snowflake and Postgres, and recorded both warm and cold
cache runtime, as well as the # of joins in each query.

4. RESULTS

4.1. Question 1 Analysis
The IMDB JOB Benchmark has a total of 114 queries, with some
queries containing more than 10 joins. After running each query
on Snowflake multiple times, I recorded both the warm and cold
cache runtime (first query runtime is cold, second is warm), and
plotted a graph to show the difference between warm and cold
caching performance in terms of runtime.

Figure 3: Difference between cold and warm cache runtime based
on # of joins on Snowflake

It is clear that Snowflake's warm caching capability optimizes the
reduction of runtime, with some queries such as query 3a
achieving over 80 % reduction in runtime. Using the Snowflake
query profiler, I determined that the majority of the cold cache
runtime was due to the large tablescan on the movie_info table,
consisting of more than 80 % of the total runtime. The 3a query is
below:

Figure 4: Query 3a profile on Snowflake, showing the tablescan

SELECT MIN(t.title) AS movie_title
FROM keyword AS k,
 movie_info AS mi,
 movie_keyword AS mk,
 title AS t
WHERE k.keyword LIKE '%sequel%'
 AND mi.info IN ('Sweden',
 'Norway',
 'Germany',
 'Denmark',
 'Swedish',
 'Denish',
 'Norwegian',
 'German')
 AND t.production_year > 2005
 AND t.id = mi.movie_id
 AND t.id = mk.movie_id
 AND mk.movie_id = mi.movie_id
 AND k.id = mk.keyword_id;

4.2. Question 2 Analysis
Next, I analyzed how runtime varies with the number of joins. The
general pattern indicates that as the number of joins increase, the
cold cache runtime increases faster than the warm cache runtime.
This is to be expected, as Snowflake's query optimizer is able to
load the warm cache query plan faster than upon seeing a query
for the first time.

In addition, I observed that the line of best fit for cold caching
runtime has a higher slope than that of the warm cache runtime.
This indicates that warm cache runtime has a slower rate of
increase as the number of joins increase, but this has some
assumptions in the limited query samples we used as part of JOB,
and additional confounding factors should be taken into account.

Figure 5: Snowflake cold and warm cache runtime comparison
across the 113 queries

Another interesting observation is that while some queries in JOB
have a large number of joins (query 29b, for example, has 28), the
majority of the runtime is spent on only one or two joins that take
substantial time.

Figure 6: Query 29b spends more than half its runtime on a join
between keyword table and movie_keyword table

4.3. Question 3 Analysis
Lastly, I analyzed the warm and cold cache performance of
Postgres with Snowflake as the # of joins varied. I ran the JOB
queries on Postgres, and recorded its warm and cold cache (first
query runtime is cold, second is warm). I then created a bar chart
comparing the two solutions (see Figure 7).

Figure 7: Snowflake vs. Postgres in warm and cold cache as the
number of joins increased

It is clear that Snowflake has in general faster runtime in both cold
and warm cache compared to the Postgres database set up on my
personal computer. Query 11b shows high Postgres runtime in
both warm and cold cache runtime. While I am unsure about the
exact cause of this anomaly, it could be due to the skewness of the
particular joins in this query. Both Snowflake and Postgres query
plan shows the tablescan on the title table as the operation that
took the most time in this query. It is interesting to note the
remainder of the queries did not show substantial runtime
differences between Postgres and Snowflake compared to the
anomaly.

5. CONCLUSION
Snowflake generally has significantly faster runtime when
comparing its warm and cold cache, with some queries achieving
an 80 percent decrease in runtime from cold to warm. As the
number of joins increased, the Snowflake cold cache runtime
tends to increase at a higher rate than warm cache, which had a
much smaller slope coefficient. Lastly, Snowflake outperformed
Postgres in both warm and cold cache runtime across the queries I
was able to run in Postgres, but this could also be due to my
machine's limitations.

6. REFERENCES
1. Dageville, B., Cruanes, T., Zukowski, M., Antonov, V.A.,

Avanes, A., Bock, J., Claybaugh, J.H., Engovatov, D.,
Hentschel, M., Huang, J., Lee, A.W., Motivala, A., Munir, A.,
Pelley, S., Povinec, P., Rahn, G., Triantafyllis, S., &
Unterbrunner, P. (2016). The Snowflake Elastic Data
Warehouse. SIGMOD '16.

2. (n.d.). Retrieved from https://docs.snowflake.net/manuals/
user-guide/intro-key-concepts.html

3. Stonebraker, M., & Rowe, L.A. (1986). The design of
POSTGRES. SIGMOD '86.

4. PostgreSQL/Architecture. (n.d.). Retrieved December 10,
2019, from https://en.wikibooks.org/wiki/PostgreSQL/
Architecture

5. Leis, V., Gubichev, A., Mirchev, A., Boncz, P.A., Kemper, A.,
& Neumann, T. (2015). How Good Are Query Optimizers,
Really? PVLDB, 9, 204-215.

https://docs.snowflake.net/manuals/user-guide/intro-key-concepts.html
https://docs.snowflake.net/manuals/user-guide/intro-key-concepts.html
https://en.wikibooks.org/wiki/PostgreSQL/Architecture
https://en.wikibooks.org/wiki/PostgreSQL/Architecture

