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Abstract

Fractal is a company dedicated to protecting photographers’ intellectual prop-
erty online. To that end Fractal requires that their customers only upload photos
that are their own original work. Fractal has developed several technical solu-
tions to ensure that photos that are uploaded are unique, and not derivatives or
copies of work already on the site, one of these features involves using Locality-
Sensitive Hashing (LSH) to identify photos that have a high likelihood of being
copies of work already on the site. Fractal maintains a database of 1000 hashes
of every photo on the site, this database must be searched every time a new
photo is uploaded. The speed of the search is paramount because this feature
will determine the length of time a customer is waiting before an uploaded image
is accepted onto the platform. This paper investigates the speed and scalability
of Snowflake, a leading cloud-based Relational Database Managements Systems
(RDBMS) in searching for duplicate LSH hashes in databases of variable size.

1 Introduction

Fractal is a company dedicated to protecting photographers’ intellectual prop-
erty online. Fractal runs a website which guarantees that once an image is
uploaded, no other copy or derivative of that image may be uploaded for as
long as the image is maintained. Fractal achieves this in two ways: (1) images
are digitally watermarked and if the watermark, or any part of it, is detected
in an uploaded image, that image is rejected by the website’s back-end, and
(2) Fractal stores 1000 LSH hashes of each uploaded image, if an image with
an identical LSH is uploaded to our servers, we subject that image to further
screening to determine if it is copy or a derivative of a previously uploaded
image.

LSH is used for similarity searching at scale by large technology companies
like Uber and Pinterest[3]. LSH is particularly useful because by tuning the
parameters b and r, where b is the number of bands, and r is the number of
rows per band, we can finely control the proportion of false positives. These



parameters are important to data curation because they control the number of
hashed values that must be stored in the database.

Snowflake is a data warehouse built for the cloud. In this paper we assess
the speed with which an Compute_-WH XL node handles LSH comparisons on
databases of up to 1TB of data. This is equivalent to a database of approxi-
mately 8OM photos.

2 Data

For our experiment we used photos from the 2017 Common Objects in Context
(COCO) image data set. Created by Microsoft, this repository is free to access
online at [2]. Since we are not creating a computer vision model in this appli-
cation, I combined the Train, Test, Val, and Unlabeled repositories, for a total
of 287,360 unique images of common objects. The images are in color, are of
variable size, and together are over 46.8GB on disk.

3 Methods

To perform LSH I downloaded a package from github called LSHash version
0.0.4dev,[1] which needed updating to run in python 3.7. I chose to run LSH
with 1000 unique hashes for each image of 32 bits each. The package uses the
random projection method to generate the binary hashes. The images were
first run through ResNet50 with 1k ImageNet optimal weights through to the
final average-pool layer from which I extracted embeddings which were vectors
of shape 1x1000. I performed the hashing on my local machine, and hashing
100 images took approximately one hour of machine time. Because of time
constraints I was not able to hash all 287k images in the data set. Instead I
hashed the first 1220 images and replicated the data on the snowflake server
before running each successive search to determine how the database responded
to scale-up in this way.

3.1 SQL Query

To maintain consistency between runs the exact same query was run every time.
In this query I took the hashes from the first picture in the data set (see figure
1) and searched for that hash exactly.

SELECT filename FROM tablel WHERE

(HASH_O = ’00100001101011111111101111101011°

AND HASH_1 = °11111011100110101011100001111001°) OR
(HASH_2 = ’00110110110100000001111011000010°

AND HASH_3 = ’01111100010011000111100101110001°) OR
(HASH_4 = °00100101000100010101011001011111°

AND HASH_5 = ’10001111111110111111100011001101°) OR ...



Figure 1: The first image in the COCO Dataset. This is the image searched for
in the database repeatedly.

4 Results

I found that the cold-cache run times remained fairly constant at approximately
20 seconds until the database reached 31.7GB, or approximately 2.5M images
when run times began to deteriorate in an exponential fashion (see figure 2).
This indicates that until the database reaches 32GB the cold-cache run time is
dominated by overhead and not the query itself.

There were two outliers that occurred when running the query against the
1TB data set with a warm-cache (see Appendix 3). These were 84 and 94
seconds, whereas the average time was closer to 10 seconds excluding these two
outliers (see figures 3, 4, and 5).

Furthermore I found that the average warm-cache run time remained fairly
constant at approximately 2 seconds below 63.4GB, or approximately 5M images
(see figure 3. However the run times of queries on a database below 64GB had
a bimodal distribution (see figure 5.



5 Discussion

For our applications at Fractal we are most interested in the cold-cache run
time because we do not expect the same query to be run repeatedly. Therefore
in all cases 20 seconds is too long for our customers to be waiting to determine
whether a single image is accepted or rejected by the system. We will need to
either run these queries in the background without forcing the user to wait or
find a faster method of querying a database that snowflake, with less overhead.



6 Appendix 1: Figures
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Figure 2: Cold-cache run times, note relative stability below 32GB.

Subsequent Runs
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Figure 3: Warm-cache runtimes with outliers included. Points are average time
and bars represent 1sd.



Subsequent Runs
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Figure 4: Warm-cache runtimes with outliers excluded. Points are average time
and bars represent 1sd.



Histogram of Subsequent Execution Times (orange >= 256GB)
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Figure 5: Warm-cache runtimes with outliers excluded. Note that runs below

256GB have a bimodal distribution with a peak near 1.5 seconds and another
near 5 seconds.

Appendix 2: Cold-Cache Run Times



Run # | # Pics | Database (MB) | cold-cache execution time (s)
1 1220 15.8 15.55
2 2440 31.7 20.49
3 4880 63.4 18.32
4 9760 126.8 17.85
5 19520 253.6 20.88
6 39040 507.2 18.83
7 78080 1014.4 19.2
8 156168 2000 19.67
9 312320 4000 19.75
10 624640 7900 19.89
11 1249280 15900 23.29
12 2498560 31700 33.61
13 4997120 63400 45.76
14 9994240 126800 71
15 19988480 253600 123
16 39976960 507200 233
17 79953920 1014400 448

Table 1: Caption
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