
JOB Comparison on Distributed Systems
Comparing Join Order Benchmark results on RedShift and Snowflake

Riley Waters
 MS Data Science

 University of Washington
 Seattle, Washington

 rdwaters at uw.edu

1 Introduction

Database Management Systems (DBMS) use query
optimization to construct an optimal execution plan
for a query. In the case of complex, multi-table joins,
there could be thousands or millions of possible join
orders to choose from. Most systems construct a cost
model for subset of possible join orders and choose
the cheapest one. However, these cost models are
found with cardinality estimations built on
assumptions that are not always true in real-world
data.

In “How Good Are Query Optimizers, Really?” [1], A
new benchmark called the Join Order Benchmark
(JOB) was introduced to better test the cost models
and cardinality estimation of different DBMSs. The
benchmark uses the publicly available IMDB 2013
dataset [2], a 3.9 GB set with 21 tables about movies,
actors, companies, and more. The data has many
correlations and non-uniform data distributions which
can complicate cardinality estimation. The benchmark
includes 113 queries, each with a high number of
possible join orders. The authors used JOB to assess
optimizer performance for PostgreSQL, HyPer, and
three unnamed DBMSs.

In this project I tested JOB on different distributed
database systems. My goal was to see how
performance differs across platforms and
configurations.

I found that the queries tested a wide variety of joins.
During my initial testing, some took several minutes
to complete. On Redshift there was a relatively

consistent pattern of small runtime decreases when
adding more nodes, but nothing close to linear
speedup. Some queries barely responded to the
additional nodes, likely due to the heavily skewed
nature of the dataset.

I found that Snowflake was much faster than the 2
node RedShift cluster. This could be due to
differences in node speeds or the way Snowflake
computes joins. Further investigation and additional
resources will be needed to determine larger patterns
in how these systems calculate complex multi-table
joins.

2 Evaluated Systems

I chose 2 distributed systems to benchmark: Amazon
Redshift and Snowflake.

Redshift has at least two compute nodes specified by
the user upon creation of a cluster. They are
coordinated through a leader node which prepares the
query execution plans and distributes the execution
code to the nodes. The compute nodes each have
slices that contain some portion of its memory and
disk. Slices work in parallel on different assigned
loads to get the result.[3]

The Redshift Query Optimizer generates plans with
massive parallel processing in mind, taking advantage
of columnar data storage.

Figure 1: Amazon Redshift Architecture (credit:
https://docs.aws.amazon.com/redshift/latest/dg/c_high
_level_system_architecture.html)

Snowflake uses a central data repository that is
accessible from all compute nodes, backed by
Amazon S3. It allows the user to create “virtual
warehouses” (VW) which are compute clusters that
can load data or run queries. These VWs come in “t-
shirt’ sizes and may be scaled up or down on demand.
The cloud services layer handles encryption,
authentication, and other services in Snowflake
including the query optimization.[4]

Figure 2: Snowflake Architecture. (credit:
https://docs.snowflake.net/manuals/user-guide/intro-
key-concepts.html)

Both of these systems use a Massive Parallel
Processing, Columnar store designed for high-speed
analytic queries.

3 Problem Statement and Method

The questions I had were as follows:

- Which platform has the best performance
in the JOB queries given similar setups?

- Why would certain queries have
performance differences amongst the
systems?

- How does adding additional nodes affect
the speedup of the queries?

Running all 113 queries is out of the scope of this
project as I would be running each multiple times to
get a more accurate measurement. Instead I ran a
sample of the queries to get a better sense of the
runtimes and chose 10 I found that had interesting
joins and reasonable runtimes. The process I took is
detailed below.

1. Acquire the data from IMDB and upload to S3

2. Ingest the data into a RedShift cluster with 2
dc2.large nodes

3. Run each query with a hot cache. Record the
runtimes

4. Change the cluster to 4 nodes and repeat runs

5. Change the cluster to 8 nodes and repeat runs.

5. Ingest the data into Snowflake warehouse

6. Run each query with a hot cache and record the
runtimes

7. Plot the query runtimes. Re-run any queries with
interesting differences using EXPLAIN to compare
the query plans and cost estimates

I have access to a Snowflake XL virtual warehouse.
According to the documentation, there is 16
server/cluster in the XLarge size[5]. This is the reason
I have chosen a 8 node Redshift cluster to compare, as
it is as close as I can get given my available resources.
I understand that there are also differences in the node
speeds and sizes.

Figure 3: A selection of some interesting query
runtime differences.

4 Results

When comparing runtime across node configurations,
I found that Redshift does not achieve anything close
to linear speedup. The distribution in query 1 was
what I saw the most of. A sizable drop when going
from 2 to 4 nodes, then a small drop when going to 8.
Many queries only had a fractional runtime decrease.
This isn’t all surprising as the dataset is designed to
be heavily skewed so the bulk of the runtime might

have been waiting for the few nodes who were
assigned more work. For reference, query 10 was JOB
query 27a and involved 25 join conditions with 3
correlated ‘IN’s and 2 ‘LIKE’s. It’s difficult to
discern the reason for the query runtimes. Each query
has dozens of join conditions and correlations.

Snowflake was generally much faster than the
Redshift 8 node cluster. It was sometimes more than
twice as fast. This could be due to differences in the
node speeds as I cannot control those to be the exact
same. There was one case where Snowflake and
RedShift were very close, that being JOB query 7b,
including 10 join conditions and many other filtering
conditions. Viewing the EXPLAIN plan (Query
profile for Snowflake) shed a bit of light on this. Both

were filtering the same tables in the start but used
completely different join orders for the other tables.
The greater patterns in join orders are difficult to
parse by just looking at a few, very different queries. I
would need much more time and compute resources
to investigate this further.

5 Conclusion

In this project I ran the Join Order Benchmark on
different configurations of RedShift and Snowflake. I
found that the highly skewed nature of the data made
for poor speedup as nodes are added. I also found that
Snowflake computes join orders quite differently
from RedShift leading to runtimes that are usually a
few seconds faster, but not always.

REFERENCES
[1] Leis, Viktor, et al. "How good are query optimizers, really?." Proceedings of the

VLDB Endowment 9.3 (2015): 204-215.
[2] (IMDB May 2013) http://homepages.cwi.nl/~boncz/job/imdb.tgz

[3] “Redshift Architecture and Its Components” https://hevodata.com/blog/redshift-

architecture/
[4] Snowflake Key Concepts & Architecture

https://docs.snowflake.net/manuals/user-guide/intro-key-concepts.html

[5] Snowflake Overview of Warehouses https://docs.snowflake.net/manuals/user-
guide/warehouses-overview.html#warehouse-size

