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1 Introduction 

Database Management Systems (DBMS) use query 
optimization to construct an optimal execution plan 
for a query. In the case of complex, multi-table joins, 
there could be thousands or millions of possible join 
orders to choose from. Most systems construct a cost 
model for subset of possible join orders and choose 
the cheapest one. However, these cost models are 
found with cardinality estimations built on 
assumptions that are not always true in real-world 
data. 

In “How Good Are Query Optimizers, Really?” [1], A 
new benchmark called the Join Order Benchmark 
(JOB) was introduced to better test the cost models 
and cardinality estimation of different DBMSs. The 
benchmark uses the publicly available IMDB 2013 
dataset [2], a 3.9 GB set with 21 tables about movies, 
actors, companies, and more. The data has many 
correlations and non-uniform data distributions which 
can complicate cardinality estimation. The benchmark 
includes 113 queries, each with a high number of 
possible join orders. The authors used JOB to assess 
optimizer performance for PostgreSQL, HyPer, and 
three unnamed DBMSs.  

In this project I tested JOB on different distributed 
database systems. My goal was to see how 
performance differs across platforms and 
configurations.  

I found that the queries tested a wide variety of joins. 
During my initial testing, some took several minutes 
to complete. On Redshift there was a relatively 

consistent pattern of small runtime decreases when 
adding more nodes, but nothing close to linear 
speedup. Some queries barely responded to the 
additional nodes, likely due to the heavily skewed 
nature of the dataset. 

I found that Snowflake was much faster than the 2 
node RedShift cluster. This could be due to 
differences in node speeds or the way Snowflake 
computes joins. Further investigation and additional 
resources will be needed to determine larger patterns 
in how these systems calculate complex multi-table 
joins. 

 

2    Evaluated Systems 

I chose 2 distributed systems to benchmark: Amazon 
Redshift and Snowflake. 

Redshift has at least two compute nodes specified by 
the user upon creation of a cluster. They are 
coordinated through a leader node which prepares the 
query execution plans and distributes the execution 
code to the nodes. The compute nodes each have 
slices that contain some portion of its memory and 
disk. Slices work in parallel on different assigned 
loads to get the result.[3] 

The Redshift Query Optimizer generates plans with 
massive parallel processing in mind, taking advantage 
of columnar data storage.  



 
 

 

Figure 1: Amazon Redshift Architecture (credit: 
https://docs.aws.amazon.com/redshift/latest/dg/c_high
_level_system_architecture.html) 

Snowflake uses a central data repository that is 
accessible from all compute nodes, backed by 
Amazon S3. It allows the user to create “virtual 
warehouses”  (VW) which are compute clusters that 
can load data or run queries. These VWs come in “t-
shirt’ sizes and may be scaled up or down on demand. 
The cloud services layer handles encryption, 
authentication, and other services in Snowflake 
including the query optimization.[4] 

 

Figure 2: Snowflake Architecture. (credit: 
https://docs.snowflake.net/manuals/user-guide/intro-
key-concepts.html) 

Both of these systems use a Massive Parallel 
Processing, Columnar store designed for high-speed 
analytic queries. 

 

 

3   Problem Statement and Method 

The questions I had were as follows: 

- Which platform has the best performance 
in the JOB queries given similar setups? 

- Why would certain queries have 
performance differences amongst the 
systems? 

- How does adding additional nodes affect 
the speedup of the queries? 

 

Running all 113 queries is out of the scope of this 
project as I would be running each multiple times to 
get a more accurate measurement. Instead I ran a 
sample of the queries to get a better sense of the 
runtimes and chose 10 I found that had interesting 
joins and reasonable runtimes. The process I took is 
detailed below. 

1. Acquire the data from IMDB and upload to S3 

2.  Ingest the data into a RedShift cluster with 2 
dc2.large nodes 

3. Run each query with a hot cache. Record the 
runtimes 

4. Change the cluster to 4 nodes and repeat runs 

5. Change the cluster to 8 nodes and repeat runs. 

5. Ingest the data into Snowflake warehouse 

6. Run each query with a hot cache and record the 
runtimes 

7. Plot the query runtimes. Re-run any queries with 
interesting differences using EXPLAIN to compare 
the query plans and cost estimates 

I have access to a Snowflake XL virtual warehouse. 
According to the documentation, there is 16 
server/cluster in the XLarge size[5]. This is the reason 
I have chosen a 8 node Redshift cluster to compare, as 
it is as close as I can get given my available resources. 
I understand that there are also differences in the node 
speeds and sizes. 



 

Figure 3: A selection of some interesting query 
runtime differences. 

 

4   Results 

When comparing runtime across node configurations, 
I found that Redshift does not achieve anything close 
to linear speedup. The distribution in query 1 was 
what I saw the most of. A sizable drop when going 
from 2 to 4 nodes, then a small drop when going to 8. 
Many queries only had a fractional runtime decrease. 
This isn’t all surprising as the dataset is designed to 
be heavily skewed so the bulk of the runtime might 

have been waiting for the few nodes who were 
assigned more work. For reference, query 10 was JOB 
query 27a and involved 25 join conditions with 3 
correlated ‘IN’s and 2 ‘LIKE’s. It’s difficult to 
discern the reason for the query runtimes. Each query 
has dozens of join conditions and correlations.  

Snowflake was generally much faster than the 
Redshift 8 node cluster. It was sometimes more than 
twice as fast. This could be due to differences in the 
node speeds as I cannot control those to be the exact 
same. There was one case where Snowflake and 
RedShift were very close, that being JOB query 7b, 
including 10 join conditions and many other filtering 
conditions.  Viewing the EXPLAIN plan (Query 
profile for Snowflake) shed a bit of light on this. Both 



 
 

were filtering the same tables in the start but used 
completely different join orders for the other tables. 
The greater patterns in join orders are difficult to 
parse by just looking at a few, very different queries. I 
would need much more time and compute resources 
to investigate this further. 

5  Conclusion 

In this project I ran the Join Order Benchmark on 
different configurations of RedShift and Snowflake. I 
found that the highly skewed nature of the data made 
for poor speedup as nodes are added. I also found that 
Snowflake computes join orders quite differently 
from RedShift leading to runtimes that are usually a 
few seconds faster, but not always. 
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