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ABSTRACT 
 

This paper applies two separate methods for performing string-based lookup for JSON array list values in a continuous stream of 

blobs in a distributed system. An additional constraint is that the lookup table may not always some of the values from the JSON 

array list. The speedup and scaleup of each of the methods is individually measured and reported. The performance comparison 

of the two methods is also presented. The first method uses the concept of broadcast join, where the lookup table is distributed to 

all the nodes and a join is performed on the source strings from the streaming blobs to the keys in the broadcast dataset. In this 

approach, the lookup is attempted even for values that may not be present in the lookup table and hence may not be very 

efficient. In the second method, a bloom filter is used to first estimate whether the lookup value is present in the lookup table and 

if only then perform the lookup. This lookup is also performed via broadcast join. The lookup is skipped if the bloom filter 

indicates that the value is not present in the lookup.  

 

The first section introduces the problem and gives a naïve example to illustrate the scenario. The second section describes the two 

approaches, the third section provides information on the experiment setup and the final section presents the results and findings.  

 

1. INTRODUCTION  

 

Lookups are very popular in many kinds of applications. In general, lookups are required to be very fast. But there could be 

situations where lookups can be slow, especially when the lookup fields are long strings and the lookup table itself is huge. When 

such long string-based lookups on large files are required to be used in data streaming applications, the increase in latency could 

be significant. Thus, it is important to measure the performance of large-scale lookup operations and to optimize them. In this 

paper, I study the performance of large-scale string lookups in a distributed system using two separate techniques. For this 

purpose, the setting I used is a complex, near-real time big data collector service used in Microsoft for several analytical 

applications. This system has now been open sourced as Data Accelerator. This system is extensible and supports user defined 

functions (UDF). One of the UDFs is a hashing module that obfuscates the values of all the attributes defined by the users. These 

attribute values fall into three different categories: a) the values that are public domain b) the values that are non-public domain 

and c) the values that are a mixture of public and non-public domain on a case to case basis. It is the third scenario that is of 

interest for analysts and data scientists because they want to get the plain text information for the public domain attribute values 

but continue to see the hashed values for the non-public domain values. Since the values are hashed in the first place, there is 

another UDF called unhasher that is used to replace the hashes with known public domain values, where applicable. The list of 

these known public values is supplied to the unhasher as a lookup table.  

 

Illustration with a Naïve example 

 
Here I present a very naïve example to illustrate the lookup scenario.  

 

Consider the table below that is used for lookup. This table contains two columns, hash and the corresponding clear_text. Note 

that the hash algorithm is not relevant here as this lookup is used to do for the reverse operation of replacing the clear text values 

in place where the hash values are seen. 

 

Sample Lookup file: 

 

Attribute Name   Hash clear_text 

names hash string 1 clear text 1 

Names hash string 2 clear text 2 

Location hash string 1 clear text location 1 

https://github.com/microsoft/data-accelerator


 

 

Location hash string 3 clear text location 2 

   

The incoming streams are JSON blobs with thousands of different attributes, some of these attributes contain the hash values. A 

sample blob structure is below, here the names and location attributes have hash values: 

 

{ 

 "id":"123", 

 "names":"hash string 1", 

 "location":"hash string 5", 

 "date": "11/20/2019 11:32 AM" 

} 

 

In some cases, some of the attributes values can be arrays represented as string of values separated by some delimiter character. 

An example is below, here the names attribute has an array value: 

 

{ 

 "id":"234", 

 "names":"hash string 1| hash string 2| hash string 3", 

 "location":"hash string 5", 

 "date": "11/20/2019 10:10 AM" 

} 

 

Below are the different scenarios that illustrate how the unhasher is supposed to work: 

 

Case input output Comment 

1 { 

 "id":"123", 

 "names":"hash string 1", 

 "location":"hash string 5", 

 "date": "11/20/2019 11:32 AM" 

}  

{ 

 "id":"123", 

 "names":"clear text 1", 

 "location":"hash string 5", 

 "date": "11/20/2019 11:32 AM" 

}  

Match found for names, replace 

with clear text 

Match not found for location, 

leave as-is 

2 { 

 "id":"123", 

 "names":"hash string 3", 

 "location":"hash string 1", 

 "date": "11/20/2019 11:32 AM" 

}  

{ 

 "id":"123", 

 "names":"hash string 3", 

 "location":"clear text location 1", 

 "date": "11/20/2019 11:32 AM" 

}  

Match not found for names, 

leave as is 

Match found for location, 

replace with clear text 

3 { 

 "id":"345", 

 "names":"hash string 1", 

 "location":"hash string 1", 

 "date": "11/20/2019 11:32 AM" 

} 

 

{ 

 "id":"345", 

 "names":"clear text 1", 

 "location":"clear text location 1", 

 "date": "11/20/2019 11:32 AM" 

} 

 

Match found for names, replace 

with clear text 

Match found for location, 

replace with clear text 

4 { 

 "id":"345", 

 "names":"hash string 3", 

 "location":"hash string 5", 

 "date": "11/20/2019 11:32 AM" 

} 

 

{ 

 "id":"345", 

 "names":"hash string 3", 

 "location":"hash string 5", 

 "date": "11/20/2019 11:32 AM" 

} 

 

Match not found for both 

names and location, leave the 

hashed values as-is 

5 { 

 "id":"567", 

{ 

 "id":"567", 

Matches found for some values 

in names, replace those with 



 

 

 "names":"hash string 1| hash string 2| 

hash string 3", 

 "location":"hash string 5", 

 "date": "11/20/2019 10:10 AM" 

}  

 "names":"clear text 1| clear text 2| hash 

string 3", 

 "location":"hash string 5", 

 "date": "11/20/2019 10:10 AM" 

}  

clear text and leave the other 

values as-is 

 

Even though the examples presented above are very naïve, in reality the lookup tables are very huge, with several tens of 

thousands of entries. The incoming input stream of blobs is also very rapid, often at the rate of several hundred blobs per minute 

and each blob is about a couple of hundred megabytes. In addition, sometimes the attribute values to be looked up are arrays, and 

the unhasher needs to only perform unhashing of known values within the list while retaining the unknown values as-is. This 

means the number of times the lookup is performed increases several folds. The performance goal is to have the latency 

introduced by this new feature as minimum as possible such that the near-real time characteristic of the system is maintained.  

 

System Specification 
 

This system is running on a 122-node Microsoft HDInsight Spark cluster with 2 head nodes (one primary, one secondary) each 

with 16 cores, and 120 worker nodes with a total of 1920 cores. However, not all cores are allocated to the same job since it is a 

multi-tenant environment. Each tenant gets about 16 executors, each with 16GB memory. For the experiments, I vary the 

executor and memory count in three different configurations: first uses 8 executors and 8GB memory, the second uses 12 

executors and 12GB memory and the third uses 16 executors and 16GB memory. The lookup file size is also varied from 36MB 

to 70MB to 140 MB in the different experiments to measure the speed up and scale up as described in the objectives section 

below.  

 

The system is implemented in Scala. 

 

Objectives 
 

The objective of the study is to perform the performance impact of the JSON array unhasher feature. There are following 

scenarios that I would study: 

 

1. With Broadcast join: 

 

a. How does the system performance be affected when the load (the lookup values) is increased but the system capacity is 

left untouched? 

b. How does the system performance look like when the load is kept constant but the system capacity is increased? 

c. How does the system performance be affected when the lookup values list is increased 2-fold and 4-fold while also 

increasing the system capacity accordingly? 

 

2. How does the addition of bloom filter impact the performance? Ideally this is supposed to improve the performance. Does 

the reality match up with the expectations? 

 

The following configurations are used for the experiments towards studying each of the objectives: 

 

 

Objective Dataset size System Capacity (executor cores, 

executor memory) 

1a. Broadcast join, increased 

load under constant system 

capacity 

Small (36MB) Large – (16,16000mb) 

Large (140MB) Large – (16,16000mb) 

1b. Broadcast join, increased 

load under constant system 

capacity 

Small (36MB) Small – (8,8000mb) 

Small (36MB) Medium – (12,12000mb) 

Small (36MB) Large – (16,16000mb) 

1c. Broadcast join, increased 

load and system capacity 

Small (36MB) Small – (8,8000mb) 

Medium (70MB) Medium – (12,12000mb) 

Large (140MB) Large – (16,16000mb) 

2. Comparing between Broadcast 

join alone vs. Bloom filter + 

Broadcast join 

Large (140MB) Large – (16,16000mb) 

 



 

 

 

 

 

2. REVIEW OF TWO IMPLEMENTATIONS  

 
In the first method, the spark’s native broadcasting mechanism is used to distribute the lookup table to all the nodes. The 

advantage of this method is that the lookup dataset is transferred only once per worker node and not per each task. And then the 

worker nodes use this dataset for the lookup during the execution of the individual tasks. The disadvantage of this method is that 

the lookup is attempted for each value in the streaming blob, irrespective of whether the hash value is present in the lookup table.  

 

In the second method, a bloom filter is first created with the lookup values and is used prior to the actual lookup operation to 

infer whether the hash value is in the lookup table. The lookup is skipped if the bloom filter reports negative (which means the 

value is not in the lookup). The lookup is only performed if the bloom filter indicates a positive (which means the value is in the 

lookup). Note that since the bloom filter may have false positives, there could be some cases where we still end up doing a 

lookup even though in reality the value is not in the lookup table.  

 

Recollect from the naïve example that the lookup table has three columns: Attribute Name, Hash and the Clear Text. This has 

been implemented as a map of maps data structure in Scala. In other words, the Attribute Name is the key for the outer map, and 

for each Attribute value, there is a sub map for its value with the Hash as the key and the Clear Text as the value. In this setup, 

there are two options for the bloom filter implementation:  

 

The first option is to create the bloom filter at runtime for each attribute that needs the lookup. In this case, the bloom filter is 

created on each of the worker nodes. This approach cannot take any advantage of the distributed system for the bloom filter 

creation for a specific attribute. This is not to say that the distributed system is not at all used, it is still used for processing of the 

different input streams. In other words, the Input streams, which are hundreds of blobs per minute, are distributed to all the 

available worker nodes for processing. Each worker node starts processing these blobs. When they reach the point where they 

need to unhash the different attribute values, they get the list of attributes that needs to be unhashed. For each attribute in this list, 

they create a bloom filter from the lookup table but just for the sub map of that attribute. This bloom filter is created on the 

specific worker node. And each worker node is creating multiples of these smaller bloom filters for the different sub maps. 

  

The other option is to create the bloom filter at startup time for all the attributes. The driver node can take advantage of the spark 

context to distribute lookup file to all the worker nodes to make the creation of the bloom filter happen in a distributed way. This 

bloom filter is then collected by the driver and distributed to all the worker nodes for use with the pre-lookup filtering operation.  

 

Which Bloom filter to use? There are many different implementations of bloom filter available in the open source community. 

There is also an option to implement the bloom filter ourselves. For the current work, for option 1 I chose the Bloom filter from 

the org.apache.spark.util.sketch1 open source project. And for the second option, I chose the Bloom filter from the breeze.util2 

open source project since it supports distributed creation of bloom filter.  

 

3. RESULTS AND ANALYSIS 

 

 

For the Broadcast scale up and speed up experiments, below are the execution times observed under different data volume and 

compute capacities:  

https://github.com/apache/spark/blob/master/common/sketch/src/main/java/org/apache/spark/util/sketch/BloomFilter.java
https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/util/BloomFilter.scala


 

 

 
 

 

 
 



 

 

 
 

 

Bloom + Broadcast:  

 

With both the bloom filters-based approaches, I have observed deteriorated performance. The execution time has been 

consistently above 15 minutes for multiple runs with Large dataset and Large compute configuration (16 executor cores, 

16000mb executor memory). This could be attributed to the following: 

In the first option, since the bloom filter is being created at run time, there is additional time being taken for this operation. In the 

second option, even though the bloom filter is being created at the startup, it is limited by the driver resources since the driver 

needs to collect the entire lookup dataset to broadcast to the worker nodes for the bloom filter. In any distributed system, the 

driver resource allocation is typically low since the driver is only expected to perform the task coordination and nothing else.  

 

 

4. FUTURE WORK 

  

1. There is a research paper(3) I found that proposed some extensions to Bloom filters. I could explore some of these 

techniques to see if they improve the performance of the bloom-filter based approach.  
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