DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 7
Advanced Distributed Query Processing
Announcements

• Today lecture:
 – Part 1: guest lecturer Mingxi Wu, Tigergraph
 – Part 2: finish discussing distributed queries
• Reading assignment postponed for next week; you can update if you submitted
• HW4 = 3 mini homeworks + 1 theory to be posted tomorrow
• Next Tuesday: last regular lecture
• Dec. 1st: 1-on-1 discussion of your projects
• Dec. 8th: project presentations
Review: Distributed Join

Two algorithms for distributed join

• Hash-partition join

• Broadcast join

This lecture: how to compute general queries \textit{without} one join at a time
The Load

• We know the sizes of the input tables: $|R|, |S|, |T|, \ldots$
 – Sometimes they are all equal, then we denote this with N

• We run an algorithm on p servers

The load of the algorithm, L, is the largest number of tuples received by any server
Example: Hash Join

\[\text{Join}(x,y,z) = R(x,y) \land S(y,z) \]

Round 1: each server
- Hash partition \(R(x,y) \) and \(S(y,z) \) by \(y \)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>

Server 1

\[|R|=|S|=N \]

...
Example: Hash Join

\[
\text{Join}(x,y,z) = R(x,y) \land S(y,z)
\]

Round 1: each server
- Hash partition \(R(x,y)\) and \(S(y,z)\) by \(y\)

\[
\begin{array}{|c|c|}
\hline
R & S \\
\hline
x & y & y & z \\
\hline
a & e & e & m \\
a & f & e & n \\
b & f & f & m \\
c & f & f & k \\
\hline
\end{array}
\]

\(|R| = |S| = N\)

\(O\left(\frac{N}{p}\right)\)
Example: Hash Join

Join(x,y,z) = R(x,y) ∧ S(y,z)

Round 1: each server
- Hash partition R(x,y) and S(y,z) by y

Output: each server u:
- local join R_u(x,y) ⋈ S_u(y,z)
Example: Hash Join

\[\text{Join}(x, y, z) = R(x, y) \land S(y, z) \]

<table>
<thead>
<tr>
<th>R</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>k</td>
</tr>
</tbody>
</table>

Round 1: each server
• Hash partition \(R(x, y) \) and \(S(y, z) \) by \(y \)

\[|R| = |S| = N \]

\[R_1(x, y) \bowtie S_1(y, z) \]

\[\text{Server } 1 \]

\[\text{Server } p \]

\[\text{R}_p(x, y) \bowtie \text{S}_p(y, z) \]

\[L = O(N/p) \]

Output: each server \(u \):
• local join \(R_u(x, y) \bowtie S_u(y, z) \)
Example: Hash Join

\(\text{Join}(x, y, z) = R(x, y) \land S(y, z) \)

Round 1: each server
- Hash partition \(R(x, y) \) and \(S(y, z) \) by \(y \)

Output: each server \(u \):
- local join \(R_u(x, y) \bowtie S_u(y, z) \)

Assuming no skew

\(L = O(N/p) \) w.h.p.
Example: Hash Join

\[\text{Join}(x,y,z) = \text{R}(x,y) \land \text{S}(y,z) \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>f</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>f</td>
<td>m</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
<td>k</td>
</tr>
</tbody>
</table>

Round 1: each server
- Hash partition \(\text{R}(x,y) \) and \(\text{S}(y,z) \) by \(y \)

Output: each server \(u \):
- local join \(\text{R}_u(x,y) \bowtie \text{S}_u(y,z) \)

\(\big| \text{R} \big| = \big| \text{S} \big| = N \)

\(\text{L} = O(N/p) \) w.h.p.

Assuming no skew

Skew threshold: \(N/p \) or lower
Broadcast Join

\[\text{Join}(x,y,z) = R(x,y) \land S(y,z) \]

\[\begin{array}{|c|c|} \hline \text{R} & \text{S} \\ \hline x & y & y & z \\ \hline a & e & e & m \\ a & f & f & k \\ b & f \\ c & f \\ \hline \end{array} \]

Round 1: each server
- Broadcast \(S(y,z) \) to all servers

Output: each server
- local join \(R_u(x,y) \bowtie S(y,z) \)

\[\begin{aligned} |R| &= N_1 \gg |S| = N_2 \\
L &= O(N_1/p + N_2) \\
\text{Skew no problem} \end{aligned} \]
The Triangles Query

\[Q(x,y,z) = R(x,y) \land S(y,z) \land T(z,x) \]

Round 1: \[\text{Temp}(x,y,z) = R(x,y) \land S(y,z) \]
Round 2: \[Q(x,y,z) = \text{Temp}(x,y,z) \land T(z,x) \]

Problem: \[|\text{Temp}| \gg N \]

\[|R| = |S| = |T| = N \text{ tuples} \]
The Triangles Query

\[Q(x,y,z) = R(x,y) \land S(y,z) \land T(z,x) \]

Algorithm in one round!

- [Afrati’10] Shares Algo (MapReduce)
- [Beame’13,’14] HyperCube Algo (MPC)

\(|R| = |S| = |T| = N\) tuples
Triangles in One Round

• Place servers in a cube $p = p^{1/3} \times p^{1/3} \times p^{1/3}$

• Each server identified by (i,j,k)

• Choose 3 random, independent hash functions:

 $h_1 : \text{Dom} \rightarrow [p^{1/3}]$

 $h_2 : \text{Dom} \rightarrow [p^{1/3}]$

 $h_3 : \text{Dom} \rightarrow [p^{1/3}]$

$Q(x,y,z) = R(x,y) \land S(y,z) \land T(z,x)$

$|R| = |S| = |T| = N$ tuples
Triangles in One Round

\[Q(x,y,z) = R(x,y) \land S(y,z) \land T(z,x) \]

| \[|R| = |S| = |T| = N \text{ tuples} \] |

Round 1:
- Send \(R(x,y) \) to all servers \((h_1(x), h_2(y), *)\)
- Send \(S(y,z) \) to all servers \((*, h_2(y), h_3(z))\)
- Send \(T(z,x) \) to all servers \((h_1(x), *, h_3(z))\)

Output:
compute locally \(R(x,y) \land S(y,z) \land T(z,x) \)
Communication Cost

Theorem HyperCube has load $L = O(N/p^{2/3})$ w.h.p., on any input database without skew.

Skew threshold: $N/p^{1/3}$ or lower

This load is optimal, even for data without skew

$Q(x,y,z) = R(x,y) \land S(y,z) \land T(z,x)$

$|R| = |S| = |T| = N$ tuples
HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: x_1, x_2, \ldots, x_k
HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: x_1, x_2, \ldots, x_k
• Organize the servers into a k-dimensional hypercube: $p = p_1 \cdot p_2 \cdots p_k$
HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: x_1, x_2, \ldots, x_k
• Organize the servers into a k-dimensional hypercube: $p = p_1 \cdot p_2 \cdots p_k$
• Hash partition each relation $R(x_{i_1}, x_{i_2}, \ldots)$ to the hyperplane $p_{i_1} \times p_{i_2} \times \cdots$
HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: x_1, x_2, \ldots, x_k
• Organize the servers into a k-dimensional hypercube: $p = p_1 \cdot p_2 \cdots p_k$
• Hash partition each relation $R(x_{i_1}, x_{i_2}, \ldots)$ to the hyperplane $p_{i_1} \times p_{i_2} \times \cdots$
• Broadcast along the other dimension
HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: x_1, x_2, \ldots, x_k
• Organize the servers into a k-dimensional hypercube: $p = p_1 \cdot p_2 \cdots p_k$
• Hash partition each relation $R(x_{i_1}, x_{i_2}, \ldots)$ to the hyperplane $p_{i_1} \times p_{i_2} \times \cdots$
• Broadcast along the other dimension

Main challenge: compute the shares p_1, p_2, \ldots, p_k to minimize the load L
Example: Join

\[Q(x, y, z) = R(x, y) \land S(y, z) \]

- Hash join: \(p_1 = 1, p_2 = p, p_3 = 1 \)

- Broadcast join: \(p_1 = 1, p_2 = 1, p_3 = p \)

Which relation is broadcast?
Computing the Shares

• The secret to computing the shares lies in understanding a very simple query: the cartesian product of two, or more relations
Cartesian Product

An important special case: \(Q = R \times S \)

- In our notation: \(Q(x, y) = R(x) \land S(y) \)
- Assume: \(|R| = N_1, |S| = N_2 \)

- Algorithm:
 - Choose shares such that \(p = p_1 \cdot p_2 \)
 - Distribute \(R(x) \) to row \(h_1(x) \)
 - Distribute \(S(y) \) to column \(h_2(y) \)
Cartesian Product

\[|R| = N_1, \ |S| = N_2 \]

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Y</td>
</tr>
<tr>
<td>a</td>
<td>m</td>
</tr>
<tr>
<td>b</td>
<td>n</td>
</tr>
<tr>
<td>c</td>
<td>p</td>
</tr>
<tr>
<td>d</td>
<td>q</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

\[R(a) \rightarrow \]

\[S(m) \rightarrow \]

\[R \times S = N \]

\[\uparrow \]

\[\exists \subseteq S \]
Cartesian Product

$|R| = N_1, \; |S| = N_2$

Problem: minimize $L = \frac{N_1}{p_1} + \frac{N_2}{p_2}$ such that $p = p_1 \cdot p_2$
Cartesian Product

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Y</td>
</tr>
<tr>
<td>a</td>
<td>m</td>
</tr>
<tr>
<td>b</td>
<td>n</td>
</tr>
<tr>
<td>c</td>
<td>p</td>
</tr>
<tr>
<td>d</td>
<td>q</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\[|R| = N_1, \ |S| = N_2 \]

Problem: minimize \(L = \frac{N_1}{P_1} + \frac{N_2}{P_2} \) such that \(P = P_1 \cdot P_2 \)

Solution: \(L = \frac{N_1}{P_1} + \frac{N_2}{P_2} \geq 2 \sqrt{\frac{N_1 N_2}{P_1 P_2}} = 2 \sqrt{\frac{N_1 N_2}{P}} \)
|R| = N_1, |S| = N_2

Problem: minimize \(L = \frac{N_1}{p_1} + \frac{N_2}{p_2} \) such that \(p = p_1 \cdot p_2 \)

Solution: \(L = \frac{N_1}{p_1} + \frac{N_2}{p_2} \geq 2 \sqrt{\frac{N_1 N_2}{p_1 p_2}} = 2 \sqrt{\frac{N_1 N_2}{p}} \) -- THIS is the optimal load \(L_{opt} \)
Carolesian Product

\[|R| = N_1, \ |S| = N_2 \]

Problem: minimize \[L = \frac{N_1}{p_1} + \frac{N_2}{p_2} \] such that \[p = p_1 \cdot p_2 \]

Solution: \[L = \frac{N_1}{p_1} + \frac{N_2}{p_2} \geq 2 \sqrt{\frac{N_1 N_2}{p_1 p_2}} = 2 \sqrt{\frac{N_1 N_2}{p}} \]

\(\text{THIS is the optimal load } L_{\text{opt}} \)

From here we can compute the shares: \[\frac{N_1}{p_1} = \sqrt{\frac{N_1 N_2}{p}} \text{ so } p_1 = \cdots \]
Discussion

• Special case: when $N_1 = N_2 = N$ then:

\[L_{opt} = \frac{N}{\sqrt{p}} \quad \text{and} \quad p_1 = p_2 = \sqrt{p} \]

• "Virtual servers" don’t work:
 – Let $p=100$, hence $L_{opt}=N/10$
 – Suppose we use $p_{virtual}=40000$: $L_{opt,virt}=N/200$
 – Each real server must simulate 400 virtual
 – Real load is $L_{real}=N/200*400=2N$

• Reason: $\frac{N}{\sqrt{p}}$ means “sub-linear speedup”
General Cartesian Product

\[Q = R_1 \times R_2 \times \cdots \times R_c \]

- Assume: \(|R_1| = N_1, \ldots, |R_c| = N_c\)

Solution: \(L = \frac{N_1}{p_1} + \cdots + \frac{N_c}{p_c} \geq c \left(\frac{N_1 \cdots N_c}{p_1 \cdots p_c} \right)^{\frac{1}{c}} = c \left(\frac{N_1 \cdots N_c}{p} \right)^{\frac{1}{c}} \)
Edge Packing

\[Q(x_1,\ldots,x_k) = R_1(\text{vars}_1) \land \cdots \land R_m(\text{vars}_m) \]

An edge packing is a subset of relations \(R_{i_1}, R_{i_2}, \ldots, R_{i_c} \) that do not share variables.

Fact. For any edge packing of size \(c \), the load of any 1-round algorithm is:

\[L \geq c \left(\frac{N_{i_1} \cdots N_{i_c}}{p} \right)^{\frac{1}{c}} \]
Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(vars_1) \land \cdots \land R_m(vars_m) \]

An edge packing is a subset of relations \(R_{i_1}, R_{i_2}, \ldots, R_{i_c} \) that do not share variables.

Fact. For any edge packing of size \(c \), the load of any 1-round algorithm is:

\[
L \geq c \left(\frac{N_{i_1} \cdots N_{i_c}}{p} \right)^{\frac{1}{c}}
\]

Proof (in class)

By example, for \(Q(x, y, z, u) = R(x, y) \land S(y, z) \land T(z, u) \land K(u, x) \)

- Consider packing \(R(x, y), T(z, u) \). Claim: the algorithm **must** compute \(R \times T \)
Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(var s_1) \wedge \cdots \wedge R_m(var s_m) \]

An edge packing is a subset of relations \(R_{i_1}, R_{i_2}, \ldots, R_{i_c} \) that do not share variables

Fact. For any edge packing of size \(c \), the load of any 1-round algorithm is:

\[L \geq c \left(\frac{N_{i_1} \cdots N_{i_c}}{p} \right)^{\frac{1}{c}} \]

Proof (in class)

By example, for \(Q(x, y, z, u) = R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x) \)

- Consider packing \(R(x, y), T(z, u) \). Claim: the algorithm **must** compute \(R \times T \)
- Assume not; then two tuples \(R(a, b), T(c, d) \) do not meet at any server.
Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(\text{vars}_1) \land \cdots \land R_m(\text{vars}_m) \]

An edge packing is a subset of relations \(R_{i_1}, R_{i_2}, \ldots, R_{i_c} \) that do not share variables

Fact. For any edge packing of size \(c \), the load of any 1-round algorithm is:

\[
L \geq c \left(\frac{N_{i_1} \cdots N_{i_c}}{p} \right)^{\frac{1}{c}}
\]

Proof (in class)
By example, for \(Q(x, y, z, u) = R(x, y) \land S(y, z) \land T(z, u) \land K(u, x) \)

- Consider packing \(R(x, y), T(z, u) \). Claim: the algorithm must compute \(R \times T \)
- Assume not; then two tuples \(R(a, b), T(c, d) \) do not meet at any server.
- “Add” tuples \(S(b, c), K(d, a) \) to the input, at some server that doesn’t have \(R(a, b), T(c, d) \).
Edge Packing

\[Q(x_1, ..., x_k) = R_1(var s_1) \land \cdots \land R_m(var s_m) \]

An **edge packing** is a subset of relations \(R_{i_1}, R_{i_2}, ..., R_{i_c} \) that do not share variables

Fact. For any edge packing of size \(c \), the load of any 1-round algorithm is:

\[L \geq c \left(\frac{N_{i_1} \cdots N_{i_c}}{p} \right)^{\frac{1}{c}} \]

Proof (in class)

By example, for \(Q(x, y, z, u) = R(x, y) \land S(y, z) \land T(z, u) \land K(u, x) \)

- Consider packing \(R(x, y), T(z, u) \). Claim: the algorithm **must** compute \(R \times T \)
- Assume not; then two tuples \(R(a, b), T(c, d) \) do not meet at any server.
- “Add” tuples \(S(b, c), K(d, a) \) to the input, at some server that doesn’t have \(R(a, b), T(c, d) \).
- The tuples \(R(a, b), T(c, d) \) still do not meet (why?), hence algorithm is incorrect
Fractional Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(var s_1) \land \cdots \land R_m(var s_m) \]

A *fractional edge packing* is a set of weights \(w_1, \ldots, w_m \) such that, for every variable, the sum of weights that contain it is \(\leq 1 \).
Fractional Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(\text{var} s_1) \land \cdots \land R_m(\text{var} s_m) \]

A \textit{fractional edge packing} is a set of weights \(w_1, \ldots, w_m \) such that, for every variable, the sum of weights that contain it is \(\leq 1 \).

\textbf{Theorem.} For any fractional edge packing, the load of any 1-round algorithm is:

\[L \geq \left(\frac{N_1^{w_1} \cdots N_m^{w_m}}{w_1 + \cdots + w_m} \right)^{\frac{1}{p}} \]
Fractional Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(var s_1) \land \cdots \land R_m(var s_m) \]

A **fractional edge packing** is a set of weights \(w_1, \ldots, w_m \) such that, for every variable, the sum of weights that contain it is \(\leq 1 \).

Theorem. For any fractional edge packing, the load of any 1-round algorithm is:

\[
L \geq \left(\frac{N_1^{w_1} \cdots N_m^{w_m}}{w_1 + \cdots + w_m} \right) \frac{1}{p}
\]

Moreover, there exists shares for which the HyperCube algorithm has a load:

\[
L_{opt} = O \left(\max_{w_1, \ldots, w_m} \left(\frac{N_1^{w_1} \cdots N_m^{w_m}}{w_1 + \cdots + w_m} \right) \frac{1}{p} \right)
\]
Fractional Edge Packing

\[Q(x_1, \ldots, x_k) = R_1(var s_1) \land \cdots \land R_m(var s_m) \]

A fractional edge packing is a set of weights \(w_1, \ldots, w_m \) such that, for every variable, the sum of weights that contain it is \(\leq 1 \).

Theorem. For any fractional edge packing, the load of any 1-round algorithm is:

\[
L \geq \frac{1}{\left(\frac{N_1^{w_1} \cdots N_m^{w_m}}{p^{w_1+\cdots+w_m}} \right)}
\]

Moreover, there exists shares for which the HyperCube algorithm has a load:

\[
L_{opt} = O \left(\max_{w_1, \ldots, w_m} \left(\frac{N_1^{w_1} \cdots N_m^{w_m}}{p^{w_1+\cdots+w_m}} \right) \right)
\]

The formula gives us \(L_{opt} \) up to some small constant factor (which we ignore). Once you know \(L_{opt} \) you can usually compute the optimal shares for HyperCube.
Discussion

\[L_{opt} = O\left(\max_{w_1, \ldots, w_m} \left(\frac{N_1^{w_1} \ldots N_m^{w_m}}{p} \right) \right) \]

• We want the \textit{minimal load}, yet the formula above asks us to compute a \textit{max};

• The reason is that the formula is only a lower bound; it happens that the max has a matching algorithm (the proof is non-trivial)
Example: Join

\[Q(x, y, z) = R(x, y) \land S(y, z) \]

\[L = \left(\frac{N_1^{w_1} \cdot N_2^{w_2}}{p} \right)^{\frac{1}{w_1+w_2}} \]

- Fractional edge packing: 1,0: \[L = \frac{N_1}{p} \]
- Fractional edge packing: 0,1: \[L = \frac{N_2}{p} \]
- Assume \(N_1 \geq N_2 \). We obtain the shares:

\[\frac{N_1}{p_1 p_2} = \frac{N_1}{p} \quad \text{and} \quad \frac{N_2}{p_2 p_3} = \frac{N_1}{p} \]

\[p_1 = \frac{N_1}{N_2}, \quad p_2 = p \frac{N_2}{N_1}, \quad p_3 = 1 \]

Discuss connection to hash-, broadcast-join
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \(N_1 = N_2 = N_3 = N \), then the optimal load is \(L_{opt} = O\left(\frac{N}{p^{2/3}}\right) \)

What if their sizes are different?
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \(N_1 = N_2 = N_3 = N \), then the optimal load is \(L_{opt} = O\left(\frac{N}{p^{2/3}}\right) \)

What if their sizes are different?

<table>
<thead>
<tr>
<th>Fractional edge packing</th>
<th>(\left(\frac{\begin{array}{c} N_1^{w_1} \ N_2^{w_2} \ N_3^{w_3} \end{array}}{p} \right) \cdot \frac{1}{w_1+w_2+w_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})</td>
<td>(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3})</td>
</tr>
<tr>
<td>1,0,0</td>
<td></td>
</tr>
<tr>
<td>0,1,0</td>
<td></td>
</tr>
<tr>
<td>0,0,1</td>
<td></td>
</tr>
<tr>
<td>0,0,0</td>
<td></td>
</tr>
</tbody>
</table>
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \(N_1 = N_2 = N_3 = N \), then the optimal load is \(L_{opt} = O(N/p^{2/3}) \)

What if their sizes are different?

| Fractional edge packing \(w_1, w_2, w_3 \) | \[
\left(\frac{N_1^{w_1} \cdot N_2^{w_2} \cdot N_3^{w_3}}{p} \right)^{1/(w_1+w_2+w_3)}
\] |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})</td>
<td>(\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}})</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td></td>
</tr>
<tr>
<td>(0,1,0)</td>
<td></td>
</tr>
<tr>
<td>(0,0,1)</td>
<td></td>
</tr>
<tr>
<td>(0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>
Example

$$Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x)$$

When $$N_1 = N_2 = N_3 = N$$, then the optimal load is $$L_{opt} = O(N/p^{2/3})$$

What if their sizes are different?

<table>
<thead>
<tr>
<th>Fractional edge packing $$w_1, w_2, w_3$$</th>
<th>[\left(\frac{N_1^{w_1} \cdot N_2^{w_2} \cdot N_3^{w_3}}{p} \right)^{1/(w_1+w_2+w_3)}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$</td>
<td>$$\left(\frac{N_1 \cdot N_2 \cdot N_3}{p^{2/3}} \right)^{1/3}$$</td>
</tr>
<tr>
<td>$$1,0,0$$</td>
<td>$$\frac{N_1}{p}$$</td>
</tr>
<tr>
<td>$$0,1,0$$</td>
<td></td>
</tr>
<tr>
<td>$$0,0,1$$</td>
<td></td>
</tr>
<tr>
<td>$$0,0,0$$</td>
<td></td>
</tr>
</tbody>
</table>
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \(N_1 = N_2 = N_3 = N \), then the optimal load is \(L_{opt} = O\left(\frac{N}{p^{2/3}}\right) \)

What if their sizes are different?

<table>
<thead>
<tr>
<th>Fractional edge packing (w_1, w_2, w_3)</th>
<th>(\left(\frac{N_1^{w_1} \cdot N_2^{w_2} \cdot N_3^{w_3}}{p} \right)^{1/(w_1+w_2+w_3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})</td>
<td>(\left(\frac{N_1 \cdot N_2 \cdot N_3}{1} \right)^{1/3})</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>(\frac{N_1}{p})</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>(\frac{N_2}{p})</td>
</tr>
<tr>
<td>(0,0,1)</td>
<td>(\frac{N_3}{p})</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \[N_1 = N_2 = N_3 = N \], then the optimal load is \[L_{opt} = O\left(\frac{N}{p^{2/3}}\right) \]

What if their sizes are different?

<table>
<thead>
<tr>
<th>Fractional edge packing [w_1, w_2, w_3]</th>
<th>[\frac{1}{w_1+w_2+w_3} \left(\frac{N_1^{w_1} \cdot N_2^{w_2} \cdot N_3^{w_3}}{p} \right)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]</td>
<td>[\left(N_1 \cdot N_2 \cdot N_3 \right)^{1/3}]</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>[\frac{N_1}{p}]</td>
</tr>
<tr>
<td>[0,1,0]</td>
<td>[\frac{N_2}{p}]</td>
</tr>
<tr>
<td>[0,0,1]</td>
<td>[\frac{N_3}{p}]</td>
</tr>
<tr>
<td>[0,0,0]</td>
<td>[0 \text{ (why?)}]</td>
</tr>
</tbody>
</table>
Example

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

When \(N_1 = N_2 = N_3 = N \), then the optimal load is \(L_{opt} = O\left(\frac{N}{p^{2/3}}\right) \)

What if their sizes are different?

<table>
<thead>
<tr>
<th>Fractional edge packing</th>
<th>(\left(\frac{N_1^{w_1} \cdot N_2^{w_2} \cdot N_3^{w_3}}{p} \right)^{1/(w_1+w_2+w_3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})</td>
<td>(\left(\frac{N_1 \cdot N_2 \cdot N_3}{p^{2/3}} \right)^{1/3})</td>
</tr>
<tr>
<td>1,0,0</td>
<td>(\frac{N_1}{p})</td>
</tr>
<tr>
<td>0,1,0</td>
<td>(\frac{N_2}{p})</td>
</tr>
<tr>
<td>0,0,1</td>
<td>(\frac{N_3}{p})</td>
</tr>
<tr>
<td>0,0,0</td>
<td>0 (why?)</td>
</tr>
</tbody>
</table>

Optimal load \(L_{opt} \) is the maximum of this column
Example (cont’d)

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

Need max of \(\left(\frac{N_1 \cdot N_2 \cdot N_3}{p^{2/3}} \right)^{1/3}, \frac{N_1}{p}, \frac{N_2}{p}, \frac{N_3}{p} \)

Suppose w.l.o.g. \(N_1 \geq N_2 \geq N_3 \)
Example (cont’d)

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

Need max of \(\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}}, \frac{N_1}{p}, \frac{N_2}{p}, \frac{N_3}{p} \)

Suppose w.l.o.g. \(N_1 \geq N_2 \geq N_3 \)

• Case 1: \(\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \leq \frac{N_1}{p} = L_{opt} \)

The share of \(z \) is \(p_3 = 1 \), hence “cartesian product \(S \times T \), distribute \(R \)”
Example (cont’d)

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

Need max of \(\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \), \(\frac{N_1}{p} \), \(\frac{N_2}{p} \), \(\frac{N_3}{p} \)

Suppose w.l.o.g. \(N_1 \geq N_2 \geq N_3 \)

- Case 1: \(\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \leq \frac{N_1}{p} = L_{opt} \)

 The share of \(z \) is \(p_3 = 1 \), hence
 “cartesian product \(S \times T \), distribute \(R \)”

Proof: Load due to \(R \):

\[\frac{N_1}{p_{1}p_{2}} = L_{opt}, \text{ i.e. } \frac{N_1p_3}{p} = \frac{N_1}{p} \]
Example (cont’d)

$Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x)$

Need max of $\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}}$, $\frac{N_1}{p}$, $\frac{N_2}{p}$, $\frac{N_3}{p}$

Suppose w.l.o.g. $N_1 \geq N_2 \geq N_3$

- Case 1: $\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \leq \frac{N_1}{p} = L_{opt}$

 The share of z is $p_3 = 1$, hence “cartesian product $S \times T$, distribute R”

- Case 2: “normal” hypercube $L_{opt} = \frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}}$

Proof: Load due to R: $\frac{N_1}{p_1 p_2} = L_{opt}$, i.e. $\frac{N_1 p_3}{p} = \frac{N_1}{p}$
Example (cont’d)

\[Q(x, y, z) = R(x, y) \land S(y, z) \land T(z, x) \]

Need max of \[\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}}, \frac{N_1}{p}, \frac{N_2}{p}, \frac{N_3}{p} \]

Suppose w.l.o.g. \(N_1 \geq N_2 \geq N_3 \)

- Case 1: \[\frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \leq \frac{N_1}{p} = L_{opt} \]

 The share of \(z \) is \(p_3 = 1 \), hence “cartesian product \(S \times T \), distribute \(R \)”

- Case 2: “normal” hypercube \(L_{opt} = \frac{(N_1 \cdot N_2 \cdot N_3)^{1/3}}{p^{2/3}} \)

Proof: Load due to \(R \):

\[\frac{N_1}{p_1 p_2} = L_{opt}, \text{ i.e. } \frac{N_1 p_3}{p} = \frac{N_1}{p} \]

When \(p \leq \frac{N_1^2}{N_2 N_3} \) then Case 1, linear speedup; otherwise case 2, sublinear
Final Special Case

• When all cardinalities are equal, then:

\[
\left(\frac{N^{w_1} \ldots N^{w_m}}{p} \right)^{\frac{1}{w_1+\ldots+w_m}} = \frac{N}{p^{\frac{1}{w_1+\ldots+w_m}}}
\]

• For a graph G, the quantity

\[
\tau^* = \max_{\text{fractional edge packing}} (w_1 + \ldots w_m)
\]

is called the \textit{fractional edge packing number}

• \(L_{opt} = \frac{N}{p^{\tau^*}} \)
Conclusions

• The HyperCube algorithms combines two strategies: hash-partition, and broadcast

• When \(p \) is small, then it can broadcast the smaller relations;

• As \(p \) increases, “smaller” relations no longer help, and the load gets closer to the fractional edge covering number \(\tau^* \)