
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 7
Advanced Distributed Query Processing

1DATA516/CSED516 - Fall 2020

Announcements
• Today lecture:

– Part 1: guest lecturer Mingxi Wu, Tigergraph
– Part 2: finish discussing distributed queries

• Reading assignment postponed for next
week; you can update if you submitted

• HW4 = 3 mini homeworks + 1 theory
to be posted tomorrow

• Next Tuesday: last regular lecture
• Dec. 1st: 1-on-1 discussion of your projects
• Dec. 8th : project presentations

2

Review: Distributed Join
Two algorithms for distributed join

• Hash-partition join

• Broadcast join

This lecture: how to compute general
queries without one join at a time

3

The Load

• We know the sizes of the input tables:
|R|, |S|, |T|, …
– Sometimes they are all equal, then we denote

this with N
• We run an algorithm on p servers

The load of the algorithm, L, is the largest
number of tuples received by any server

4

Example: Hash Join

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

5

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

Example: Hash Join

Server 1 Server p. . . .

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

6

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

O(N/p) O(N/p)

Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

7

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

O(N/p) O(N/p)

Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

8

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

L = O(N/p) w.h.p.

O(N/p) O(N/p)

Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

Assuming no skew

9

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

L = O(N/p) w.h.p.

O(N/p) O(N/p)

Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

Assuming no skew

10

x y
a e

a f

b f

c f

y z
e m

e n

f m

f k

R S

Join(x,y,z) = R(x,y) ∧ S(y,z)

L = O(N/p) w.h.p.

O(N/p) O(N/p)

Skew threshold: N/p or lower

Broadcast Join

Server 1 Server p. . . .

R1(x,y) ⋈ S(y,z) Rp(x,y) ⋈ S(y,z)

Output: each server
• local join Ru(x,y) ⋈ S(y,z)

Server 1 Server p. . . .

Round 1: each server
• Broadcast S(y,z) to all servers

|R| = N1 >> |S| = N2

11

O(N1/p +N2) O(N1/p +N2)

L = O(N1/p + N2)

Join(x,y,z) = R(x,y) ∧ S(y,z)

x y
a e

a f

b f

c f

y z
e m

f k

R S

Skew no problem

The Triangles Query

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Round 1: Temp(x,y,z) = R(x,y)∧S(y,z)
Round 2: Q(x,y,z) = Temp(x,y,z) ∧T(z,x)

Problem: |Temp| >> N

12

|R| = |S| = |T| = N tuples

The Triangles Query

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Algorithm in one round!
• [Afrati’10] Shares Algo (MapReduce)
• [Beame’13,’14] HyperCube Algo (MPC)

13

|R| = |S| = |T| = N tuples

Triangles in One Round
• Place servers in a cube p = p1/3 × p1/3 × p1/3

• Each server identified by (i,j,k)

• Choose 3 random, independent hash functions:
h1 : Dom à [p1/3]
h2 : Dom à [p1/3]
h3 : Dom à [p1/3]

i

j
k

(i,j,k)

p1/3

Server (i,j,k)

14

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x) |R| = |S| = |T| = N tuples

Triangles in One Round

k

(i,j,k)

Z X

Fred Alice

Jack Jim

Fred Jim

Carol Alice

…

Jack JimY Z

Fred Alice

Jack Jim

Fred Jim

Carol Alice

Jim JackJim Jack

X Y

Fred Alice

Jack Jim

Fred Jim

Carol Alice

…

R

S

T

i = h1(Fred)

j = h2(Jim)

Fred Jim
Fred Jim

Fred Jim
Fred Jim

Jim Jack

Jim Jack

Fred JimJim Jack

Jim Jack
Jack JimJack JimFred Jim

Fred Jim

Round 1:
Send R(x,y) to all servers (h1(x),h2(y),*)
Send S(y,z) to all servers (*, h2(y), h3(z))
Send T(z,x) to all servers (h1(x), *, h3(z))

Output:
compute locally R(x,y)∧S(y,z)∧T(z,x)

15
p1/3

|R| = |S| = |T| = N tuplesQ(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Communication Cost

16

This load is optimal, even for data without skew

|R| = |S| = |T| = N tuples

Theorem HyperCube has load L = O(N/p2/3)
w.h.p., on any input database without skew.

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Skew threshold: N/p1/3 or lower

HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#

17

HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#

18

HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#
• Hash partition each relation 𝑅 𝑥$! , 𝑥$" , …

to the hyperplane 𝑝$!×𝑝$"×⋯

19

HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#
• Hash partition each relation 𝑅 𝑥$! , 𝑥$" , …

to the hyperplane 𝑝$!×𝑝$"×⋯
• Broadcast along the other dimension

20

HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#
• Hash partition each relation 𝑅 𝑥$! , 𝑥$" , …

to the hyperplane 𝑝$!×𝑝$"×⋯
• Broadcast along the other dimension

21

Main challenge: compute the shares 𝑝!, 𝑝", … , 𝑝# to minimize the load L

Example: Join

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆(𝑦, 𝑧)

• Hash join: 𝑝! = 1, 𝑝" = 𝑝, 𝑝% = 1

• Broadcast join: 𝑝! = 1, 𝑝" = 1, 𝑝% = 𝑝

22

Which relation is broadcast?

Computing the Shares

• The secret to computing the shares lies in
understanding a very simple query: the
cartesian product of two, or more relations

23

Cartesian Product

An important special case: 𝑄 = 𝑅×𝑆
• In our notation: 𝑄 𝑥, 𝑦 = 𝑅 𝑥 ∧ 𝑆(𝑦)
• Assume: 𝑅 = 𝑁!, 𝑆 = 𝑁"

• Algorithm:
– Choose shares such that 𝑝 = 𝑝$ ⋅ 𝑝%
– Distribute 𝑅(𝑥) to row ℎ$(𝑥)
– Distribute 𝑆(𝑦) to column ℎ%(𝑦)

24

Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

𝑅 = 𝑁", 𝑆 = 𝑁#

Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%

Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%
THIS is the
optimal load Lopt

Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%
THIS is the
optimal load Lopt

From here we can compute the shares: $!
%!
= $!$"

%
so 𝑝" = ⋯

Discussion
• Special case: when 𝑁" = 𝑁# = 𝑁 then:

• ”Virtual servers” don’t work:
– Let p=100, hence Lopt=N/10
– Suppose we use pvirtual=40000: Lopt,virt=N/200
– Each real server must simulate 400 virtual
– Real load is Lreal=N/200*400=2N L

• Reason: $
%

means“sub-linear speedup”

30

𝐿&'(=
)
'

and 𝑝$ = 𝑝% = 𝑝

General Cartesian Product

𝑄 = 𝑅!×𝑅"×⋯×𝑅&
• Assume: 𝑅! = 𝑁!, … , 𝑅& = 𝑁&

31

Solution: L =)!
'!
+⋯+)"

'"
≥ 𝑐)!⋯)"

'!⋯'"

!
" = 𝑐)!⋯)"

'

!
"

Optimal load Lopt

Edge Packing

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables

Edge Packing

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

Proof (in class)
By example, for 𝑄 𝑥, 𝑦, 𝑧, 𝑢 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇 𝑧, 𝑢 ∧ 𝐾(𝑢, 𝑥)
• Consider packing 𝑅 𝑥, 𝑦 , 𝑇 𝑧, 𝑢 . Claim: the algorithm must compute 𝑅×𝑇
• Assume not; then two tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) do not meet at any server.
• “Add” tuples 𝑆 𝑏, 𝑐 , 𝐾 𝑑, 𝑎 to the input, at some server that doesn’t

have 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑).
• The tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) still do not meet (why?), hence algorithm is incorrect

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables

Edge Packing

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

Proof (in class)
By example, for 𝑄 𝑥, 𝑦, 𝑧, 𝑢 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇 𝑧, 𝑢 ∧ 𝐾(𝑢, 𝑥)
• Consider packing 𝑅 𝑥, 𝑦 , 𝑇 𝑧, 𝑢 . Claim: the algorithm must compute 𝑅×𝑇
• Assume not; then two tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) do not meet at any server.
• “Add” tuples 𝑆 𝑏, 𝑐 , 𝐾 𝑑, 𝑎 to the input, at some server that doesn’t

have 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑).
• The tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) still do not meet (why?), hence algorithm is incorrect

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables

Edge Packing

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

Proof (in class)
By example, for 𝑄 𝑥, 𝑦, 𝑧, 𝑢 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇 𝑧, 𝑢 ∧ 𝐾(𝑢, 𝑥)
• Consider packing 𝑅 𝑥, 𝑦 , 𝑇 𝑧, 𝑢 . Claim: the algorithm must compute 𝑅×𝑇
• Assume not; then two tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) do not meet at any server.
• “Add” tuples 𝑆 𝑏, 𝑐 , 𝐾 𝑑, 𝑎 to the input, at some server that doesn’t

have 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑).
• The tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) still do not meet (why?), hence algorithm is incorrect

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables

Edge Packing

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

Proof (in class)
By example, for 𝑄 𝑥, 𝑦, 𝑧, 𝑢 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇 𝑧, 𝑢 ∧ 𝐾(𝑢, 𝑥)
• Consider packing 𝑅 𝑥, 𝑦 , 𝑇 𝑧, 𝑢 . Claim: the algorithm must compute 𝑅×𝑇
• Assume not; then two tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) do not meet at any server.
• “Add” tuples 𝑆 𝑏, 𝑐 , 𝐾 𝑑, 𝑎 to the input, at some server that doesn’t

have 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑).
• The tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) still do not meet (why?), hence algorithm is incorrect

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables

Fractional Edge Packing
𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.

Fractional Edge Packing

Theorem. For any fractional edge packing, the load of
any 1-round algorithm is:

𝐿 ≥
𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.

Fractional Edge Packing

Theorem. For any fractional edge packing, the load of
any 1-round algorithm is:

𝐿 ≥
𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

Moreover, there exists shares for which the HyperCube
algorithm has a load:

𝐿*+, = 𝑂 max
'!,…,'#

𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.

Fractional Edge Packing

Theorem. For any fractional edge packing, the load of
any 1-round algorithm is:

𝐿 ≥
𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

Moreover, there exists shares for which the HyperCube
algorithm has a load:

𝐿*+, = 𝑂 max
'!,…,'#

𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.

The formula gives us 𝐿$%& up to some small constant factor (which we ignore).
Once you know 𝐿$%& you can usually compute the optimal shares for HyperCube.

Discussion

• We want the minimal load, yet the formula
above asks us to compute a max;

• The reason is that the formula is only a
lower bound; it happens that the max has
a matching algorithm (the proof is non-
trivial)

41

𝐿*+, = 𝑂 max
'!,…,'#

𝑁!
'!⋯𝑁&

'#

𝑝

!
'!(⋯('#

Example: Join
𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆(𝑦, 𝑧)

• Fractional edge packing: 1,0: 𝐿 = '!
(

• Fractional edge packing: 0,1: 𝐿 = '"
(

• Assume 𝑁! ≥ 𝑁". We obtain the shares:

42

𝐿 =
𝑁"
'! ⋅ 𝑁(

'"

𝑝

"
'!)'"

𝑁!
𝑝!𝑝"

=
𝑁!
𝑝

and
𝑁"
𝑝"𝑝/

=
𝑁!
𝑝

𝑝! =
𝑁!
𝑁"
, p" = p

𝑁"
𝑁!
, 𝑝/ = 1è

Discuss connection to
hash-, broadcast-join

Example

43

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

0
0

1½
½

½

Example

44

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½

Example

45

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½

Example

46

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½

Example

47

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½

Example

48

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0 0 (why?)

0
0

1½
½

½

Example

49

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁(= 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄(*)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁(⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0 0 (why?)

0
0

1½
½

½

Optimal load Lopt is
the maximum of

this column

Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%

Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%

Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%

When 𝑝 ≤ 5!$

5$5%
then Case 1, linear speedup; otherwise case 2, sublinear

Final Special Case
• When all cardinalities are equal, then:

𝑁!.⋯𝑁!/

𝑝

"
!.#⋯#!/

=
𝑁

𝑝
"

!.#⋯#!/

• For a graph G, the quantity

𝜏∗ = max
&'() *+,* -()./0,

(𝑤" +⋯𝑤1)

is called the fractional edge packing number

• 𝐿2-3 =
4

-
.
0∗

55

Conclusions
• The HyperCube algorithms combines two

strategies: hash-partition, and broadcast

• When p is small, then it can broadcast the
smaller relations;

• As p increases, “smaller” relations no
longer help, and the load gets closer to the
fractional edge covering number 𝜏∗

56

