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Announcements
• Today lecture:

– Part 1: guest lecturer Mingxi Wu, Tigergraph
– Part 2: finish discussing distributed queries

• Reading assignment postponed for next 
week; you can update if you submitted

• HW4 = 3 mini homeworks + 1 theory
to be posted tomorrow

• Next Tuesday: last regular lecture
• Dec. 1st: 1-on-1 discussion of your projects
• Dec. 8th : project presentations
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Review: Distributed Join
Two algorithms for distributed join

• Hash-partition join

• Broadcast join

This lecture: how to compute general 
queries without one join at a time
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The Load

• We know the sizes of the input tables:
|R|, |S|, |T|, …
– Sometimes they are all equal, then we denote 

this with N
• We run an algorithm on p servers

The load of the algorithm, L, is the largest 
number of tuples received by any server
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Example: Hash Join

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N
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Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N
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Example: Hash Join

Server 1 Server p. . . .

R1(x,y) ⋈ S1(y,z) Rp(x,y) ⋈ Sp(y,z)

Output: each server u:
• local join Ru(x,y) ⋈ Su(y,z)

Server 1 Server p. . . .

Round 1: each server
• Hash partition R(x,y) and S(y,z) by y

|R|=|S|=N

Assuming no skew
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Server 1 Server p. . . .
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Broadcast Join

Server 1 Server p. . . .

R1(x,y) ⋈ S(y,z) Rp(x,y) ⋈ S(y,z)

Output: each server
• local join Ru(x,y) ⋈ S(y,z)

Server 1 Server p. . . .

Round 1: each server
• Broadcast  S(y,z) to all servers

|R| = N1 >> |S| = N2
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The Triangles Query

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Round 1: Temp(x,y,z) = R(x,y)∧S(y,z)
Round 2: Q(x,y,z) = Temp(x,y,z) ∧T(z,x)

Problem: |Temp| >> N
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The Triangles Query

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Algorithm in one round!
• [Afrati’10] Shares Algo (MapReduce)
• [Beame’13,’14] HyperCube Algo (MPC)
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|R| = |S| = |T| = N tuples



Triangles in One Round
• Place servers in a cube p = p1/3 × p1/3 × p1/3

• Each server identified by (i,j,k)

• Choose 3 random, independent hash functions:
h1 : Dom à [p1/3]
h2 : Dom à [p1/3]
h3 : Dom à [p1/3]

i

j
k

(i,j,k)

p1/3

Server (i,j,k)
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Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x) |R| = |S| = |T| = N tuples



Triangles in One Round

k

(i,j,k)

Z X

Fred Alice

Jack Jim

Fred Jim

Carol Alice

…

Jack JimY Z

Fred Alice

Jack Jim

Fred Jim

Carol Alice

Jim JackJim Jack

X Y

Fred Alice

Jack Jim

Fred Jim

Carol Alice

…

R

S

T

i = h1(Fred)

j = h2(Jim)

Fred Jim
Fred Jim

Fred Jim
Fred Jim

Jim Jack

Jim Jack

Fred JimJim Jack

Jim Jack
Jack JimJack JimFred Jim

Fred Jim

Round 1:
Send R(x,y) to all servers (h1(x),h2(y),*)
Send S(y,z) to all servers (*, h2(y), h3(z))
Send T(z,x) to all servers (h1(x), *, h3(z))

Output:
compute locally R(x,y)∧S(y,z)∧T(z,x)
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|R| = |S| = |T| = N tuplesQ(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)



Communication Cost
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This load is optimal, even for data without skew

|R| = |S| = |T| = N tuples

Theorem HyperCube has load L = O(N/p2/3)
w.h.p., on any input database without skew.

Q(x,y,z) = R(x,y)∧S(y,z)∧T(z,x)

Skew threshold: N/p1/3 or lower



HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
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HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional 

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#
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HyperCube Algorithm

• In general, we have a multi-join query.
• There are k join variables: 𝑥!, 𝑥", … , 𝑥#
• Organize the servers into a k-dimensional 

hypercube: 𝑝 = 𝑝! ⋅ 𝑝"⋯𝑝#
• Hash partition each relation 𝑅 𝑥$! , 𝑥$" , …

to the hyperplane 𝑝$!×𝑝$"×⋯
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HyperCube Algorithm
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Main challenge: compute the shares 𝑝!, 𝑝", … , 𝑝# to minimize the load L



Example: Join

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆(𝑦, 𝑧)

• Hash join: 𝑝! = 1, 𝑝" = 𝑝, 𝑝% = 1

• Broadcast join: 𝑝! = 1, 𝑝" = 1, 𝑝% = 𝑝
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Which relation is broadcast?



Computing the Shares

• The secret to computing the shares lies in 
understanding a very simple query: the 
cartesian product of two, or more relations
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Cartesian Product

An important special case: 𝑄 = 𝑅×𝑆
• In our notation: 𝑄 𝑥, 𝑦 = 𝑅 𝑥 ∧ 𝑆(𝑦)
• Assume:   𝑅 = 𝑁!, 𝑆 = 𝑁"

• Algorithm:
– Choose shares such that 𝑝 = 𝑝$ ⋅ 𝑝%
– Distribute 𝑅(𝑥) to row ℎ$(𝑥)
– Distribute 𝑆(𝑦) to column ℎ%(𝑦)
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R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

𝑅 = 𝑁", 𝑆 = 𝑁#



Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#



Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%



Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%
THIS is the
optimal load Lopt



Cartesian Product
R

x
a

b

c

d

e

f

g

S

Y
m

n

p

q

1 2 p2
1

2

p1

R(a) à

S(
m

) à

Problem: minimize L = $!
%!
+ $"

%"
such that 𝑝 = 𝑝" ⋅ 𝑝#

𝑅 = 𝑁", 𝑆 = 𝑁#

Solution: L = $!
%!
+ $"

%"
≥ 2 $!$"

%!%"
= 2 $!$"

%
THIS is the
optimal load Lopt

From here we can compute the shares: $!
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Discussion
• Special case: when 𝑁" = 𝑁# = 𝑁 then:

• ”Virtual servers” don’t work:
– Let p=100, hence Lopt=N/10
– Suppose we use pvirtual=40000: Lopt,virt=N/200
– Each real server must simulate 400 virtual
– Real load is Lreal=N/200*400=2N L

• Reason: $
%

means“sub-linear speedup” 
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General Cartesian Product

𝑄 = 𝑅!×𝑅"×⋯×𝑅&
• Assume: 𝑅! = 𝑁!, … , 𝑅& = 𝑁&
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Edge Packing

Fact. For any edge packing of size c, the load of 
any 1-round algorithm is:

𝐿 ≥ 𝑐
𝑁$!⋯𝑁$"

𝑝

!
%

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables
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Fact. For any edge packing of size c, the load of 
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Proof (in class)
By example, for  𝑄 𝑥, 𝑦, 𝑧, 𝑢 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇 𝑧, 𝑢 ∧ 𝐾(𝑢, 𝑥)
• Consider packing 𝑅 𝑥, 𝑦 , 𝑇 𝑧, 𝑢 .  Claim: the algorithm must compute 𝑅×𝑇
• Assume not; then two tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) do not meet at any server.
• “Add” tuples 𝑆 𝑏, 𝑐 , 𝐾 𝑑, 𝑎 to the input, at some server that doesn’t

have 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑). 
• The tuples 𝑅 𝑎, 𝑏 , 𝑇(𝑐, 𝑑) still do not meet (why?), hence algorithm is incorrect

𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

An edge packing is a subset of relations 𝑅!! , 𝑅!" , … , 𝑅!#that do not share variables
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Fractional Edge Packing
𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A  fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.



Fractional Edge Packing

Theorem. For any fractional edge packing, the load of 
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Fractional Edge Packing

Theorem. For any fractional edge packing, the load of 
any 1-round algorithm is:
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𝑄 𝑥!, … , 𝑥# = 𝑅! 𝑣𝑎𝑟𝑠! ∧ ⋯∧ 𝑅&(𝑣𝑎𝑟𝑠&)

A  fractional edge packing is a set of weights 𝑤", … , 𝑤# such that, for every
variable, the sum of weights that contain it is ≤ 1.

The formula gives us 𝐿$%& up to some small constant factor (which we ignore).
Once you know 𝐿$%& you can usually compute the optimal shares for HyperCube.



Discussion

• We want the minimal load, yet the formula 
above asks us to compute a max;

• The reason is that the formula is only a 
lower bound; it happens that the max has 
a matching algorithm (the proof is non-
trivial)
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𝐿*+, = 𝑂 max
'!,…,'#

𝑁!
'!⋯𝑁&
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Example: Join
𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆(𝑦, 𝑧)

• Fractional edge packing: 1,0: 𝐿 = '!
(

• Fractional edge packing: 0,1: 𝐿 = '"
(

• Assume 𝑁! ≥ 𝑁". We obtain the shares:

42

𝐿 =
𝑁"
'! ⋅ 𝑁(

'"

𝑝

"
'!)'"

𝑁!
𝑝!𝑝"

=
𝑁!
𝑝

and
𝑁"
𝑝"𝑝/

=
𝑁!
𝑝

𝑝! =
𝑁!
𝑁"
, p" = p

𝑁"
𝑁!
, 𝑝/ = 1è

Discuss connection to
hash-, broadcast-join



Example
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

0
0

1½
½

½



Example
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½



Example
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0

0
0

1½
½

½
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0 0 (why?)

0
0

1½
½

½
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𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

When 𝑁" = 𝑁( = 𝑁* = 𝑁, then the optimal load is 𝐿$%& = 𝑂(𝑁/𝑝 ⁄( *)
What if their sizes are different?

Fractional edge packing
𝑤", 𝑤(, 𝑤*

𝑁"
'! ⋅ 𝑁(

'" ⋅ 𝑁*
'$

𝑝

"
'!)'")'$

½, ½, ½ 𝑁" ⋅ 𝑁( ⋅ 𝑁* ⁄" *

𝑝(/*

1,0,0 𝑁"
𝑝

0,1,0 𝑁(
𝑝

0,0,1 𝑁*
𝑝

0,0,0 0 (why?)

0
0

1½
½

½

Optimal load Lopt is
the maximum of

this column



Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence 
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)



Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence 
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)



Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence 
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%



Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence 
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%



Example (cont’d)

Need max of $0⋅$1⋅$2
⁄0 2

%1/2
, $0
%

, $1
%

, $2
%

Suppose w.l.o.g. 𝑁" ≥ 𝑁# ≥ 𝑁C

• Case 1: $0⋅$1⋅$2
⁄0 2

%1/2
≤ $0

%
= 𝐿D%E

The share of z is p3 = 1, hence 
“cartesian product 𝑆×𝑇, distribute 𝑅”

• Case 2: “normal” hypercube 𝐿D%E =
$0⋅$1⋅$2 ⁄0 2

%1/2

𝑄 𝑥, 𝑦, 𝑧 = 𝑅 𝑥, 𝑦 ∧ 𝑆 𝑦, 𝑧 ∧ 𝑇(𝑧, 𝑥)

Proof: Load due to R:
-!
%!%"

= 𝐿$%&, i.e. -!%$
%

= -!
%

When 𝑝 ≤ 5!$

5$5%
then Case 1, linear speedup; otherwise case 2, sublinear



Final Special Case
• When all cardinalities are equal, then:

𝑁!.⋯𝑁!/

𝑝

"
!.#⋯#!/

=
𝑁

𝑝
"

!.#⋯#!/

• For a graph G, the quantity

𝜏∗ = max
&'() *+,* -()./0,

(𝑤" +⋯𝑤1)

is called the fractional edge packing number

• 𝐿2-3 =
4

-
.
0∗

55



Conclusions
• The HyperCube algorithms combines two 

strategies: hash-partition, and broadcast

• When p is small, then it can broadcast the 
smaller relations;

• As p increases, “smaller” relations no 
longer help, and the load gets closer to the 
fractional edge covering number 𝜏∗
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