DATA516/CSED516 Scalable Data Systems and Algorithms

Lecture 7
Advanced Distributed Query Processing

Announcements

- Today lecture:
- Part 1: guest lecturer Mingxi Wu, Tigergraph
- Part 2: finish discussing distributed queries
- Reading assignment postponed for next week; you can update if you submitted
- HW4 = 3 mini homeworks + 1 theory to be posted tomorrow
- Next Tuesday: last regular lecture
- Dec. $1^{\text {st. }}$ 1-on-1 discussion of your projects
- Dec. $8^{\text {th }}:$ project presentations

Review: Distributed Join

Two algorithms for distributed join

- Hash-partition join
- Broadcast join

This lecture: how to compute general queries without one join at a time

The Load

- We know the sizes of the input tables: $|R|,|S|,|T|, \ldots$
- Sometimes they are all equal, then we denote this with N
- We run an algorithm on p servers

The load of the algorithm, L, is the largest number of tuples received by any server

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

\mathbf{x}	\mathbf{y}
a	e
a	f
b	f
c	f

S | y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

\mathbf{x}	\mathbf{y}
a	e
a	f
b	f
c	f

S | y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

\mathbf{x}	\mathbf{y}
a	e
a	f
b	f
c	f

\mathbf{S}| y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

Output: each server u:

- local join $R_{u}(x, y) \bowtie S_{u}(y, z)$

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

\mathbf{x}	\mathbf{y}
a	e
a	f
b	f
c	f

S | y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

$$
\mathrm{L}=\mathrm{O}(\mathrm{~N} / \mathrm{p})
$$

Output: each server u:

- local join $R_{u}(x, y) \bowtie S_{u}(y, z)$

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

R | \mathbf{x} | \mathbf{y} |
| :---: | :---: |
| a | e |
| a | f |
| b | f |
| c | f |

\mathbf{S}| y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

$R_{1}(x, y) \bowtie S_{1}(y, z)$

$$
R_{p}(x, y) \bowtie S_{p}(y, z)
$$

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

$$
L=O(N / p) \text { w.h.p. }
$$

Output: each server u:
Assuming no skew

- local join $R_{u}(x, y) \bowtie S_{u}(y, z)$

Example: Hash Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

x	y
a	e
a	f
b	f
c	f

S | y | z |
| :---: | :---: |
| e | m |
| e | n |
| f | m |
| f | k |

Round 1: each server

- Hash partition $R(x, y)$ and $S(y, z)$ by y

Output: each server u:

- local join $R_{u}(x, y) \bowtie S_{u}(y, z)$

$$
L=O(N / p) \text { w.h.p. }
$$

Broadcast Join

$$
\operatorname{Join}(x, y, z)=R(x, y) \wedge S(y, z)
$$

\mathbf{x}	\mathbf{y}
a	e
a	f
b	f
c	f

\mathbf{S}| \mathbf{y} | \mathbf{z} |
| :---: | :---: |
| e | m |
| f | k |

Round 1: each server

- Broadcast $S(y, z)$ to all servers
- local join $R_{u}(x, y) \bowtie S(y, z)$

Output: each server

$$
\mathrm{L}=\mathrm{O}\left(\mathrm{~N}_{1} / \mathrm{p}+\mathrm{N}_{2}\right)
$$

$$
|R|=|S|=|T|=N \text { tuples }
$$

The Triangles Query

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

Round 1: $\quad \operatorname{Temp}(x, y, z)=R(x, y) \wedge S(y, z)$
Round 2: $\quad Q(x, y, z)=\operatorname{Temp}(x, y, z) \wedge T(z, x)$

Problem: |Temp| >> N

$$
|R|=|S|=|T|=N \text { tuples }
$$

The Triangles Query

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Algorithm in one round!

- [Afrati'10] Shares Algo (MapReduce)
- [Beame'13,'14] HyperCube Algo (MPC)

Triangles in One Round

- Place servers in a cube $p=p^{1 / 3} \times p^{1 / 3} \times p^{1 / 3}$
- Each server identified by (i,j,k)
- Choose 3 random, independent hash functions: $\mathrm{h}_{1}:$ Dom $\rightarrow\left[\mathrm{p}^{1 / 3}\right]$ $h_{2}:$ Dom $\rightarrow\left[p^{1 / 3}\right]$ $h_{3}:$ Dom $\rightarrow\left[p^{1 / 3}\right]$

Triangles in One Round

Round 1:
Send $R(x, y)$ to all servers ($\left.h_{1}(x), h_{2}(y),{ }^{*}\right)$ Send $S(y, z)$ to all servers (*, $\left.h_{2}(y), h_{3}(z)\right)$ Send $T(z, x)$ to all servers $\left(h_{1}(x),{ }^{*}, h_{3}(z)\right)$ Output:
compute locally $R(x, y) \wedge S(y, z) \wedge T(z, x)$

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$ $|R|=|S|=|T|=N$ tuples
 Communication Cost

Theorem HyperCube has load $\mathrm{L}=\mathrm{O}\left(\mathrm{N} / \mathrm{p}^{2 / 3}\right)$ w.h.p., on any input database without skew.

Skew threshold: N/p ${ }^{1 / 3}$ or lower

This load is optimal, even for data without skew

HyperCube Algorithm

- In general, we have a multi-join query.
- There are k join variables: $x_{1}, x_{2}, \ldots, x_{k}$

HyperCube Algorithm

- In general, we have a multi-join query.
- There are k join variables: $x_{1}, x_{2}, \ldots, x_{k}$
- Organize the servers into a k-dimensional hypercube: $p=p_{1} \cdot p_{2} \cdots p_{k}$

HyperCube Algorithm

- In general, we have a multi-join query.
- There are k join variables: $x_{1}, x_{2}, \ldots, x_{k}$
- Organize the servers into a k-dimensional hypercube: $p=p_{1} \cdot p_{2} \cdots p_{k}$
- Hash partition each relation $R\left(x_{i_{1}}, x_{i_{2}}, \ldots\right)$ to the hyperplane $p_{i_{1}} \times p_{i_{2}} \times \cdots$

HyperCube Algorithm

- In general, we have a multi-join query.
- There are k join variables: $x_{1}, x_{2}, \ldots, x_{k}$
- Organize the servers into a k-dimensional hypercube: $p=p_{1} \cdot p_{2} \cdots p_{k}$
- Hash partition each relation $R\left(x_{i_{1}}, x_{i_{2}}, \ldots\right)$ to the hyperplane $p_{i_{1}} \times p_{i_{2}} \times \cdots$
- Broadcast along the other dimension

HyperCube Algorithm

- In general, we have a multi-join query.
- There are k join variables: $x_{1}, x_{2}, \ldots, x_{k}$
- Organize the servers into a k-dimensional hypercube: $p=p_{1} \cdot p_{2} \cdots p_{k}$
- Hash partition each relation $R\left(x_{i_{1}}, x_{i_{2}}, \ldots\right)$ to the hyperplane $p_{i_{1}} \times p_{i_{2}} \times \cdots$
- Broadcast along the other dimension Main challenge: compute the shares $p_{1}, p_{2}, \ldots, p_{k}$ to minimize the load L

Example: Join

$$
Q(x, y, z)=R(x, y) \wedge S(y, z)
$$

- Hash join: $p_{1}=1, p_{2}=p, p_{3}=1$
- Broadcast join: $p_{1}=1, p_{2}=1, p_{3}=p$

Computing the Shares

- The secret to computing the shares lies in understanding a very simple query: the cartesian product of two, or more relations

Cartesian Product

An important special case: $Q=R \times S$

- In our notation: $Q(x, y)=R(x) \wedge S(y)$
- Assume: $|R|=N_{1},|S|=N_{2}$
- Algorithm:
- Choose shares such that $p=p_{1} \cdot p_{2}$
- Distribute $R(x)$ to row $h_{1}(x)$
- Distribute $S(y)$ to column $h_{2}(y)$

Cartesian Product

Cartesian Product

Problem: minimize L $=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}}$ such that $p=p_{1} \cdot p_{2}$

Cartesian Product

Problem: minimize $\mathrm{L}=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}}$ such that $p=p_{1} \cdot p_{2}$
Solution: $\mathrm{L}=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}} \geq 2 \sqrt{\frac{N_{1} N_{2}}{p_{1} p_{2}}}=2 \sqrt{\frac{N_{1} N_{2}}{p}}$

Cartesian Product

Problem: minimize $\mathrm{L}=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}}$ such that $p=p_{1} \cdot p_{2}$
Solution: $\mathrm{L}=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}} \geq 2 \sqrt{\frac{N_{1} N_{2}}{p_{1} p_{2}}}=2 \sqrt{\frac{N_{1} N_{2}}{p}} \sqrt[\frac{T H I S}{} \text { is the }]{\text { optimal load } \mathrm{L}_{\text {opt }}}$

Cartesian Product

Problem: minimize L $=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}}$ such that $p=p_{1} \cdot p_{2}$
Solution: $\mathrm{L}=\frac{N_{1}}{p_{1}}+\frac{N_{2}}{p_{2}} \geq 2 \sqrt{\frac{N_{1} N_{2}}{p_{1} p_{2}}}=2 \sqrt{\frac{N_{1} N_{2}}{p}} \sqrt[\frac{T H I S}{} \text { is the }]{\text { optimal load } L_{\text {opt }}}$
From here we can compute the shares: $\frac{N_{1}}{p_{1}}=\sqrt{\frac{N_{1} N_{2}}{p}}$ so $p_{1}=\cdots$

Discussion

- Special case: when $N_{1}=N_{2}=N$ then:

$$
L_{o p t}=\frac{N}{\sqrt{p}} \text { and } p_{1}=p_{2}=\sqrt{p}
$$

- "Virtual servers" don't work:
- Let $p=100$, hence $L_{\text {opt }}=N / 10$
- Suppose we use $p_{\text {virtual }}=40000$: $L_{\text {opt,virt }}=N / 200$
- Each real server must simulate 400 virtual
- Real load is $L_{\text {real }}=N / 200 * 400=2 N$
- Reason: $\frac{N}{\sqrt{p}}$ means"sub-linear speedup"

General Cartesian Product

$Q=R_{1} \times R_{2} \times \cdots \times R_{c}$

- Assume: $\left|R_{1}\right|=N_{1}, \ldots,\left|R_{c}\right|=N_{c}$

Solution: $\mathrm{L}=\frac{N_{1}}{p_{1}}+\cdots+\frac{N_{c}}{p_{c}} \geq c\left(\frac{N_{1} \cdots N_{c}}{p_{1} \cdots p_{c}}\right)^{\frac{1}{c}}=c\left(\frac{N_{1} \cdots N_{c}}{p}\right)^{\frac{1}{c}}$

Edge Packing

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)
$$

An edge packing is a subset of relations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{c}}$ that do not share variables

Fact. For any edge packing of size c , the load of any 1 -round algorithm is:

$$
L \geq c\left(\frac{N_{i_{1}} \cdots N_{i_{c}}}{p}\right)^{\frac{1}{c}}
$$

Edge Packing

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)
$$

An edge packing is a subset of relations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{c}}$ that do not share variables

Fact. For any edge packing of size c , the load of any 1 -round algorithm is:

$$
L \geq c\left(\frac{N_{i_{1}} \cdots N_{i_{c}}}{p}\right)^{\frac{1}{c}}
$$

Proof (in class)
By example, for $Q(x, y, z, u)=R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x)$

- Consider packing $R(x, y), T(z, u)$. Claim: the algorithm must compute $R \times T$

Edge Packing

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)
$$

An edge packing is a subset of relations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{c}}$ that do not share variables

Fact. For any edge packing of size c , the load of any 1 -round algorithm is:

$$
L \geq c\left(\frac{N_{i_{1}} \cdots N_{i_{c}}}{p}\right)^{\frac{1}{c}}
$$

Proof (in class)
By example, for $Q(x, y, z, u)=R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x)$

- Consider packing $R(x, y), T(z, u)$. Claim: the algorithm must compute $R \times T$
- Assume not; then two tuples $R(a, b), T(c, d)$ do not meet at any server.

Edge Packing

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)
$$

An edge packing is a subset of relations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{c}}$ that do not share variables

Fact. For any edge packing of size c , the load of any 1 -round algorithm is:

$$
L \geq c\left(\frac{N_{i_{1}} \cdots N_{i_{c}}}{p}\right)^{\frac{1}{c}}
$$

Proof (in class)
By example, for $Q(x, y, z, u)=R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x)$

- Consider packing $R(x, y), T(z, u)$. Claim: the algorithm must compute $R \times T$
- Assume not; then two tuples $R(a, b), T(c, d)$ do not meet at any server.
- "Add" tuples $S(b, c), K(d, a)$ to the input, at some server that doesn't have $R(a, b), T(c, d)$.

Edge Packing

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)
$$

An edge packing is a subset of relations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{c}}$ that do not share variables

Fact. For any edge packing of size c , the load of any 1 -round algorithm is:

$$
L \geq c\left(\frac{N_{i_{1}} \cdots N_{i_{c}}}{p}\right)^{\frac{1}{c}}
$$

Proof (in class)
By example, for $Q(x, y, z, u)=R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x)$

- Consider packing $R(x, y), T(z, u)$. Claim: the algorithm must compute $R \times T$
- Assume not; then two tuples $R(a, b), T(c, d)$ do not meet at any server.
- "Add" tuples $S(b, c), K(d, a)$ to the input, at some server that doesn't have $R(a, b), T(c, d)$.
- The tuples $R(a, b), T(c, d)$ still do not meet (why?), hence algorithm is incorrect

Fractional Edge Packing

$Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)$
A fractional edge packing is a set of weights w_{1}, \ldots, w_{m} such that, for every variable, the sum of weights that contain it is ≤ 1.

Fractional Edge Packing

$Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)$
A fractional edge packing is a set of weights w_{1}, \ldots, w_{m} such that, for every variable, the sum of weights that contain it is ≤ 1.

Theorem. For any fractional edge packing, the load of any 1 -round algorithm is:

$$
L \geq\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}
$$

Fractional Edge Packing

$Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)$
A fractional edge packing is a set of weights w_{1}, \ldots, w_{m} such that, for every variable, the sum of weights that contain it is ≤ 1.

Theorem. For any fractional edge packing, the load of any 1 -round algorithm is:

$$
L \geq\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}
$$

Moreover, there exists shares for which the HyperCube algorithm has a load:

$$
L_{o p t}=O\left(\max _{w_{1}, \ldots, w_{m}}\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}\right)
$$

Fractional Edge Packing

$Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}\left(\operatorname{vars}_{1}\right) \wedge \cdots \wedge R_{m}\left(\operatorname{vars}_{m}\right)$
A fractional edge packing is a set of weights w_{1}, \ldots, w_{m} such that, for every variable, the sum of weights that contain it is ≤ 1.

Theorem. For any fractional edge packing, the load of any 1 -round algorithm is:

$$
L \geq\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}
$$

Moreover, there exists shares for which the HyperCube algorithm has a load:

$$
L_{o p t}=O\left(\max _{w_{1}, \ldots, w_{m}}\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}\right)
$$

The formula gives us $L_{\text {opt }}$ up to some small constant factor (which we ignore). Once you know $L_{\text {opt }}$ you can usually compute the optimal shares for HyperCube.

Discussion

$$
L_{\text {opt }}=O\left(\max _{w_{1}, \ldots, w_{m}}\left(\frac{N_{1}^{w_{1}} \cdots N_{m}^{w_{m}}}{p}\right)^{\frac{1}{\bar{w}_{1}+\cdots+w_{m}}}\right)
$$

- We want the minimal load, yet the formula above asks us to compute a max;
- The reason is that the formula is only a lower bound; it happens that the max has a matching algorithm (the proof is nontrivial)

Example: Join

$Q(x, y, z)=R(x, y) \wedge S(y, z) \quad L=\left(\frac{v_{1}^{w_{1}} L N_{2}^{v_{2}}}{p}\right)^{\frac{1}{m_{i}+w_{z}}}$

- Fractional edge packing: $1,0: \quad L=\frac{N_{1}}{p}$
- Fractional edge packing: 0,1: $\quad L=\frac{N_{2}}{p}$
- Assume $N_{1} \geq N_{2}$. We obtain the shares:
$\frac{N_{1}}{p_{1} p_{2}}=\frac{N_{1}}{p}$ and $\frac{N_{2}}{p_{2} p_{3}}=\frac{N_{1}}{p} \quad p_{1}=\frac{N_{1}}{N_{2}}, \quad \mathrm{p}_{2}=\mathrm{p} \frac{N_{2}}{N_{1}}, \quad p_{3}=1$
$\begin{aligned} & \text { Discuss connection to } \\ & \text { hash-, broadcast-join }\end{aligned}$

Example

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

E×?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	
$1,0,0$	
$0,1,0$	
$0,0,1$	
$0,0,0$	

E×?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	$\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$
$1,0,0$	
$0,1,0$	
$0,0,1$	
$0,0,0$	

E×?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	$\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$
$1,0,0$	$\frac{N_{1}}{p}$
$0,1,0$	
$0,0,1$	
$0,0,0$	

E×2nn@?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	$\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$
$1,0,0$	$\frac{N_{1}}{p}$
$0,1,0$	$\frac{N_{2}}{p}$
$0,0,1$	$\frac{N_{3}}{p}$
$0,0,0$	

E×2nn@?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	$\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$
$1,0,0$	$\frac{N_{1}}{p}$
$0,1,0$	$\frac{N_{2}}{p}$
$0,0,1$	$\frac{N_{3}}{p}$
$0,0,0$	0 (why?)

Ex?n是?

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$

When $N_{1}=N_{2}=N_{3}=N$, then the optimal load is $L_{\text {opt }}=O\left(N / p^{2 / 3}\right)$ What if their sizes are different?

Fractional edge packing w_{1}, w_{2}, w_{3}	$\left(\frac{N_{1}^{w_{1}} \cdot N_{2}^{w_{2}} \cdot N_{3}^{w_{3}}}{p}\right)^{\frac{1}{w_{1}+w_{2}+w_{3}}}$
$1 / 2,1 / 2,1 / 2$	$\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$
$1,0,0$	$\frac{N_{1}}{p}$
$0,1,0$	$\frac{N_{2}}{p}$
$0,0,1$	$\frac{N_{3}}{p}$
Optimal load $L_{\text {opt }}$ is the $\underline{m a x i m u m}$ of this column	
$0,0,0$	0 (why?)

Example (cont'd)

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Need max of $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}, \frac{N_{1}}{p}, \frac{N_{2}}{p}, \frac{N_{3}}{p}$
Suppose w.l.o.g. $N_{1} \geq N_{2} \geq N_{3}$

Example (cont'd)

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Need max of $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}, \frac{N_{1}}{p}, \frac{N_{2}}{p}, \frac{N_{3}}{p}$
Suppose w.l.o.g. $N_{1} \geq N_{2} \geq N_{3}$

- Case 1: $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}} \leq \frac{N_{1}}{p}=L_{\text {opt }}$

The share of z is $p_{3}=1$, hence "cartesian product $S \times T$, distribute R "

Example (cont'd)

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Need max of $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}, \frac{N_{1}}{p}, \frac{N_{2}}{p}, \frac{N_{3}}{p}$
Suppose w.l.o.g. $N_{1} \geq N_{2} \geq N_{3}$

- Case 1: $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}} \leq \frac{N_{1}}{p}=L_{\text {opt }}$

The share of z is $p_{3}=1$, hence
Proof: Load due to R:
$\frac{N_{1}}{p_{1} p_{2}}=L_{\text {opt }}$, i.e. $\frac{N_{1} p_{3}}{p}=\frac{N_{1}}{p}$ "cartesian product $S \times T$, distribute R "

Example (cont'd)

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Need max of $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}, \frac{N_{1}}{p}, \frac{N_{2}}{p}, \frac{N_{3}}{p}$
Suppose w.l.o.g. $N_{1} \geq N_{2} \geq N_{3}$

- Case 1: $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}} \leq \frac{N_{1}}{p}=L_{\text {opt }}$

The share of z is $p_{3}=1$, hence
Proof: Load due to R: "cartesian product $S \times T$, distribute R "

- Case 2: "normal" hypercube $L_{o p t}=\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$

Example (cont'd)

$Q(x, y, z)=R(x, y) \wedge S(y, z) \wedge T(z, x)$
Need max of $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}, \frac{N_{1}}{p}, \frac{N_{2}}{p}, \frac{N_{3}}{p}$
Suppose w.l.o.g. $N_{1} \geq N_{2} \geq N_{3}$

- Case 1: $\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}} \leq \frac{N_{1}}{p}=L_{\text {opt }}$

The share of z is $p_{3}=1$, hence

Proof: Load due to R:

$$
\frac{N_{1}}{p_{1} p_{2}}=L_{\text {opt }} \text {, i.e. } \frac{N_{1} p_{3}}{p}=\frac{N_{1}}{p}
$$ "cartesian product $S \times T$, distribute R "

- Case 2: "normal" hypercube $L_{\text {opt }}=\frac{\left(N_{1} \cdot N_{2} \cdot N_{3}\right)^{1 / 3}}{p^{2 / 3}}$

When $p \leq \frac{N_{1}^{2}}{N_{2} N_{3}}$ then Case 1, linear speedup; otherwise case 2, sublinear

Final Special Case

- When all cardinalities are equal, then:

$$
\left(\frac{N^{w_{1}} \cdots N^{w_{m}}}{p}\right)^{\frac{1}{w_{1}+\cdots+w_{m}}}=\frac{N}{p^{\frac{1}{w_{1}+\cdots+w_{m}}}}
$$

- For a graph G, the quantity

$$
\tau^{*}=\max _{\text {frac edge packing }}\left(w_{1}+\cdots w_{m}\right)
$$

is called the fractional edge packing number

- $L_{o p t}=\frac{N}{p^{\frac{1}{\tau^{*}}}}$

Conclusions

- The HyperCube algorithms combines two strategies: hash-partition, and broadcast
- When p is small, then it can broadcast the smaller relations;
- As p increases, "smaller" relations no longer help, and the load gets closer to the fractional edge covering number τ^{*}

