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Announcements

Today lecture:
— Part 1: guest lecturer Mingxi Wu, Tigergraph
— Part 2: finish discussing distributed queries

Reading assignment postponed for next
week; you can update if you submitted

HW4 = 3 mini homeworks + 1 theory
to be posted tomorrow

Next Tuesday: last regular lecture
Dec. 15t: 1-on-1 discussion of your projects
Dec. 8™ : project presentations



Review: Distributed Join

Two algorithms for distributed join
* Hash-partition join
* Broadcast join

This lecture: how to compute general
queries without one join at a time




The Load

* We know the sizes of the input tables:
IR|, [S], |T], ...

— Sometimes they are all equal, then we denote
this with N

* We run an algorithm on p servers

The load of the algorithm, L, is the largest
number of tuples received by any server



Example: Hash Join

Join(x,y,z) = R(x,y) A S(y,z) 7 IREENA
L!/ \4
R X |Y S|y |z [Serverﬂ [Sewerp}
a e e m
a f e n
b f f m
c f f Kk

Round 1: each server
« Hash partition R(x,y) and S(y,z) by y
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- 1« [Serverﬂ [Serverp}

Round 1: each server
« Hash partition R(x,y) and S(y,z) by y
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Output: each server u:
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Example: Hash Join

i N
R| x|y S|y |z [Seryer1] [Seryerp]
" p (N/p)
2 : : y [Serverﬂ [Serverp}
R1(X,y) % Ss(y,2) Rp(Xy) b4 Sp(y,2)

Round 1: each server
« Hash partition R(x,y) and S(y,z) by y

L = O(N/p) w.h.p.

Output: each server u:

* local join Ry(x,y) ™ S(y,z)




Example: Hash Join

i N
R| x|y S|y |z [Seryer1] [Seryerp]
" p (N/p)
2 : : y [Serverﬂ [Serverp}
R1(X,y) % Ss(y,2) Rp(Xy) b4 Sp(y,2)

Round 1: each server
« Hash partition R(x,y) and S(y,z) by y

L = O(N/p) w.h.p.

Skew threshold: N/p or lower

Output: each server u:
* local join Ry(X,y) ™ S,(Y,z)
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Broadcast Join

Join(x,y,z) = R(x,y) A S(y,z) // IR| = N; >>|S| =N, \\
v v
R x|V S|y |z [Ser\(erﬂ [Seryerp}
a | f fFlk 1/p +Ny)
2 : [Serverﬂ [Serverp}
R4(x,y) ™ S(y,z) Rp(x,y) ™ S(y,z)

Round 1: each server
« Broadcast S(y,z) to all servers

L =0O(N,/p + N,)

Output: each server Q
» local join Ry(x,y) & S(y,z) Skew no problem
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IR| =S| = |T| = N tuples

The Triangles Query

Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

Round 1:  Temp(x,y,z) = R(x,y) AS(y,z)
Round 2:  Q(x,y,z) = Temp(x,y,z) AT(z,x)

Problem: |Temp| >> N



IR| =S| = |T| = N tuples

The Triangles Query

Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

Algorithm in one round!
 [Afrati’10] Shares Algo (MapReduce)
« [Beame’'13,’14] HyperCube Algo (MPC)




Q(x,y,z) =

R(x,y)AS(y,z) AT(z,x)

IRl =

|IS| = |T| = N tuples

Triangles in One Round

* Place servers in a cube p =p'3 x p3 x p1/3
« Each server identified by (i,},k)

* Choose 3 random, mdependent hash functions:

N4
N, !

Dom =

N, !

Dom =

Dom =2 [p

1/3]
:p1/3:
P

1/3]

Server (i,},k)

1/3



Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

IR| =S| = |T| = N tuples

Triangles in One Round

-

Z X
S Fred Alice
v z Jim
R Fred lice Jim
. v Jim
_ Alice
Fred Alice .
Jim
Jack Jim .
lice
Fred Jim Jack
Carol Alice

Round 1:

Send R(x,y) to all servers (h{(x),hx(y),*)

Send S(y,z) to all servers (*, hy(y), hs(z))

Send T(z,x) to all servers (h4(x), *, h3(z))
Output:

compute locally R(x,y) AS(y,z) AT(z,x)

Jim Jack
|
Jim sJack
I = 7. I
IR A
Fred /T Jim :
Jim) A Al

1/3

i = h, (Fred)



Q(x,y,z) = R(X,y) AS(y,z) AT(z,x) |IR| = [S]| = |T| = N tuples

Communication Cost

Theorem HyperCube has load L = O(N/p#?)
w.h.p., on any input database without skew.

Skew threshold: N/p“;@I

This load is optimal, even for data without skew



HyperCube Algorithm

* In general, we have a multi-join query.
* There are k join variables: x{, x,, ..., X
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* There are k join variables: x4, x5, ..., X

* Organize the servers into a k-dimensional
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to the hyperplane p; Xp; X -
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hypercube: p = p; - pa -+ P
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Broadcast along the other dimension



HyperCube Algorithm

* In general, we have a multi-join query.

* There are k join variables: x4, x5, ..., X

* Organize the servers into a k-dimensional
hypercube: p = p; - pz = P

» Hash partition each relation R(x; , x; , ... )
to the hyperplane p; Xp; X -

» Broadcast along the other dimension

Main challenge: compute the shares pq, p5, ..., P to minimize the load L




Example: Join

Qx,y,z) = R(x,y) AS(y, z)
« Hashjoin:p; =1,p, =p,p3 =1

 Broadcastjoin:p; =1,p, =1,p3=p

Which relation is broadcast?




Computing the Shares

* The secret to computing the shares lies in
understanding a very simple query: the
cartesian product of two, or more relations



Cartesian Product

An important special case: Q = RXS

* In our notation: Q(x,y) = R(x) A S(y)
» Assume: |R| =Ny, |S| =N,

 Algorithm:
— Choose shares such that p = p; - p,
— Distribute R(x) to row h,(x)
— Distribute S(y) to column h,(y)



Cartesian Prgguct

[R| = Ny, |S| = N,

R S
X Y
a m
b n
C p
d q
e
f
g

1
2

R(a) 2

S(m) >




Cartesian Prgguct

R

S

o|oc|>5|3 |

Problem: minimize L = =% +

P2

1

2

P1

such thatp = p; - p
P2

R(a) 2 -
P4
N
E
0))
Ny




Cartesian Prgguct

S

Py

1

2

R(a) 2

o (o[> ]|3|=<

IRl = Ny, IS| =

P4

||l |lalo ||l | X

Problem: minimize L. = k! + Al such that p = pq -y

P>

N N+« N NN
Solution: L = & 4 Mz 5 o [MalVz _ 5 [NalVz
P1 D2 P1D2

S(m) >



Cartesian Prgguct

P2

Py

S

X Y !

a m 2

: ; R(a) > ]

|R| — Nla |S| — d q

e P

f N

9 E
(7))

Ny

Problem: minimize L. = k! + such that p = pq -y

P2

Solution: L =22 4 Y2 5 o [Malz _ 5 N1N2 THIS is the
P1 D2 P1D2 optimal load L




Cartesian Prgguct

S P2

Py

1

X Y
2
a m
b n
| o] R o
|R| — Nla |S| — d q
P4
e
f N
9 E
(7))
C N, . N,
Problem: minimize L = + such that p = pq -y
P2
N NN NN :
Solution: L = & 4 Mz 5 o [MalVz _ 5 [NalVz THIS is the
bp1 D2 pP1D2 optimal load L
NqN,
From here we can compute the shares: L = SO Py = -

P1 p



Discussion

« Special case: when N; = N, = N then:

N
Lopt:ﬁ and p1:p2:\/ﬁ

* "Virtual servers” don’t work:
— Let p=100, hence L,=N/10
— SUppPOSe We USE Py, =40000: Ly i=N/200
— Each real server must simulate 400 virtual
— Real load is L,,;,=N/200*400=2N ®

N 111 . 7
 Reason: = means“sub-linear speedup



General Cartesian Product
Q = R{XR,X -XR,
* Assume |R1| — Nl' can |RC| — NC

Optimal load Lt
1

1

: N N Nq-+Ng\e NN\

Solution: L = = + -+ 4+ —£ > C( 1 c)c _ C( 1 C)C
P1 Pc P1Pc p




Edge Packing

Q(xq,...,xx) = Ry(varsy) A --- A R,,(vars,,)

An edge packing is a subset of relations R; , R; , ..., R; that do not share variables

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

N: --- N:
I > C( l1 lc)
p

1
c
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An edge packing is a subset of relations R; , R; , ..., R; that do not share variables
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any 1-round algorithm is:

N: - N;
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p
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c

Proof (in class)
By example, for Q(x,y,z,u) = R(x,y) AS(y,z) AT(z,u) A K(u,x)
» Consider packing R(x,y), T(z,u). Claim: the algorithm must compute RxT
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Edge Packing

Q(xq,...,xx) = Ry(varsy) A --- A R,,(vars,,)

An edge packing is a subset of relations R; , R; , ..., R; that do not share variables

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:
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« “Add” tuples S(b,c), K(d, a) to the input, at some server that doesn’t
have R(a,b),T(c,d).



Edge Packing

Q(xq,...,xx) = Ry(varsy) A --- A R,,(vars,,)

An edge packing is a subset of relations R; , R; , ..., R; that do not share variables

Fact. For any edge packing of size c, the load of
any 1-round algorithm is:

N: --- N:
I > C( l1 lc)
p

1
c

Proof (in class)
By example, for Q(x,y,z,u) = R(x,y) AS(y,z) AT(z,u) A K(u,x)
» Consider packing R(x,y), T(z,u). Claim: the algorithm must compute RxT
« Assume not; then two tuples R(a, b), T(c,d) do not meet at any server.
« “Add” tuples S(b,c), K(d, a) to the input, at some server that doesn’t
have R(a,b),T(c,d).
* The tuples R(a, b), T(c,d) still do not meet (why?), hence algorithm is incorrect



Fractional Edge Packing

Q(xq,...,xx) = Ry(varsy) A --- A R,,(vars,,)

A fractional edge packing is a set of weights wy, ..., w,,, such that, for every
variable, the sum of weights that contain itis < 1.
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any 1-round algorithm is:
1

<N1W1 Nnvgm)wﬁ---mm
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p
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variable, the sum of weights that contain itis < 1.
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1
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Moreover, there exists shares for which the HyperCube
algorithm has a load:
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Fractional Edge Packing

Q(xq,...,xx) = Ry(varsy) A --- A R,,(vars,,)

A fractional edge packing is a set of weights wy, ..., w,,, such that, for every
variable, the sum of weights that contain itis < 1.

Theorem. For any fractional edge packing, the load of

any 1-round algorithm is:
1

<N1W1 Nnvgm)wﬁ---mm
L >
p

Moreover, there exists shares for which the HyperCube
algorithm has a load:

1
NW1 "'NWm Wit +wy,
Wl,...,Wm p

The formula gives us L,,; up to some small constant factor (which we ignore).
Once you know L,,; you can usually compute the optimal shares for HyperCube.




Discussion

1
NW1 L NWm Wi+ +wy,
Wl ..... Wm p

* We want the minimal load, yet the formula
above asks us to compute a max;

* The reason is that the formula is only a
lower bound; it happens that the max has
a matching algorithm (the proof is non-
trivial)



Example: Join

Q(x,y,2) = RO, Y) AS(y,z) - (W)™

: : N
 Fractional edge packing: 1,0: L= ?1

. . N
* Fractional edge packing: 0,1: L= ?2
 Assume N; = N,. We obtain the shares:
e T
PiP2 D P2P3 D N, Ny

Discuss connection to
hash-, broadcast-join



Example
Vo
Q(x,y,2) = R(x,y) AS(,2) AT(2,%)

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?




Example

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

V2

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?

1
N/t N2 N:’3)W

p

W1, Wy, W3

Fractional edge packing <

Y, V2, V2

1,0,0

0,1,0

0,0,1

0,0,0




Example

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

V2

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?

1
N/t N2 N:’3)W

p

W1, Wy, W3

Fractional edge packing <

e, Vo, V2 (Ny - Np - N3)'/3
p2/3

1,0,0

0,1,0

0,0,1

0,0,0




Example

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

V2

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?

. . 1
Fractional edge packing < lel . NZWZ . N;,S,,)W
W1, Wp, W3
p
Va, V2, V2 (Ny - Ny - N3)1/3
p2/3
1,0,0 Ny
p

0,1,0

0,0,1

0,0,0




Example

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?

V2

Fractlorszl, (vavti?f%packlng <1v1Wl - N2 - Ns“’?’)m
p
Yo, Vo, V5 (Ny - Ny - N33
p2/3
1,0,0 Ny
p
0,1,0 N2
p
0,0,1 N
p
0,0,0




Example

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

When N, = N, = N3 = N, then the optimal load is L,,; = O(N/p?/3)
What if their sizes are different?

V2

Fractional edge packing NWL. W2 . W m
W1, Wp, W3 < 1 2 : )
p
Yo, Vo, V2 (Ny - Ny - N3)1/3
p2/3
1,0,0 Ny
p
0,1,0 N2
p
0,0,1 N
p
0,0,0 0 (why?)




Example

I 1 0
Q(x,v,z) =R(x,y) ANS(y,z) ANT(z, x) o 0
When Ny = N, = N3 = N, then the optimal load is L,,; = O(N/p?/?)
What if their sizes are different?
Fractional edge packing N Wz L WS m
Wy, Wy, W3 < 1 2 3 )
p
Yo, Vo, Vo (Ny - Ny - N3)'/3
p2/3
1,0,0 Ny >
I /x
P Optimal load L, is
opt
0,1,0 N2 < the maximum of
p this column
0,0,1 N3 -
p
0,0,0 0 (why?) 0




Example (cont'd)

Q(x,v,z) =R(x,y) ANS(y,z) ANT(z, x)
Np-N3)Y/3 Ny Ny Ny
p2/3 "p’p’p
Suppose w.l.o.g. Ny = N, = N,

Need max of (Vs



Example (cont'd)

Q(x,v,z) =R(x,y) ANS(y,z) ANT(z, x)

1:(1\71‘1\’2'1\’3)1/3 Ny Nz Ng
p?/3 ' p’p’0p

Suppose w.l.o.g. Ny = N, = N,

Need max o

1- (1V1'1\’2'1\’3)1/3 < Ny
' p2/3 —p

+ Case = Lopt

The share of zis p3= 1, hence
“cartesian product SXT, distribute R”



Example (cont'd)

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

f( 1N2N3)/ N1 Nz N3

p23 T p’ p’p
Suppose w.l.o.g. N1 > Ny, = Nj

Need max o

+ Caset: P2/3 = ? - Lom Proof: Load due to R:
T = Lo, il 2= 2L
The share of zis p3= 1, hence Papz2 PP

“cartesian product SXT, distribute R”



Example (cont'd)

Q(x,y,z) = R(x,y) AS(y,z) AT (z,x)

f( 1N2N3)/ N1 Nz N3

p23 T p’ p’p
Suppose w.l.o.g. N1 > Ny, = Nj

Need max o

 Case 1: Proof: Load due to R:

N . N N
P1DP2 p p

The share of zis p3= 1, hence
“cartesian product SXT, distribute R”

(N1-No- N3)1/3
273

« Case 2: "normal” hypercube L,,; =



Example (cont'd)

Q(x,v,z) =R(x,y) ANS(y,z) ANT(z, x)

1:(1\71‘1\’2'1\’3)1/3 Ny Nz Ng
p?/3 ' p’p’0p

Suppose w.l.o.g. Ny = N, = N,

Need max o

. . (N1-Np-N3)Y3 Ny
Case 1: 2/3 = v LOpt Proof: Load due to R:
N e Mpsi M
— Lopt, I.C.
P1D2 p p

The share of zis p3= 1, hence
“cartesian product SXT, distribute R”

) ) No-No-N<)1/3
e Case 2: “normal” hypercube Lopt = N pzz/;’)

N{

When p < then Case 1, linear speedup; otherwise case 2, sublinear

Ny N3



Final Special Case

When all cardinalities are equal, then:
1
(Nwl NWm)W1+---+Wm N

p o 1

pWitFwn

For a graph G, the quantity

T" = max = (wy +--wy)
fracedge packing

IS called the fractional edge packing humber




Conclusions

* The HyperCube algorithms combines two
strategies: hash-partition, and broadcast

 When p is small, then it can broadcast the
smaller relations;

* As p increases, “smaller” relations no
longer help, and the load gets closer to the
fractional edge covering number t*



