DATA516/CSED516 Scalable Data Systems and Algorithms Lecture 4 Distributed Query Evaluation

Announcements

- Project proposals due on Friday
- Reviews due every week
- HW2 due next Monday

Coming soon: guest lecturers!

- Cloud Databases: Shan Shan Huang, RelationalAl
- Graph Databases: Mingxi Wu, Tigergraph

Distributed Query Processing Algorithms

Horizontal Data Partitioning

- Block Partition, a.k.a. Round Robin:
 Partition tuples arbitrarily s.t. size(R₁)≈ ... ≈ size(R_P)
- Hash partitioned on attribute A:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:

– Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$

– Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Notation

When a relation R is distributed to p servers, we draw the picture like this:

Here R_1 is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

Uniform Load and Skew

- $|\mathbf{R}| = \mathbf{N}$ tuples, then $|\mathbf{R}_1| + |\mathbf{R}_2| + ... + |\mathbf{R}_p| = \mathbf{N}$
- We say the load is uniform when:
 |R₁| ≈ |R₂| ≈ ... ≈ |R_p| ≈ N/p
- Skew means that some load is much larger: max_i |R_i| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⋈

• Group by y

Parallel Selection

Data: $R(\underline{K}, A, B, C)$ Query: $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

- Block partitioned:
 - All servers must scan and filter the data
- Hash partitioned:
 - Can have all servers scan and filter the data
 - Or can optimize and only have some servers do work
- Range partitioned
 - Also only some servers need to do the work

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$

- Discuss in class how to compute in each case:
- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$

- Discuss in class how to compute in each case:
- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
 - Need to reshuffle data on A first (next slide)
 - Then compute locally $\gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

• R is block-partitioned or hash-partitioned on K

Data: R(<u>K</u>, A, B, C)

Query: γ_{A,sum(C)}(R)

• R is block-partitioned or hash-partitioned on K

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

• R is block-partitioned or hash-partitioned on K

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,j}$ to server j

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,j}$ to server j

Step 2: receive fragments, union them, then group-by $R_{j}^{'} = T_{1,j} \cup ... \cup T_{p,j}$ Answer_j = $\gamma_{A, sum(C)} (R_{j}^{'})$

Example Query with Group By

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

γ a, sum(b)→sb | σ_{c>0} | R

Example Query with Group By

Machine 2

Machine 1

1/3 of R

 γ a, sum(b) \rightarrow sb $\sigma_{c>0}$ R Machine 3

Pushing Aggregates Past Union

The rule that allowed us to do early summation is:

 $\gamma_{A,sum(B)\to C}(R_1 \cup R_2) =$

 $= \gamma_{A,sum(D) \rightarrow B}(\gamma_{A,sum(B) \rightarrow D}(R_1) \cup \gamma_{A,sum(B) \rightarrow D}(R_2))$

For example:

- R_1 has $B = x, y, z; R_2$ has B = u, w
- Then: x+y+z+u+w = (x+y+z) + (u+w)

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
$sum(a_1+a_2++a_9)=sum(sum(a_1+a_2+a_3)+sum(a_4+a_5+a_6)+sum(a_7+a_8+a_9))$	avg(B) = sum(B)/count(B)	median(B)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

But only if the data is without skew!
Data:R(K1,A, C), S(K2, B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(K1,A, C), S(K2, B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(K1,A, C), S(K2, B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Parallel Join: $R \bowtie_{A=B} S$ Data:R(K1,A,C), S(K2, B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

- Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
 - Every server holding any chunk of S partitions its chunk using a hash function h(t.B)
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

. . .

DATA516/CSED516 - Fall 2020

. . .

Example Query Execution

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, ...)

Example 2

SELECT * FROM R, S, T WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

\dots WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

DATA516/CSED516 - Fall 2020

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew

Skew

- Skew in the input: a data value has much higher frequency than others
- Skew in the output: a server generates many more values than others, e.g. join
- Skew in the computation

Simple Skew Handling Techniques

For range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]
- Eq-depth v.s. eq-width histograms

Simple Skew Handling Techniques

Skew in the computation:

- Create more partitions than nodes

 "virtual servers"
- And be smart about scheduling the partitions
- Note: MapReduce uses this technique

Skew for Hash Partition

Relation R(A,B,C,...), we hash-partition on A If A is a key: we expect a uniform partition

Skew for Hash Partition

Relation R(A,B,C,...), we hash-partition on A If A is a key: we expect a uniform partition If A is not a key:

- Some value A=v may occur very many times
 - The "Justin Bieber" effect 🙂

- v is called a "heavy hitter"

Skew for Hash Partition

Relation R(A,B,C,...), we hash-partition on A If A is a key: we expect a uniform partition If A is not a key:

- Some value A=v may occur very many times
 - The "Justin Bieber" effect 🙂
 - v is called a "heavy hitter"
- All records with same value v are hashed to the same server i
- Partition R_i is much larger than |R|/p; skew!!

Discussion

Distributed joins: usually hash- or broadcast-join Heavy hitter values will significantly degrade performance of a hash-join

- Observation 1: there are "few" heavy hitter values (why?)
- **Observation 2**: we can compute the heavy hitter values rather easily (how?)

Rest of the lecture: How many times can v occur before it is a heavy hitter?

Analyzing Heavy Hitters

- We will discuss how to choose the threshold such that a value that occurs more times than the threshold becomes a "heavy hitters"
- This analysis is based on Cernoff bounds, which is a general technique that is useful in statistics and randomized algorithm

- We hash-partition them to P nodes
- When is the partitioning uniform?

- We hash-partition them to P nodes
- When is the partitioning uniform?
 Uniform: each node has O(N/P) items

- We hash-partition them to P nodes
- When is the partitioning uniform?
 Uniform: each node has O(N/P) items
 Skew: some node has >> N/P items

- We hash-partition them to P nodes
- When is the partitioning uniform?
 Uniform: each node has O(N/P) items
 Skew: some node has >> N/P items
- 1. Due to the hash function h, or
- 2. Due to skew in the data

Role of the Hash Function

Assume $v_1, ..., v_N$ are distinct Hash function computes $h(v_i) \in \{1,...,P\}$

- If h is <u>fixed</u> then we can find bad items that will overload one server; how?
- If h is <u>random</u>: <u>balls-in-bins</u> problem; we analyze it using the Cernoff bound

Note: very many variants

The Cernoff Bound

Bernoulli r.v.: $X_1, ..., X_N \in \{0,1\}$ For all i, $Pr(X_i = 1) = \mu \in (0,1)$ We are interested in $Y = X_1 + X_2 + \dots + X_N$

Fact: $E[Y] = N\mu$ Theorem (Cernoff bound) $Pr(Y > (1 + \delta)E[Y]) \le exp\left(-\frac{\delta^2}{3}E[Y]\right)$

Role of the Hash Function

Fix one server j;

Define indicator variables:

$$X_1 = [h(v_1) = j], \dots, X_N = [h(v_N) = j]$$

 $Pr(X_1 = 1) = \dots = Pr(X_N = 1) = 1/P$

Load of server j: Load(j) = $X_1 + X_2 + \dots + X_N$ Expected load: E[Load(j)] = N/P
Load of server j: Load(j) = $X_1 + X_2 + \dots + X_N$ Expected load: E[Load(j)] = $\frac{N}{P}$

Load of server j: Load(j) = $X_1 + X_2 + \dots + X_N$ Expected load: E[Load(j)] = $\frac{N}{P}$ Why?

Case 1: v_1, \ldots, v_N distinct; then X_1, \ldots, X_N are iid.

Load of server j: Load(j) = $X_1 + X_2 + \dots + X_N$ Expected load: E[Load(j)] = $\frac{N}{P}$ Why?

Case 1: v₁, ..., v_N distinct; then $X_1, ..., X_N$ are iid. Skew at j Cernoff: $\Pr\left(\text{Load}(j) > (1 + \delta)\frac{N}{P}\right) \le exp\left(-\frac{\delta^2}{3}\frac{N}{P}\right)$

Load of server j: Load(j) = $X_1 + X_2 + \dots + X_N$ Expected load: E[Load(j)] = $\frac{N}{P}$ Why?

Case 1: v₁, ..., v_N distinct; then $X_1, ..., X_N$ are iid. Skew at j Cernoff: $Pr\left(Load(j) > (1 + \delta)\frac{N}{P}\right) \le exp\left(-\frac{\delta^2}{3}\frac{N}{P}\right)$ Union bound: $Pr(Skew) \le P \cdot exp\left(-\frac{\delta^2}{3}\frac{N}{P}\right)$ Skew at 1 or at 2 ... or at P

Case 1: $v_1, ..., v_N$ distinct: $Pr(Skew) \le P \cdot exp\left(-\frac{\delta^2 N}{3 P}\right)$

Discussion: usually N >> P

Case 1: v₁, ..., v_N distinct: $Pr(Skew) \le P \cdot exp\left(-\frac{\delta^2 N}{3 P}\right)$

Discussion: usually N >> P

• E.g. want load/server < 30% above expected, then $\delta = 0.3$ Assume N=10⁹ and P=10³

Case 1: v₁, ..., v_N distinct: $Pr(Skew) \le P \cdot exp\left(-\frac{\delta^2 N}{3 P}\right)$

Discussion: usually N >> P

• E.g. want load/server < 30% above expected, then $\delta = 0.3$ Assume N=10⁹ and P=10³ $Pr(Skew) \le 1000 \cdot e^{-\frac{0.09}{3}10^6} = 1000 \cdot e^{-3 \cdot 10^4} \approx 0$

Case 1: $v_1, ..., v_N$ distinct: $Pr(Skew) \le P \cdot exp\left(-\frac{\delta^2}{3}\frac{N}{P}\right)$

Discussion: usually N >> P

• Start worrying only when $N \approx P \ln P$ (why?)

- Don't write your own has function!
- Randomize it (how?)
- Make sure N >> P (if not, why parallelize?)
- Then Load = O(N/P)

Take away: a good hash function shall not cause skew!

Case 2: v₁, ..., v_N have duplicates Call v_i a <u>heavy hitter</u> if it occurs >> N/P times

Case 2: v_1 , ..., v_N have duplicates Call v_i a <u>heavy hitter</u> if it occurs >> N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. Load(j) $\gg \frac{N}{P}$

Case 2: v_1 , ..., v_N have duplicates Call v_i a <u>heavy hitter</u> if it occurs >> N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. Load(j) $\gg \frac{N}{P}$

Therefore: Pr(*Skew*)=1

Case 2: v_1 , ..., v_N have duplicates Call v_i a <u>heavy hitter</u> if it occurs >> N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. Load(j) $\gg \frac{N}{P}$

Therefore: Pr(Skew)=1

No hash function can handle heavy hitters

Case 3: $v_1, ..., v_N$ have duplicates, no heavy hitters Assume each value occurs $\frac{N}{cP}$ times, for c > 1 $\underbrace{v_1, v_1, ..., v_1}_{\frac{N}{cP}}, \underbrace{v_2, v_2, ..., v_2}_{\frac{N}{cP}}, ...$

Case 3: v₁, ..., v_N have duplicates, no heavy hitters Assume each value occurs $\frac{N}{cP}$ times, for c > 1 $v_1, v_1, ..., v_1, v_2, v_2, ..., v_2, ...$ $X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], ...$ cP distinct values

Case 3: v_1, \ldots, v_N have duplicates, no heavy hitters Assume each value occurs $\frac{N}{cP}$ times, for c > 1 $v_1, v_1, \dots, v_1, v_2, v_2, \dots, v_2, \dots$ $X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \dots$ $Y = \sum_{i} X_{i}$ E[Y] = c $Load(j) = Y \frac{N}{cP}$ $\Pr(\text{Skew}) \leq P \cdot \Pr(Y > (1 + \delta)E[Y])$

Case 3: v_1, \ldots, v_N have duplicates, no heavy hitters Assume each value occurs $\frac{N}{cP}$ times, for c > 1 $v_1, v_1, \dots, v_1, v_2, v_2, \dots, v_2, \dots$ $X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \dots$ $Y = \sum_{i} X_{i}$ E[Y] = c $Load(j) = Y \frac{N}{cP}$ $\Pr(\text{Skew}) \leq \mathbf{P} \cdot \Pr(Y > (1 + \delta)E[Y]) \leq \mathbf{P} \cdot exp\left(-\frac{\delta^2 c}{3}\right)$

Case 3: v_1, \ldots, v_N have duplicates, no heavy hitters Assume each value occurs $\frac{N}{cP}$ times, for c > 1 $v_1, v_1, \dots, v_1, v_2, v_2, \dots, v_2, \dots$ $X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \dots$ $Y = \sum_{i} X_{i}$ E[Y] = c $Load(j) = Y \frac{N}{cP}$ $\Pr(\text{Skew}) \le \mathbb{P} \cdot \Pr(Y > (1 + \delta)E[Y]) \le \mathbb{P} \cdot exp\left(-\frac{\delta^2 c}{3}\right)$ Need $c \ge \ln P$

Discussion

Use library hash function! Randomize!

- When each value occurs $\leq \frac{N}{P \cdot ln P}$ times, then $Load \leq (1 + \delta) \frac{N}{P}$ with high probability
- When some value occurs $\gg \frac{N}{P}$ times, the load will be skewed
- Gray area: when values occur $\approx \frac{N}{P}$ times: it can be shown that $Load \approx \frac{N \cdot \ln(P)}{P}$

SkewJoin

Main idea: separate the heavy hitters from the light hitters

- Hash join the light hitters: the partition is uniform because they are light
- Broadcast join the heavy hitters: works because there are very few heavy hitters

Query: $R \bowtie_{A=B} S$, R.A = foreign key, S.A=key

Query: $R \bowtie_{A=B} S$, R.A = foreign key, S.A=key

• Step 1: find the *heavy hitters* in R.A

- I.e. find the values v=R.A that occur $\geq \frac{N}{P}$ times

– There are \leq P heavy hitters! Broadcast them

Query: $R \bowtie_{A=B} S$, R.A = foreign key, S.A=key

• Step 1: find the *heavy hitters* in R.A

- I.e. find the values v=R.A that occur $\geq \frac{N}{P}$ times

– There are ≤ P heavy hitters! Broadcast them

• Step 2: each sever partitions locally: $R = R_{light} \cup R_{heavy}, S = S_{light} \cup S_{heavy}$ Notice: $|S_{heavy}| \le P$ (i.e. it is small)

Query: $R \bowtie_{A=B} S$, R.A = foreign key, S.A=key

• Step 1: find the *heavy hitters* in R.A

- I.e. find the values v=R.A that occur $\geq \frac{N}{p}$ times

– There are ≤ P heavy hitters! Broadcast them

- Step 2: each sever partitions locally: $R = R_{light} \cup R_{heavy}, S = S_{light} \cup S_{heavy}$ Notice: $|S_{heavy}| \le P$ (i.e. it is small)
- Step 3: hash-join $R_{light} \bowtie S_{light}$

Query: $R \bowtie_{A=B} S$, R.A = foreign key, S.A=key

• Step 1: find the *heavy hitters* in R.A

- I.e. find the values v=R.A that occur $\geq \frac{N}{p}$ times

– There are ≤ P heavy hitters! Broadcast them

- Step 2: each sever partitions locally: $R = R_{light} \cup R_{heavy}, S = S_{light} \cup S_{heavy}$ Notice: $|S_{heavy}| \le P$ (i.e. it is small)
- Step 3: hash-join $R_{light} \bowtie S_{light}$
- Step 4: broadcast join $R_{heavy} \bowtie S_{heavy}$

Discussion

- Many distributed query processors do not handle skew well
- (Project idea: how does your favorite engine handle skewed data?)
- In practice, you may need to partition skewed data manually