
DATA516/CSED516
Scalable Data Systems and

Algorithms
Lecture 4

Distributed Query Evaluation

Announcements

• Project proposals due on Friday
• Reviews due every week
• HW2 due next Monday

Coming soon: guest lecturers!
• Cloud Databases: Shan Shan Huang,

RelationalAI
• Graph Databases: Mingxi Wu, Tigergraph

2

Distributed Query Processing
Algorithms

3

Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin:
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

4DATA516/CSED516 - Fall 2020

Notation

5

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

6We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⨝

• Group by ɣ

7

Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers must scan and filter the data

• Hash partitioned:
– Can have all servers scan and filter the data
– Or can optimize and only have some servers do work

• Range partitioned
– Also only some servers need to do the work

DATA516/CSED516 - Fall 2020 8

Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

9

Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

10

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 11

R1 R2 RP

. . .

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 12

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 13

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 14

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 15

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 16

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

DATA516/CSED516 - Fall 2020 17

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2020 18

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2020 19

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

DATA516/CSED516 - Fall 2020 20

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(C) (Rj’)

DATA516/CSED516 - Fall 2020 21

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Pushing Aggregates Past Union

31

The rule that allowed us to do early summation is:

𝛾!,#$% & →(𝑅) ∪ 𝑅* =

= 𝛾!,#$% + →&(𝛾!,#$% & →+ 𝑅) ∪ 𝛾!,#$% & →+ 𝑅*)

For example:
• R1 has B= x,y,z; R2 has B=u,w
• Then: x+y+z+u+w = (x+y+z) + (u+w)

Pushing Aggregates Past Union

Which other rules can we push past union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

DATA516/CSED516 - Fall 2020 32

Pushing Aggregates Past Union

Which other rules can we push past union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

DATA516/CSED516 - Fall 2020 33

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2020 34

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2020 35

Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

DATA516/CSED516 - Fall 2020 36But only if the data is without skew!

Parallel Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Parallel Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Parallel Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Parallel Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Parallel Join: R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions its

chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions its

chunk using a hash function h(t.B)

• Step 2:
– Each server computes the join of its local fragment

of R with its local fragment of S

DATA516/CSED516 - Fall 2020 41

Optimization for Small Relations

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join

DATA516/CSED516 - Fall 2020 42

Broadcast Join

DATA516/CSED516 - Fall 2020 43

Query: R ⋈ S

. . .
SR1 R2 RP

Broadcast Join

DATA516/CSED516 - Fall 2020 44

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Broadcast Join

DATA516/CSED516 - Fall 2020 45

R1 R2 RP

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Same place…

Query: R ⋈ S

Broadcast Join

DATA516/CSED516 - Fall 2020 46

R1, S R2, S RP, S

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Broadcast S

Same place…

Query: R ⋈ S

Example Query Execution

DATA516/CSED516 - Fall 2020 47

SELECT *
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Query Execution

DATA516/CSED516 - Fall 2020 48

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

DATA516/CSED516 - Fall 2020 49

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)

Query Execution

DATA516/CSED516 - Fall 2020 50

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Example 2

51

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

DATA516/CSED516 - Fall 2020 52

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

DATA516/CSED516 - Fall 2020 53

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

DATA516/CSED516 - Fall 2020 54

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

DATA516/CSED516 - Fall 2020 55

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

DATA516/CSED516 - Fall 2020 56

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew

DATA516/CSED516 - Fall 2020 57

Skew

• Skew in the input: a data value has much
higher frequency than others

• Skew in the output: a server generates many
more values than others, e.g. join

• Skew in the computation

DATA516/CSED516 - Fall 2020 58

Simple Skew Handling
Techniques

For range partition:

• Ensure each range gets same number of
tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms
DATA516/CSED516 - Fall 2020 59

Simple Skew Handling
Techniques

Skew in the computation:

• Create more partitions than nodes
– “virtual servers”

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique
DATA516/CSED516 - Fall 2020 60

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to
the same server i

• Partition Ri is much larger than |R|/p; skew!!
61

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to
the same server i

• Partition Ri is much larger than |R|/p; skew!!
62

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to
the same server i

• Partition Ri is much larger than |R|/p; skew!!
63

Discussion

Distributed joins: usually hash- or broadcast-join
Heavy hitter values will significantly degrade
performance of a hash-join
• Observation 1: there are “few” heavy hitter

values (why?)
• Observation 2: we can compute the heavy

hitter values rather easily (how?)

64
Rest of the lecture: How many times can v occur before it is a heavy hitter?

Analyzing Heavy Hitters

• We will discuss how to choose the threshold
such that a value that occurs more times than
the threshold becomes a “heavy hitters”

• This analysis is based on Cernoff bounds,
which is a general technique that is useful in
statistics and randomized algorithm

DATA516/CSED516 - Fall 2020 65

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?

DATA516/CSED516 - Fall 2020 66

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items

DATA516/CSED516 - Fall 2020 67

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items

DATA516/CSED516 - Fall 2020 68

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items
1. Due to the hash function h, or
2. Due to skew in the data

DATA516/CSED516 - Fall 2020 69

Role of the Hash Function

Assume v1, …, vN are distinct
Hash function computes h(vi) ∈ {1,…,P}

• If h is fixed then we can find bad items that
will overload one server; how?

• If h is random: balls-in-bins problem;
we analyze it using the Cernoff bound

70

The Cernoff Bound

Bernoulli r.v.: 𝑋", … , 𝑋# ∈ {0,1}
For all i, Pr 𝑋$ = 1 = 𝜇 ∈ (0,1)
We are interested in 𝑌 = 𝑋" + 𝑋% +⋯+ 𝑋#

Fact: 𝐸 𝑌 = 𝑁𝜇
Theorem (Cernoff bound)

Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑒𝑥𝑝 − &!

'
𝐸[𝑌]

DATA516/CSED516 - Fall 2020 71

Note:
very many

variants

Role of the Hash Function

Fix one server j;

Define indicator variables:
𝑋" = ℎ 𝑣" = 𝑗 ,… , 𝑋# = [ℎ 𝑣# = 𝑗]
Pr 𝑋" = 1 = ⋯ = Pr 𝑋# = 1 = 1/𝑃

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = 𝑁/𝑃

72

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

73

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

74

Why?

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff: Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

75

Why?

Skew at j

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff: Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

Union bound: Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 − &!

'
#
(

76

Why?

Skew at j

Skew at 1 or at 2 … or at P

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

77

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103

78

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103

Pr 𝑆𝑘𝑒𝑤 ≤ 1000 ⋅ e)
"."$
% "*& = 1000 ⋅ 𝑒)'⋅"*' ≈ 0

79

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• Start worrying only when 𝑁 ≈ 𝑃 ln𝑃 (why?)

80

Role of the Hash Function

• Don’t write your own has function!

• Randomize it (how?)

• Make sure N >> P (if not, why parallelize?)

• Then Load = O(N/P)

DATA516/CSED516 - Fall 2020 81Take away: a good hash function shall not cause skew!

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

82

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there
exists a server j s.t. Load j ≫ #

(

83

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there
exists a server j s.t. Load j ≫ #

(

Therefore: Pr 𝑆𝑘𝑒𝑤 =1

84

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there
exists a server j s.t. Load j ≫ #

(

Therefore: Pr 𝑆𝑘𝑒𝑤 =1

85
No hash function can handle heavy hitters

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,… c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿*𝑐

3

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿*𝑐

3

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿*𝑐

3
Need 𝑐 ≳ ln𝑃

c𝑃 distinct values

Discussion

Use library hash function! Randomize!

• When each value occurs ≤ #
(⋅./ (

times, then
𝐿𝑜𝑎𝑑 ≤ (1 + 𝛿) #

(
with high probability

• When some value occurs ≫ #
(

times, the load
will be skewed

• Gray area: when values occur ≈ #
(

times: it

can be shown that 𝐿𝑜𝑎𝑑 ≈ #⋅01(()
(

DATA516/CSED516 - Fall 2020 91

SkewJoin

Main idea: separate the heavy hitters from the
light hitters

• Hash join the light hitters: the partition is
uniform because they are light

• Broadcast join the heavy hitters: works
because there are very few heavy hitters

DATA516/CSED516 - Fall 2020 92

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅.$456 ∪ 𝑅5789:, 𝑆 = 𝑆.$456 ∪ 𝑆5789:
Notice: |𝑆5789:| ≤ 𝑃 (i.e. it is small)

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅.$456 ∪ 𝑅5789:, 𝑆 = 𝑆.$456 ∪ 𝑆5789:
Notice: |𝑆5789:| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅.$456 ⋈ 𝑆.$456

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅.$456 ∪ 𝑅5789:, 𝑆 = 𝑆.$456 ∪ 𝑆5789:
Notice: |𝑆5789:| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅.$456 ⋈ 𝑆.$456
• Step 4: broadcast join 𝑅5789: ⋈ 𝑆5789:

Discussion

• Many distributed query processors do not
handle skew well

• (Project idea: how does your favorite engine
handle skewed data?)

• In practice, you may need to partition skewed
data manually

98

