
DATA516/CSED516
Scalable Data Systems and 

Algorithms
Lecture 4

Distributed Query Evaluation



Announcements

• Project proposals due on Friday
• Reviews due every week
• HW2 due next Monday

Coming soon: guest lecturers!
• Cloud Databases: Shan Shan Huang, 

RelationalAI
• Graph Databases: Mingxi Wu, Tigergraph
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Distributed Query Processing 
Algorithms
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Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin: 
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Notation
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When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#



Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

6We design algorithms for uniform load, discuss skew later



Parallel Algorithm

• Selection σ

• Join ⨝

• Group by  ɣ
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Parallel Selection

Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers must scan and filter the data

• Hash partitioned:
– Can have all servers scan and filter the data
– Or can optimize and only have some servers do work

• Range partitioned
– Also only some servers need to do the work
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Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?



Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By
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Pushing Aggregates Past Union

31

The rule that allowed us to do early summation is:

𝛾!,#$% & →( 𝑅) ∪ 𝑅* =

= 𝛾!,#$% + →&( 𝛾!,#$% & →+ 𝑅) ∪ 𝛾!,#$% & →+ 𝑅* )

For example:
• R1 has B= x,y,z;  R2 has B=u,w
• Then:   x+y+z+u+w = (x+y+z) + (u+w)



Pushing Aggregates Past Union

Which other rules can we push past union?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Pushing Aggregates Past Union

Which other rules can we push past union?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)



Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Speedup and Scaleup

Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Parallel Join:  R ⋈A=B S

R1, S1 R2, S2 RP, SP .  .  .

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Parallel Join:  R ⋈A=B S
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Reshuffle R on R.A
and S on S.B
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Parallel Join:  R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Parallel Join:  R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Parallel Join:  R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions its 

chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions its 

chunk using a hash function h(t.B)

• Step 2: 
– Each server computes the join of its local fragment 

of R with its local fragment of S
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Optimization for Small Relations

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join
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Broadcast Join
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Query: R ⋈ S

.  .  .
SR1 R2 RP 



Broadcast Join
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.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 



Broadcast Join
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R1 R2 RP 

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Same place…

Query: R ⋈ S



Broadcast Join
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R1, S R2, S RP, S

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Broadcast S

Same place…

Query: R ⋈ S



Example Query Execution
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SELECT * 
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 

Example 2
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 
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R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Skew
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Skew

• Skew in the input: a data value has much 
higher frequency than others

• Skew in the output: a server generates many 
more values than others, e.g. join

• Skew in the computation

DATA516/CSED516 - Fall 2020 58



Simple Skew Handling 
Techniques

For range partition:

• Ensure each range gets same number of 
tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms
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Simple Skew Handling 
Techniques

Skew in the computation:

• Create more partitions than nodes
– “virtual servers”

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique
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Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to 
the same server i

• Partition Ri is much larger than |R|/p; skew!!
61
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Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to 
the same server i

• Partition Ri is much larger than |R|/p; skew!!
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Discussion

Distributed joins: usually hash- or broadcast-join
Heavy hitter values will significantly degrade 
performance of a hash-join
• Observation 1: there are “few” heavy hitter 

values (why?)
• Observation 2: we can compute the heavy 

hitter values rather easily (how?)

64
Rest of the lecture: How many times can v occur before it is a heavy hitter?



Analyzing Heavy Hitters

• We will discuss how to choose the threshold 
such that a value that occurs more times than 
the threshold becomes a “heavy hitters”

• This analysis is based on Cernoff bounds, 
which is a general technique that is useful in 
statistics and randomized algorithm
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items

DATA516/CSED516 - Fall 2020 68



Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items
1. Due to the hash function h, or
2. Due to skew in the data
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Role of the Hash Function

Assume v1, …, vN are distinct
Hash function computes h(vi) ∈ {1,…,P}

• If h is fixed then we can find bad items that 
will overload one server; how?

• If h is random: balls-in-bins problem;
we analyze it using the Cernoff bound

70



The Cernoff Bound

Bernoulli r.v.:  𝑋", … , 𝑋# ∈ {0,1}
For all i,  Pr 𝑋$ = 1 = 𝜇 ∈ (0,1)
We are interested in 𝑌 = 𝑋" + 𝑋% +⋯+ 𝑋#

Fact: 𝐸 𝑌 = 𝑁𝜇
Theorem (Cernoff bound)

Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑒𝑥𝑝 − &!

'
𝐸[𝑌]
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Note:
very many

variants



Role of the Hash Function

Fix one server j;

Define indicator variables:
𝑋" = ℎ 𝑣" = 𝑗 ,… , 𝑋# = [ℎ 𝑣# = 𝑗]
Pr 𝑋" = 1 = ⋯ = Pr 𝑋# = 1 = 1/𝑃

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = 𝑁/𝑃
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(
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff:  Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff:  Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

Union bound: Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 − &!

'
#
(
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Why?

Skew at j

Skew at 1 or at 2 … or at P



Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P
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Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103
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Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103

Pr 𝑆𝑘𝑒𝑤 ≤ 1000 ⋅ e)
"."$
% "*& = 1000 ⋅ 𝑒)'⋅"*' ≈ 0
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Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• Start worrying only when 𝑁 ≈ 𝑃 ln𝑃 (why?)
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Role of the Hash Function

• Don’t write your own has function!

• Randomize it (how?)

• Make sure N >> P (if not, why parallelize?)

• Then Load = O(N/P)

DATA516/CSED516 - Fall 2020 81Take away: a good hash function shall not cause skew!



Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times
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Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there 
exists a server j s.t. Load j ≫ #

(

Therefore:   Pr 𝑆𝑘𝑒𝑤 =1
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Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there 
exists a server j s.t. Load j ≫ #

(

Therefore:   Pr 𝑆𝑘𝑒𝑤 =1

85
No hash function can handle heavy hitters
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Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
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, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿*𝑐

3

c𝑃 distinct values



Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
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times, for c > 1
𝑣", 𝑣", … , 𝑣"
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Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿*𝑐

3
Need 𝑐 ≳ ln𝑃

c𝑃 distinct values



Discussion

Use library hash function! Randomize!

• When each value occurs ≤ #
(⋅./ (

times, then 
𝐿𝑜𝑎𝑑 ≤ (1 + 𝛿) #

(
with high probability

• When some value occurs ≫ #
(

times, the load 
will be skewed

• Gray area: when values occur ≈ #
(

times: it 

can be shown that 𝐿𝑜𝑎𝑑 ≈ #⋅01(()
(
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SkewJoin

Main idea: separate the heavy hitters from the 
light hitters

• Hash join the light hitters: the partition is 
uniform because they are light

• Broadcast join the heavy hitters: works 
because there are very few heavy hitters
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SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅.$456 ∪ 𝑅5789:, 𝑆 = 𝑆.$456 ∪ 𝑆5789:
Notice: |𝑆5789:| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅.$456 ⋈ 𝑆.$456
• Step 4: broadcast join 𝑅5789: ⋈ 𝑆5789:



Discussion

• Many distributed query processors do not
handle skew well

• (Project idea: how does your favorite engine 
handle skewed data?)

• In practice, you may need to partition skewed 
data manually
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