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Announcements

• HW2 is posted, and due on Nov. 2nd

• Project proposals due on Oct. 30th

• Three (!) paper reviews were due today!
– Plus a blog…
– We’ll discuss those topics in detail
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Parallel Query Processing

• Clusters:
– More servers à more likely to fit data in main 

memory
– More servers à more computing power
– Clusters are now cheaply available in the 

cloud
– A.k.a. distributed query procesing

• Multicores: the end of Moore’s law
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• SMP = 

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs 
on a single machine and 
can leverage many threads 
to speed up a query

• Easy to use and program
• Expensive to scale
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Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale
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Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, etc, etc

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on 
a single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.
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Performance Metrics

Nodes = processors = computers

• Speedup: 
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed
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Linear v.s. Non-linear Speedup
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Linear v.s. Non-linear Scaleup

DATA516/CSED516 - Fall 2020 10

# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Real



Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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Horizontal Data Partitioning

• Distribute the n data on the p servers, 
such that each server only needs to 
process n/p data items.

• Called horizontal data partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin: 
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Skew

• Skew means that one server runs much 
longer than the other servers

• Reasons:
– Skew in data distribution: will discuss later in 

detail
– Skew arising from computation: much harder 

to address, but less common during query 
processing
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Brent’s Theorem
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Linear v.s. Non-linear Speedup
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Linear v.s. Non-linear Speedup
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Discussion: Virtual Servers
In practice, Brent’s theorem is used to justify 
designing algorithm virtual servers:

• Design algorithm for P virtual servers

• Scale down to P’ << P physical servers

Caveat: some advanced query algorithms are 
better design directly for physical servers.
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Discussion: Skew Mitigation
The principle in Brent’s theorem is used to 
mitigate skew
• Design your parallel algorithm to work with 

P virtual servers;  P is very large
– Ideal runtime Tideal(P) = very small
– Skew causes Treal(P) = much bigger

• But we have P’ << P servers
– Distribute load dynamically, balancing skew
– Treal(P’) ≈ P/P’ * Tideal(P)
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Discussion: Skew Mitigation
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Outline

Rest of this lecture:
• MapReduce (+ brief discussion of Hive)
• Spark

Next lecture(s):
• Brief discussion of Snowflake
• Parallel query evaluation algorithms
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MapReduce: References
• Jeffrey Dean and Sanjay Ghemawat, 

MapReduce: Simplified Data Processing on 
Large Clusters. OSDI’04

• D. DeWitt and M. Stonebraker. Mapreduce – a 
major step backward. In Database Column 
(Blog), 2008.



MapReduce
• Google:

– Started around 2000
– Paper published 2004
– Discontinued September 2019

• Free variant: Hadoop

• MapReduce = high-level programming 
model and implementation for large-scale 
parallel data processing
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Distributed File System (DFS)
• For very large files: TBs, PBs

• Each file partitioned into chunks (64MB)

• Each chunk replicated (≥3 times) – why?

• Implementations:
– Google’s DFS:  GFS, proprietary
– Hadoop’s DFS:  HDFS, open source
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Data Model for MapReduce

Files!

A file = a bag of (key, value) pairs

A MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs
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Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput:  bag of (intermediate key, value)

System applies the map function in parallel 
to all (input key, value) pairs in input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same 
intermediate key, and passes the bag of 
values to the REDUCE function
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Example
• Counting the number of occurrences of each 

word in a large collection of documents
• Each Document

– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);
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reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));



MapReduce = GroupBy-Aggregate
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select word, count(*)
from Occurrence
group by word

Occurrence(docID, word)

map = group by reduce = count(…) (or sum(…) or…)



MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle
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Jobs v.s. Tasks

• A MapReduce Job
– One simple “query”, e.g. count words in docs
– Complex queries may require many jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or 

reduce-function, to be scheduled on a single 
worker
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Workers

• A worker is a process that executes one 
task at a time

• Typically there is one worker per 
processor, hence 4 or 8 per node
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Fault Tolerance
• If one server fails once every year…

... then a job with 10,000 servers will fail in 
less than one hour

• MapReduce handles fault tolerance by writing 
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the 

server fails, the reduce task is restarted on 
another server
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MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle
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Choosing Parameters in MR
• Number of map tasks (M):

– Default: one map task per chunk
– E.g. data = 64TB, chunk = 64MB è M = 106

• Number of reduce tasks (R):
– No good default; set manually R << M
– E.g. R = 500 or 5000

• In general, MapReduce had very many 
parameters that required expertise to tune
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MapReduce Execution Details
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Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local  disk:
M × R files (why?)

Output to
GFS or HDFS

File system:
GFS or HDFS

Task

Task



Discussion

Why doesn’t MR determine the number of 
reduce tasks R dynamically, after all map 
tasks finish?
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Discussion

Why doesn’t MR determine the number of 
reduce tasks R dynamically, after all map 
tasks finish?

Because each map tasks needs to write its 
output into R file; so R must be known 
before the map tasks start
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Local storage`

MapReduce Phases
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Implementation

• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress
• Workers write their output to local disk, 

partition into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map 

workers’ local disks 
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Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another 
worker
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Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
– Bad disk forces frequent correctable errors 

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks 

on that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
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• “Skew” (MR mitigates it somewhat, how?)
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MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)
• The M * R problem – what is it?
• “Parallel databases uses push (to sockets) 

instead of pull” – what’s the point?
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Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering
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Hive
• Facebook’s implementation of SQL over MR
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Spark
A Case Study of the MapReduce 

Programming Paradigm
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Motivation
Goal: Better use distributed memory in a cluster

• Modern data analytics requires iterations
• Users also want interactive data mining
• Both cases: want to keep intermediate 

data in memory and reuse it
• MapReduce does not do this well:

requires writing data to disk between jobs
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Spark v.s. Hive

A Key Difference

• Hive used the MR runtime

• Spark built its own runtime
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Approach
New abstraction: Resilient Distributed Datasets

RDD properties
• Parallel data structure
• Can be persisted in memory
• Fault-tolerant
• Users can manipulate RDDs with rich set 

of operators
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Programming in Spark
• A Spark program consists of:

– Transformations (map, reduce, join…).  Lazy
– Actions (count, reduce, save...).  Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree



Collections in Spark
RDD<T> = an RDD collection of type T
• Distributed on many servers, not nested
• Operations are done in parallel
• Recoverable via lineage; more later

Seq<T> = a sequence
• Local to one server, may be nested
• Operations are done sequentially



Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()   
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS
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// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()   
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count() 

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program



errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions



sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Chaining Style



Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



Example
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Example
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Example
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Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();



More on Programming Interface
Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey, 

reduceByKey, union, join, cogroup, 
crossProduct, …

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations
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Transformations:
map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>

join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>

cogroup(): (RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>

crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:
count(): RDD<T> -> Long

collect(): RDD<T> -> Seq<T>

reduce(f:(T,T)->T): RDD<T> -> T

save(path:String): Outputs RDD to a storage system e.g., HDFS



More Complex Example
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Fault Tolerance
• When a job is executed on x100 or x1000 

servers, the probability of a failure is high

• Example: if a server fails once/year, then a job 
with 10000 servers fails once/hour

• Different solutions:
– RDBMS: Restart!
– MapReduce: write everything to disk, redo. Slow.
– Spark: redo only what is needed. Better.
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Resilient Distributed Datasets

• RDD = Resilient Distributed Dataset
– Distributed, immutable.
– Records lineage = expression that says how that 

relation was computed = a relational algebra plan
• Spark stores intermediate results as RDD
• If a server crashes, its RDD in main memory is 

lost.  However, the driver (=master node) 
knows the lineage, and will simply recompute
the lost partition of the RDD
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Digression: Lineage

Lineage or provenance means “information
telling us how the data was derived”
• Fine grain lineage: complete query plan to

reconstruct the data, e.g. RDD
• Coarse grain lineage: 

– “this dataset was computed on 2017.03.14 
using PROG733 version 4.13, from the 
dataset D3225.dat collected on 2017.02.01 
from the field”
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Lineage Provenance Pedigree

Wikipedia and wealthygorilla.com

Data Lineage v.s. Provenance

There is no such thing as “data pedigree” J



lines   = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)



lines   = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
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RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD 



lines   = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
result = errors.filter(l -> l.contains(“sqlite”))
result.collect();

lines   = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can recompute the result from errors

hdfs://logfile.log

errors

filter(..startsWith(“ERROR”)

result

filter(...contains(“sqlite”)

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD 



Example
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SELECT count(*)  FROM R, S
WHERE R.B > 200 and S.C < 100  and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting 
in memory
or on disk



Example
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SELECT count(*)  FROM R, S
WHERE R.B > 200 and S.C < 100  and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations



RDD Details
• An RDD is a partitioned collection of records

– RDD’s are typed: RDD[Int] is an RDD of integers
– Records are Java/Python objects 

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join
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RDD Materialization
• Users control persistence and partitioning

• Persistence
– Materialize this RDD in memory

• Partitioning
– Users can specify key for partitioning an RDD
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Spark Runtime
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[From https://spark.apache.org/docs/latest/cluster-overview.html]

1. Input data in HDFS or other Hadoop input source
2. User writes driver program, which includes a SparkContext

1. SparkContext connects to cluster manager (e.g., YARN)
2. Spark acquires executors (= procs) through cluster manager
3. Ships code to workers, which cache data & execute tasks

3. Each app is independent set of procs (no sharing across apps)



Query Execution Details
• Lazy evaluation

– RDDs are not evaluated until an action is called

• In memory caching
– Spark workers are long-lived processes
– RDDs can be materialized in memory in workers
– Base data is not cached in memory
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Key Challenge
• How to provide fault-tolerance efficiently?
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Fault-Tolerance Through Lineage

Represent RDD with 5 pieces of information
• A set of partitions
• A set of dependencies on parent partitions

– Distinguishes between narrow (one-to-one)
– And wide dependencies (one-to-many)

• Function to compute dataset based on parent
• Metadata about partitioning scheme and  data 

placement
RDD = Distributed relation + lineage
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More Details on Execution

DATA516/CSED516 - Fall 2020 100[From Zaharia12]

Scheduler builds a DAG of
stages based on lineage 
graph of desired RDD.

Pipelined execution
within stages

Synchronization barrier
with materialization
before shuffles

If a task fails, re-run it
Can checkpoint RDDs to disk



Spark Ecosystem Growth
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Image from: http://spark.apache.org/



Spark SQL vs Functional Prog. API

• Spark’s original functional programming API
– General
– But limited opportunities for automatic optimization

• Spark SQL simultaneously 
– Makes Spark accessible to more users
– Improves opportunities for automatic optimizations
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Three Java-Spark APIs

• RDDs: Sytnax: JavaRDD<T>
– T = anything, basically untyped
– Distributed, main memory

• Data frames:  Dataset<Row>
– <Row> = a record, dynamically typed
– Distributed, main memory or external (e.g. SQL)

• Datasets: Dataset<Person>
– <Person> = user defined type
– Distributed, main memory (not external)
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DataFrames
• Like RDD: immutable distributed collection

• Organized into named columns
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame



Datasets
• Like DataFrames, but elements must be typed

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark 
2.0)



Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run 
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar? 

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html


Recap: Programming in Spark
• A Spark/Scala program consists of:

– Transformations (map, reduce, join…).  Lazy
– Actions (count, reduce, save...).  Eager

• RDD<T> = an RDD collection of type T
– Partitioned, recoverable (through lineage), not 

nested
• Seq<T> = a sequence

– Local to a server, may be nested



MapReduce v.s. Spark
• Job = Map+Reduce

• Language = Java

• Data = untyped

• Optimization = no

• Job = any query

• Language ≈ RA

• Data = has schema

• Optimization = yes
but limited: missing 
stats on base data
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Spark v.s. RDBMS (e.g. Snowflake)

• Query language = its 
own proprietary

• Optimizer = limited

• Runtime = its own 
proprietary

• External functions = 
yes; very useful in ML

• Query language = 
SQL

• Optimizer = full scale

• Runtime = efficient 
SQL query engine

• External functions = 
no
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