
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 3
MapReduce & Spark

1DATA516/CSED516 - Fall 2020

Announcements

• HW2 is posted, and due on Nov. 2nd

• Project proposals due on Oct. 30th

• Three (!) paper reviews were due today!
– Plus a blog…
– We’ll discuss those topics in detail

2

Parallel Query Processing

• Clusters:
– More servers à more likely to fit data in main

memory
– More servers à more computing power
– Clusters are now cheaply available in the

cloud
– A.k.a. distributed query procesing

• Multicores: the end of Moore’s law

DATA516/CSED516 - Fall 2020 3

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

DATA516/CSED516 - Fall 2020 4

Shared Memory
• SMP =

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs
on a single machine and
can leverage many threads
to speed up a query

• Easy to use and program
• Expensive to scale

5

Interconnection Network

P P P

Global Shared
Memory

D D D

Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

6

Interconnection Network

P P P

D D D

M M M

Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, etc, etc

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.

7

Interconnection Network

P P P

D D D

M M M

Performance Metrics

Nodes = processors = computers

• Speedup:
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

DATA516/CSED516 - Fall 2020 8

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 9

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Real

Linear v.s. Non-linear Scaleup

DATA516/CSED516 - Fall 2020 10

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Real

Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

DATA516/CSED516 - Fall 2020 11

Horizontal Data Partitioning

• Distribute the n data on the p servers,
such that each server only needs to
process n/p data items.

• Called horizontal data partitioning

DATA516/CSED516 - Fall 2020 12

Horizontal Data Partitioning

DATA516/CSED516 - Fall 2020 13

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

DATA516/CSED516 - Fall 2020 14

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

DATA516/CSED516 - Fall 2020 15

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

• Block Partition, a.k.a. Round Robin:
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

16DATA516/CSED516 - Fall 2020

Skew

• Skew means that one server runs much
longer than the other servers

• Reasons:
– Skew in data distribution: will discuss later in

detail
– Skew arising from computation: much harder

to address, but less common during query
processing

17

Brent’s Theorem

DATA516/CSED516 - Fall 2020 18

Suppose we can solve a problem in time T using P servers:

1 2 P 3

Brent’s Theorem

DATA516/CSED516 - Fall 2020 19

Suppose we can solve a problem in time T using P servers:

1 2 P 3

Then, with P’ < P servers, we can solve the problem in time T*P/P’

1 2 P’. . .

Brent’s Theorem

DATA516/CSED516 - Fall 2020 20

Suppose we can solve a problem in time T using P servers:

1 2 P 3

Then, with P’ < P servers, we can solve the problem in time T*P/P’

1 2 P’. . .

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 21

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Real

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 22

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Brent’s Theorem

Real

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 23

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Brent’s Theorem

Real

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 24

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Brent’s Theorem

Real

Linear v.s. Non-linear Speedup

DATA516/CSED516 - Fall 2020 25

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Brent’s Theorem

Real

Discussion: Virtual Servers
In practice, Brent’s theorem is used to justify
designing algorithm virtual servers:

• Design algorithm for P virtual servers

• Scale down to P’ << P physical servers

Caveat: some advanced query algorithms are
better design directly for physical servers.

26

Discussion: Skew Mitigation
The principle in Brent’s theorem is used to
mitigate skew
• Design your parallel algorithm to work with

P virtual servers; P is very large
– Ideal runtime Tideal(P) = very small
– Skew causes Treal(P) = much bigger

• But we have P’ << P servers
– Distribute load dynamically, balancing skew
– Treal(P’) ≈ P/P’ * Tideal(P)

27

Discussion: Skew Mitigation
The principle in Brent’s theorem is used to
mitigate skew
• Design your parallel algorithm to work with

P virtual servers; P is very large
– Ideal runtime Tideal(P) = very small
– Skew causes Treal(P) = much bigger

• But we have P’ << P servers
– Distribute load dynamically, balancing skew
– Treal(P’) ≈ P/P’ * Tideal(P)

28

Discussion: Skew Mitigation
The principle in Brent’s theorem is used to
mitigate skew
• Design your parallel algorithm to work with

P virtual servers; P is very large
– Ideal runtime Tideal(P) = very small
– Skew causes Treal(P) = much bigger

• But we have P’ << P servers
– Distribute load dynamically, balancing skew
– Treal(P’) ≈ P/P’ * Tideal(P)

29

Discussion: Skew Mitigation

DATA516/CSED516 - Fall 2020 30

1 2 P 3

1 2 P’. . .

Skew!

Outline

Rest of this lecture:
• MapReduce (+ brief discussion of Hive)
• Spark

Next lecture(s):
• Brief discussion of Snowflake
• Parallel query evaluation algorithms

31

DATA516/CSED516 - Fall 2020 32

MapReduce: References
• Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on
Large Clusters. OSDI’04

• D. DeWitt and M. Stonebraker. Mapreduce – a
major step backward. In Database Column
(Blog), 2008.

MapReduce
• Google:

– Started around 2000
– Paper published 2004
– Discontinued September 2019

• Free variant: Hadoop

• MapReduce = high-level programming
model and implementation for large-scale
parallel data processing

33DATA516/CSED516 - Fall 2020

Distributed File System (DFS)
• For very large files: TBs, PBs

• Each file partitioned into chunks (64MB)

• Each chunk replicated (≥3 times) – why?

• Implementations:
– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

DATA516/CSED516 - Fall 2020 34

Data Model for MapReduce

Files!

A file = a bag of (key, value) pairs

A MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs

35DATA516/CSED516 - Fall 2020

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput: bag of (intermediate key, value)

System applies the map function in parallel
to all (input key, value) pairs in input file

36DATA516/CSED516 - Fall 2020

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

37DATA516/CSED516 - Fall 2020

Example
• Counting the number of occurrences of each

word in a large collection of documents
• Each Document

– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

DATA516/CSED516 - Fall 2020 38

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

MapReduce = GroupBy-Aggregate

39

select word, count(*)
from Occurrence
group by word

Occurrence(docID, word)

map = group by reduce = count(…) (or sum(…) or…)

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

40DATA516/CSED516 - Fall 2020

Jobs v.s. Tasks

• A MapReduce Job
– One simple “query”, e.g. count words in docs
– Complex queries may require many jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or

reduce-function, to be scheduled on a single
worker

DATA516/CSED516 - Fall 2020 41

Workers

• A worker is a process that executes one
task at a time

• Typically there is one worker per
processor, hence 4 or 8 per node

DATA516/CSED516 - Fall 2020 42

Fault Tolerance
• If one server fails once every year…

... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the

server fails, the reduce task is restarted on
another server

DATA516/CSED516 - Fall 2020 43

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

DATA516/CSED516 - Fall 2020 44

Choosing Parameters in MR
• Number of map tasks (M):

– Default: one map task per chunk
– E.g. data = 64TB, chunk = 64MB è M = 106

• Number of reduce tasks (R):
– No good default; set manually R << M
– E.g. R = 500 or 5000

• In general, MapReduce had very many
parameters that required expertise to tune

45

MapReduce Execution Details

DATA516/CSED516 - Fall 2020 46

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk:
M × R files (why?)

Output to
GFS or HDFS

File system:
GFS or HDFS

Task

Task

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map
tasks finish?

47

Discussion

Why doesn’t MR determine the number of
reduce tasks R dynamically, after all map
tasks finish?

Because each map tasks needs to write its
output into R file; so R must be known
before the map tasks start

48

Local storage`

MapReduce Phases

49DATA516/CSED516 - Fall 2020

Implementation

• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M

map tasks, keeps track of their progress
• Workers write their output to local disk,

partition into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map

workers’ local disks
50DATA516/CSED516 - Fall 2020

Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another
worker

DATA516/CSED516 - Fall 2020 51

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually

long time to complete one of the last tasks.
– Bad disk forces frequent correctable errors

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

DATA516/CSED516 - Fall 2020 52

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

53

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”

54

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”

55

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)

56

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)
• The M * R problem – what is it?

57

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker
• “Schemas are good”
• “Indexes”
• “Skew” (MR mitigates it somewhat, how?)
• The M * R problem – what is it?
• “Parallel databases uses push (to sockets)

instead of pull” – what’s the point?

58

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

59

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

60

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

61

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

62

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

63

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

64

Hive
• Facebook’s implementation of SQL over MR
• Supports subset of SQL
• Uses MapReduce runtime (pros/cons?)

– Note: this is similar to Google’s FlumeJava
• Optimizations:

– Column pruning
– Predicate push-down
– Partition pruning
– Map-side join = ”broadcast join” (discuss in class)
– Join reordering

65

Spark
A Case Study of the MapReduce

Programming Paradigm

DATA516/CSED516 - Fall 2020 66

References
• M. Zaharia et al. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In
NSDI, 2012.

• Spark SQL: Relational Data Processing in Spark Michael
Armbrust, et. al. ACM SIGMOD Conference 2015, May.
2015.

• MLlib: Machine Learning in Apache Spark. Xiangrui
Meng, et. Al. Journal of Machine Learning Research, 17
(34), Apr. 2016.

67

Motivation
Goal: Better use distributed memory in a cluster

• Modern data analytics requires iterations
• Users also want interactive data mining
• Both cases: want to keep intermediate

data in memory and reuse it
• MapReduce does not do this well:

requires writing data to disk between jobs

DATA516/CSED516 - Fall 2020 68

Spark v.s. Hive

A Key Difference

• Hive used the MR runtime

• Spark built its own runtime

69

Approach
New abstraction: Resilient Distributed Datasets

RDD properties
• Parallel data structure
• Can be persisted in memory
• Fault-tolerant
• Users can manipulate RDDs with rich set

of operators

DATA516/CSED516 - Fall 2020 70

Programming in Spark
• A Spark program consists of:

– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree

Collections in Spark
RDD<T> = an RDD collection of type T
• Distributed on many servers, not nested
• Operations are done in parallel
• Recoverable via lineage; more later

Seq<T> = a sequence
• Local to one server, may be nested
• Operations are done sequentially

Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

Example from paper, new syntax

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Transformation: Not executed yet…

Search logs stored in HDFS

// First line defines RDD backed by an HDFS file
lines = spark.textFile(“hdfs://…”)

// Now we create a new RDD from the first one
errors = lines.filter(x -> x.startsWith(“Error”))

// Persist the RDD in memory for reuse later
errors.persist()
errors.collect()
errors.filter(x -> x.contains(“MySQL”)).count()

Search logs stored in HDFS

Example from paper, new syntax

Transformation: Not executed yet…

Action: triggers execution
of entire program

errors = lines.filter(x -> x.startsWith(“Error”))

A.k.a. lambda expressions, starting in Java 8

Anonymous Functions

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Chaining Style

Example

DATA516/CSED516 - Fall 2020 78

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

The RDD s:

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2020 79

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2020 80

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

The RDD s: Parallel step 1

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

Example

DATA516/CSED516 - Fall 2020 81

Error… Warning… Warning… Error… Abort… Abort… Error… Error… Warning… Error…

Error… Error… Error… Error… Error…

filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”) filter(“ERROR”)

filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”) filter(“sqlite”)

The RDD s: Parallel step 1

Parallel step 2

sqlerrors = spark.textFile(“hdfs://…”)
.filter(x -> x.startsWith(“ERROR”))
.filter(x -> x.contains(“sqlite”))
.collect();

More on Programming Interface
Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey,

reduceByKey, union, join, cogroup,
crossProduct, …

Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

Programming interface includes iterations

DATA516/CSED516 - Fall 2020 82

Transformations:
map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>

join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>

cogroup(): (RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>

crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:
count(): RDD<T> -> Long

collect(): RDD<T> -> Seq<T>

reduce(f:(T,T)->T): RDD<T> -> T

save(path:String): Outputs RDD to a storage system e.g., HDFS

More Complex Example

DATA516/CSED516 - Fall 2020 84

[From Zaharia12]

Fault Tolerance
• When a job is executed on x100 or x1000

servers, the probability of a failure is high

• Example: if a server fails once/year, then a job
with 10000 servers fails once/hour

• Different solutions:
– RDBMS: Restart!
– MapReduce: write everything to disk, redo. Slow.
– Spark: redo only what is needed. Better.

85

Resilient Distributed Datasets

• RDD = Resilient Distributed Dataset
– Distributed, immutable.
– Records lineage = expression that says how that

relation was computed = a relational algebra plan
• Spark stores intermediate results as RDD
• If a server crashes, its RDD in main memory is

lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

DATA516/CSED516 - Fall 2020 86

Digression: Lineage

Lineage or provenance means “information
telling us how the data was derived”
• Fine grain lineage: complete query plan to

reconstruct the data, e.g. RDD
• Coarse grain lineage:

– “this dataset was computed on 2017.03.14
using PROG733 version 4.13, from the
dataset D3225.dat collected on 2017.02.01
from the field”

87

Lineage Provenance Pedigree

Wikipedia and wealthygorilla.com

Data Lineage v.s. Provenance

There is no such thing as “data pedigree” J

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
result = errors.filter(l -> l.contains(“sqlite”))
result.collect();

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(l -> l.startsWith(“ERROR”))
result = errors.filter(l -> l.contains(“sqlite”))
result.collect();

lines = spark.textFile(“hdfs://…”)
result = lines.filter(l -> l.startsWith(“ERROR”))

.filter(l -> l.contains(“sqlite”))
result.collect();

RDDs

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can recompute the result from errors

hdfs://logfile.log

errors

filter(..startsWith(“ERROR”)

result

filter(...contains(“sqlite”)

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

New RDD

Example

92

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting
in memory
or on disk

Example

93

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = strm.read().textFile(“R.csv”).map(parseRecord).persist();
S = strm.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations

RDD Details
• An RDD is a partitioned collection of records

– RDD’s are typed: RDD[Int] is an RDD of integers
– Records are Java/Python objects

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join

94

RDD Materialization
• Users control persistence and partitioning

• Persistence
– Materialize this RDD in memory

• Partitioning
– Users can specify key for partitioning an RDD

DATA516/CSED516 - Fall 2020 95

Spark Runtime

DATA516/CSED516 - Fall 2020 96

[From https://spark.apache.org/docs/latest/cluster-overview.html]

1. Input data in HDFS or other Hadoop input source
2. User writes driver program, which includes a SparkContext

1. SparkContext connects to cluster manager (e.g., YARN)
2. Spark acquires executors (= procs) through cluster manager
3. Ships code to workers, which cache data & execute tasks

3. Each app is independent set of procs (no sharing across apps)

Query Execution Details
• Lazy evaluation

– RDDs are not evaluated until an action is called

• In memory caching
– Spark workers are long-lived processes
– RDDs can be materialized in memory in workers
– Base data is not cached in memory

DATA516/CSED516 - Fall 2020 97

Key Challenge
• How to provide fault-tolerance efficiently?

DATA516/CSED516 - Fall 2020 98

Fault-Tolerance Through Lineage

Represent RDD with 5 pieces of information
• A set of partitions
• A set of dependencies on parent partitions

– Distinguishes between narrow (one-to-one)
– And wide dependencies (one-to-many)

• Function to compute dataset based on parent
• Metadata about partitioning scheme and data

placement
RDD = Distributed relation + lineage

DATA516/CSED516 - Fall 2020 99

More Details on Execution

DATA516/CSED516 - Fall 2020 100[From Zaharia12]

Scheduler builds a DAG of
stages based on lineage
graph of desired RDD.

Pipelined execution
within stages

Synchronization barrier
with materialization
before shuffles

If a task fails, re-run it
Can checkpoint RDDs to disk

Spark Ecosystem Growth

DATA516/CSED516 - Fall 2020 101

Image from: http://spark.apache.org/

Spark SQL vs Functional Prog. API

• Spark’s original functional programming API
– General
– But limited opportunities for automatic optimization

• Spark SQL simultaneously
– Makes Spark accessible to more users
– Improves opportunities for automatic optimizations

DATA516/CSED516 - Fall 2020 102

Three Java-Spark APIs

• RDDs: Sytnax: JavaRDD<T>
– T = anything, basically untyped
– Distributed, main memory

• Data frames: Dataset<Row>
– <Row> = a record, dynamically typed
– Distributed, main memory or external (e.g. SQL)

• Datasets: Dataset<Person>
– <Person> = user defined type
– Distributed, main memory (not external)

DATA516/CSED516 - Fall 2020 103

DataFrames
• Like RDD: immutable distributed collection

• Organized into named columns
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame

Datasets
• Like DataFrames, but elements must be typed

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark
2.0)

Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar?

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Dataset.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Column.html

Recap: Programming in Spark
• A Spark/Scala program consists of:

– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• RDD<T> = an RDD collection of type T
– Partitioned, recoverable (through lineage), not

nested
• Seq<T> = a sequence

– Local to a server, may be nested

MapReduce v.s. Spark
• Job = Map+Reduce

• Language = Java

• Data = untyped

• Optimization = no

• Job = any query

• Language ≈ RA

• Data = has schema

• Optimization = yes
but limited: missing
stats on base data

108

Spark v.s. RDBMS (e.g. Snowflake)

• Query language = its
own proprietary

• Optimizer = limited

• Runtime = its own
proprietary

• External functions =
yes; very useful in ML

• Query language =
SQL

• Optimizer = full scale

• Runtime = efficient
SQL query engine

• External functions =
no

109

