
DATA516/CSED516
Scalable Data Systems and Algorithms

Lecture 1
Design of a Relational DBMS

1DATA516/CSED516 - Fall 2020

2

Course Staff
• Instructor: Dan Suciu

suciu@cs.washington.edu

• TA: Remy Wang
remywang@cs.washington.edu

• TA: Zechariah Cheung
zachcheu@gmail.com

DATA516/CSED516 - Fall 2020

mailto:suciu@cs.washington.edu
mailto:remywang@cs.washington.edu
mailto:zachcheu@gmail.com

Coarse Aims

• Study design of big data systems
– Historical perspective
– Sample of modern systems
– Breadth of designs (relational, streaming, graph, etc.)

• Study key scalable data processing algorithms
• Gain hands-on experience with big data systems

– Demonstrations and tutorials in sections
– Assignments and projects

DATA516/CSED516 - Fall 2020 3

Coarse Content

• Query processing: single-sever, distributed
• MapReduce, legacy, successors
• Some important “Big data” algorithms
• Misc: streaming, column stores, graph engines

DATA516/CSED516 - Fall 2020 4

Course Format

• 5pm-7:50pm: Lectures
– Discuss system architecture & algorithms

• 8pm-8:50pm: Hands-on tutorials
– Learn how to use big data systems
– Jump start your homeworks
– Bring your laptop!

DATA516/CSED516 - Fall 2020 5

6

Grading (subject to change!)
• 15%: Reading assigned papers

– Write short statement/review
• 60%: Homework assignments

– Redshift Spark, Snowflake, others
• 25%: Final project

DATA516/CSED516 - Fall 2020

Project

Choose a topic:
• Don’t worry about novelty!
• Highly recommended: Benchmark projects

– Analyze the performance of some features
– Compare the performance of different systems
– Try to implement an interesting workload

• I will post a few ideas, but you are strongly
encouraged to come up with your own

7

Project

1. Project proposal (1 page)
2. Project milestone (2-3 pages)
3. Project presentation (in class)
4. Project final report (4-5 pages)

DATA516/CSED516 - Fall 2020 8

Web Services

• HW1: Amazon Redshift – attend today’s
section!

• HW2: Spark/AWS
• HW3: Snowflake – see Remy’s post
• HW4: mini-homeworks – stay tuned

Azure: optional, for the project
9

Communication

• Course webpage: all important stuff
https://courses.cs.washington.edu/cours
es/csed516/20au/

• Discussion Board: ED. Say “hello”!

• Class email: only for important
announcements

10

https://courses.cs.washington.edu/courses/csed516/19au/

How to Turn In

https://gitlab.cs.washington.edu/
• Your own repository
• Pull to get homework instructions, starter files
• Push homework solutions, project reports

Reviews: we use google forms
• Typically around ½ page
• Goal is only for us to check that you have

read the paper 11

https://gitlab.cs.washington.edu/

Relational Database
Management Systems

DATA516/CSED516 - Fall 2020 12

Quick Review

• Database is a collection of files
• Database management system (DBMS) is a

piece of software to help manage that data
• History:

– Origins in the 1960’s
– Relational model 1970
– First relational DBMSs (Ingres and System R):

1970’s
– Parallel DBMSs: 1980’s

DATA516/CSED516 - Fall 2020 13

DBMS Functionality
1. Describe real-world entities in terms of a data

model
2. Create & persistently store large datasets
3. Efficiently query & update

1. Must handle complex questions about data
2. Must handle sophisticated updates
3. Performance matters

4. Change structure (e.g., add attributes)
5. Concurrency control: enable simultaneous updates
6. Crash recovery
7. Access control, security, integrity

DATA516/CSED516 - Fall 2020 14

Relational Data Model
• A Database is a collection of relations

• A Relation is a subset of Dom1 x Dom2 x … x Domn
– Where Domi is the domain of attribute i
– n is number of attributes of the relation
– A relation R is a set of tuples

• A Tuple t is an element of Dom1 x Dom2 x … x Domn

DATA516/CSED516 - Fall 2020 15

Other names: relation = table; tuple = row

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is significant
– Applications refer to columns by their names

• Domain of each column is a primitive type

Data independence!

DATA516/CSED516 - Fall 2020 16

Or is it?

DATA516/CSED516 - Fall 2020

Schema
• Relation schema: describes column heads

– Relation name
– Name of each field (or column, or attribute)
– Domain of each field
– The arity of the relation = # attributes

• Database schema: set of all relation schemas

17

DATA516/CSED516 - Fall 2020

Instance
• Relation instance: concrete table content

– Set of tuples (also called records) matching the schema
– The cardinality of the relation = # tuples

(a.k.a. size)

• Database instance: set of all relation instances

18

What is the schema?
What is the instance?

DATA516/CSED516 - Fall 2020 19

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Supplier

What is the schema?
What is the instance?

DATA516/CSED516 - Fall 2020 20

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Relation schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)
Supplier

instance

Relational Query Language

• Set-at-a-time:
– Query inputs and outputs are relations

• Two variants of the query language:
– Relational algebra: specifies order of operations
– Relational calculus / SQL: declarative

DATA516/CSED516 - Fall 2020 21

Note

• We will review Relational Algebra and SQL
today

• In addition: please review at home:
– Review material from DATA514/CSED514

DATA516/CSED516 - Fall 2020 22

Structured Query Language: SQL

• Data definition language: DDL
– Statements to create, modify tables and views
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

• Data manipulation language: DML
– Statements to issue queries, insert, delete data
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…,
DELETE…

We focus
on this

DATA516/CSED516 - Fall 2020

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form: (plus many many more bells and whistles)

24

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

DATA516/CSED516 - Fall 2020 25

Quick Review of SQL

What does
this query
compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno

and y.pno = z.pno
and x.scity = ‘Seattle’
and y.price < 100

DATA516/CSED516 - Fall 2020 26

Terminology

• Selection: return a subset of the rows:
– SELECT * FROM Supplier

WHERE scity = ’Seattle’

• Projection: return subset of the columns:
– SELECT DISTINCT scity FROM Supplier;

• Join: refers to combining two or more tables
– SELECT * FROM Supplier, Supply, Part …

27

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

DATA516/CSED516 - Fall 2020 28

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

DATA516/CSED516 - Fall 2020 29

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

DATA516/CSED516 - Fall 2020 30

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-join

Simple Analytics

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT z.pno, z.pname, min(y.price) as p1, max(y.price) as p2
FROM Supply y, Part z
WHERE y.pno = z.pno
GROUP BY z.pno, z.pname

DATA516/CSED516 - Fall 2020 31

For each part, compute its minimum and maximum price
from all suppliers.

Terminology

• Online Analytical Processing (OLAP)
a.k.a. Data Analytics queries
– GROUP-BY + aggregates
– No updates
– Touch most of, or all the data
– Very important in data science!

• Online Transaction Processing (OLTP):
– Point queries: return account 12345
– Often have updates 32

Data Science

Terminology

• Online Analytical Processing (OLAP)
a.k.a. Data Analytics queries
– GROUP-BY + aggregates
– No updates
– Touch most of, or all the data
– Very important in data science!

• Online Transaction Processing (OLTP):
– Point queries: return account 12345
– Often have updates 33

Data Science

Other use of Relational Data

• Sparse vectors, matrics

• Graph databases

DATA516/CSED516 - Fall 2020 34

Sparse Matrics

DATA516/CSED516 - Fall 2020 35

𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent
it as a relation?

Sparse Matrics

DATA516/CSED516 - Fall 2020 36

𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val
1 1 5
1 3 -2
2 3 -1
3 2 7

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2020 37

𝐶 = 𝐴 ⋅ 𝐵

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2020 38

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

Matrix Multiplication in SQL

DATA516/CSED516 - Fall 2020 39

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

SELECT A.row, B.col, sum(A.val*B.val)
FROM A, B
WHERE A.col = B.row
GROUP BY A.row, B.col;

Discussion

• Matrix multiplication = join + group-by
• Many operations can be written in SQL
• E.g. try at home: write in SQL

𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶
where the trace is defined as:

𝑇𝑟 𝑋 = ∑! 𝑋!!
• Surprisingly, 𝐴 + 𝐵 is a bit harder…

40

Matrix Addition in SQL

DATA516/CSED516 - Fall 2020 41

𝐶 = 𝐴 + 𝐵

Matrix Addition in SQL

DATA516/CSED516 - Fall 2020 42

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Matrix Addition in SQL

DATA516/CSED516 - Fall 2020 43

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Why is this wrong?

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2020 44

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2020 45

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2020 46

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

DATA516/CSED516 - Fall 2020 47

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Discussion

• Outer joins: includes a tuple even if it
doesn’t join with anything in the other
table

• Left outer join, right outer join, full outer
join – what do they mean?

• Note distinction between ON and
WHERE

DATA516/CSED516 - Fall 2020 48

WHERE v.s. ON
Sparse vectors:

1 2 3 4 5 6 7 8 9
X= 50 0 -30 60 -80 0 -90 10 0

Y= -55 0 65 -15 0 35 -75 15 25

WHERE v.s. ON
Sparse vectors:

1 2 3 4 5 6 7 8 9
X= 50 0 -30 60 -80 0 -90 10 0

Y= -55 0 65 -15 0 35 -75 15 25

SELECT x.pos, x.val, y.val
FROM x left outer join y
ON x.pos = y.pos and y.val > 0;

WHERE v.s. ON
Sparse vectors:

1 2 3 4 5 6 7 8 9
X= 50 0 -30 60 -80 0 -90 10 0

Y= -55 0 65 -15 0 35 -75 15 25

SELECT x.pos, x.val, y.val
FROM x left outer join y
ON x.pos = y.pos and y.val > 0;

SELECT x.pos, x.val, y.val
FROM x left outer join y
ON x.pos = y.pos

WHERE y.val > 0;

v.s.

WHERE v.s. ON
Sparse vectors:

1 2 3 4 5 6 7 8 9
X= 50 0 -30 60 -80 0 -90 10 0

Y= -55 0 65 -15 0 35 -75 15 25

SELECT x.pos, x.val, y.val
FROM x left outer join y
ON x.pos = y.pos and y.val > 0;

SELECT x.pos, x.val, y.val
FROM x left outer join y
ON x.pos = y.pos

WHERE y.val > 0;
x.pos x.val y.val

1 50 Null

3 -30 65

4 60 Null

5 -80 Null

7 -90 Null

8 10 15

x.pos x.val y.val

3 -30 65

8 10 15

v.s.

Solution 2: Group By

DATA516/CSED516 - Fall 2020 53

𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)
FROM (SELECT * FROM A

UNION ALL
SELECT * FROM B) as m

GROUP BY m.row, m.col;

Graph Databases

• Graph databases systems are a niche
category of products specialized for
processing large graphs

• E.g. Neo4J, TigerGraph
• A graph is a special case of a relation,

and can be processed using SQL

DATA516/CSED516 - Fall 2020 54

Graph Databases
A graph:

1

2

4

3

5

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph: A relation:

1

2

4

3

5

Graph Databases

1

2

4

3

src dst
1 2
2 1
2 3

1 4

3 4
4 5

Edge

5

A graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

A relation:

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Other Representation

src dst
Alice Bob
Bob Alice
Bob Chris

Alice David

Chris David
David Eve

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Representing nodes separately;
needed for “isolated nodes” e.g. Frank

Other Representation

src dst weight
Alice Bob 3
Bob Alice 1
Bob Chris 2

Alice David 9

Chris David 5
David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Adding edge labels
Adding node labels…

2

5
3

1

9
1

Limitations of SQL

• No recursion! Examples requiring
recursion:
– Gradient descent
– Connected components in a graph

• Advanced systems do support recursion
• Practical solution: use some external

driver, e.g. pyton

DATA516/CSED516 - Fall 2020 61

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

Switched
(following Mitchell)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

Switched
(following Mitchell)

Train weights 𝑤!, 𝑤$, 𝑤', 𝑤& to minimize loss:

𝐿 𝑤!, … , 𝑤& = :
ℓ#$,)

𝑌ℓ ⋅ ln 𝑃 𝑌 = 1|𝑋ℓ + (1 − 𝑌ℓ) ⋅ ln 𝑃 𝑌 = 0|𝑋ℓ

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 :
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Update W, then repeat this
e.g. using python

http://www.cs.cmu.edu/~tom/NewChapters.html

Discussion

SQL in Data Science:
• Used primarily to prepare the data

– ETL – Extract/Transform/Load
– Join tables, process columns, filter rows

• Can also be used in training
– Much less convenient than ML packages
– But can be the best option if data is huge

DATA516/CSED516 - Fall 2020 73

SQL – Summary

• Very complex: >1000 pages,
– No vendor supports full standard; (in practice,

people use postgres as de facto standard)
– Much more than DML

• It is a declarative language:
– we say what we want
– we don’t say how to get it

• Relational algebra says how to get it 74

DATA516/CSED516 - Fall 2020

Relational Algebra
• Queries specified in an operational manner

– A query gives a step-by-step procedure

• Relational operators
– Take one or two relation instances as input
– Return one relation instance as result
– Easy to compose into relational algebra expressions

75

Five Basic Relational Operators

• Selection: 𝜎condition(S)
– Condition is Boolean combination (∧,∨)

of atomic predicates (<, <=, =, ≠, >=, >)
• Projection: πlist-of-attributes(S)
• Union (∪)
• Set difference (–),
• Cross-product/cartesian product (⨯),

Join: R ⋈𝛉S = 𝜎𝛉(R⨯S)
Other operators: anti-semijoin, renaming

DATA516/CSED516 - Fall 2020 76

DATA516/CSED516 - Fall 2020

Extended Operators
of Relational Algebra

• Duplicate elimination (𝛿)
– Since commercial DBMSs operate on multisets

not sets
• Group-by/aggregate (ɣ)

– Min, max, sum, average, count
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups

• Sort operator (𝜏)

77

Logical Query Plans

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

78

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

Logical Query Plans

Supplier Supply

pno=pno

Part

Π sname,scity

σ psize > 10
sno=sno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

79

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

𝝳

Query Optimizer

• Rewrite one relational algebra
expression to a better one

• Very brief review now, more details next
lecture

DATA516/CSED516 - Fall 2020 80

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Push
selections

down

Optimization

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

More about this
next lecture

Push
selections

down

Relational Model -- Summary

• Schema v.s. Data

DATA516/CSED516 - Fall 2020 84

Relational Model -- Summary

• Schema v.s. Data
• Data is normalized (what is that?)

DATA516/CSED516 - Fall 2020 85

Relational Model -- Summary

• Schema v.s. Data
• Data is normalized (what is that?)

– 1st NF: relations are flat (also unordered)
– BCNF (or 3rd or 4th NF…): split large table

into many small (why?), need to join back

DATA516/CSED516 - Fall 2020 86

Relational Model -- Summary

• Schema v.s. Data
• Data is normalized (what is that?)

– 1st NF: relations are flat (also unordered)
– BCNF (or 3rd or 4th NF…): split large table

into many small (why?), need to join back
– (Consequence: joins are really important)

DATA516/CSED516 - Fall 2020 87

Relational Model -- Summary

• Schema v.s. Data
• Data is normalized (what is that?)

– 1st NF: relations are flat (also unordered)
– BCNF (or 3rd or 4th NF…): split large table

into many small (why?), need to join back
– (Consequence: joins are really important)

• Query language is SQL, or something
equivalent, like relational algebra

DATA516/CSED516 - Fall 2020 88

Benefits of Relational Model

• Physical data independence
– Can change how data is organized on disk without

affecting applications

• Logical data independence
– Can change the logical schema without affecting

applications (not 100%... consider updates)

DATA516/CSED516 - Fall 2020 89

Physical Data Independence

90

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Supplier
SELECT DISTINCT sname
FROM Supplier
WHERE scity = ‘Seattle’

How is the data stored on disk?
(e.g. row-wise, column-wise)

Is there an index on scity?
(e.g. no index, unclustered index, clustered index)

The SQL query works
the same, regardless

of the answers to
these questions

How to Implement a
Relational DBMS?

DATA516/CSED516 - Fall 2020 91

DBMS

SQL

Data

DBMS Architecture

92

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager
Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

Storage Manager

DATA516/CSED516 - Fall 2020 93

Disks

• Data resides persistently on disks
– Your local disk, or a Network Attached

Storage (NAS), or Amazon’s S3
• For processing, data must reside in

main memory

DATA516/CSED516 - Fall 2020 94

Disks v.s. Main Memory
Disk
• Unit of data =1 block

4KB or 8KB or 16KB
• Access time* = seek time +

rotational latency + transfer rate
≈ 12ms + 5ms + 150MB/s

– Random access ≈ 17 ms
– Sequential access ≈ 50𝜇s

• Organization:
– Heap file
– Index file

Main memory
• Unit of data =1byte

• Access time** = 50ns

• Organization:
– Lists, arrays, hash tables, …

* https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
** https://en.wikipedia.org/wiki/Dynamic_random-access_memory#Memory_timing

https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

Disks v.s. Main Memory
Disk
• Unit of data =1 block

4KB or 8KB or 16KB
• Access time* = seek time +

rotational latency + transfer rate
≈ 12ms + 5ms + 150MB/s

– Random access ≈ 17 ms
– Sequential access ≈ 50𝜇s

• Organization:
– Heap file
– Index file

Main memory
• Unit of data =1byte

• Access time** = 50ns

• Organization:
– Lists, arrays, hash tables, …

* https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
** https://en.wikipedia.org/wiki/Dynamic_random-access_memory#Memory_timing

Orders of
magnitude

slower

https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

DATA516/CSED516 - Fall 2020

Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

Data on disk is stored in files
Files consist of pages filled with records
A heap file is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

97

DATA516/CSED516 - Fall 2020

Index

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File (Sequential file)

98

An index is a data structure stored on disk
It is stored in a file consisting of pages & records
But records are (search key value, record ID)

Pointer to
a record
on disk

DATA516/CSED516 - Fall 2020

Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

99

Buffer Manager

DATA516/CSED516 - Fall 2020 100

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Buffer pool manager
Access methods

Discussion

• Disks are necessary both for persistent
storage, and in order to process data
larger than main memory

• They are slow! Buffer pool mitigates this
• ”Cold v.s. Hot execution”: first time you

execute the query it is slow; if you
repeat it, then it is faster (WHY?)

DATA516/CSED516 - Fall 2020 101

Discussion

• Main idea for Distributed data
processing: if we distribute the data to
many servers, then the data will fit in
main memory

• For that reason, they often do not
implement “out of core” algorithm

• Our focus in this course is on distributed
data processing, not on out-of-core.

DATA516/CSED516 - Fall 2020 102

Summary

• RDMBS are complex systems
• Need to know some of their basics inner

workings in order to understand query
performance

Next week: we start review query
processing, optimization, and start
discussion distributed query processing

103

