
Cloud Databases - A Survey

1

Shan Shan Huang

November 10, 2020

Outline

2

01

02

03

What makes a database “cloud” database?

Why would anyone use one? Or, build
one?

A decade of cloud databases: 2009 - 2019

04 Trends and Outlook

Brief Intro

3

- Building
database-as-a-service
infrastructure

- Managed teams building
Service Discovery and
Routing Mesh

- Learnt distributed systems
through a firehose

- Ph. D focused on
Programming Languages

- Declarative, expressive,
correct-by-construction

- Compiler

- “Modeler” - end-user data
discovery & manipulation
tooling

- Engineering management,
Product management

What makes a “cloud”
database?

4

5

There’s a cloud database
for every infrastructure
provider

Examples

In fact…. There are many cloud databases for every
infrastructure provider

Cloud DBs by Amazon Web Services (AWS) - 10

6
Source: https://aws.amazon.com/products/databases/

https://aws.amazon.com/products/databases/

Cloud DBs by Microsoft Azure - 9

7
Source: https://azure.microsoft.com/en-us/product-categories/databases/

https://azure.microsoft.com/en-us/product-categories/databases/

Cloud DBs by Microsoft Azure - 11

8

2019

Cloud DBs by GCP - 6

9
Source: https://cloud.google.com/products/databases

https://cloud.google.com/products/databases

Remember Oracle?

10

"Maybe I’m an idiot, but I have no idea what anyone is talking about. What is it? It’s
[cloud] complete gibberish. It’s insane. When is this idiocy going to stop?"

"We’ll make cloud computing announcements because, you know, if orange is the
new pink, we’ll make orange blouses. I mean, I’m not gonna fight this thing … “

-- Larry Ellison, 2008

Oracle Cloud Database Services - 2020

11
Soure: https://www.oracle.com/database/

https://www.oracle.com/database/

Cloud DBs - Infrastructure Independent

12

Snowflake

- AWS, Azure, GCP

- AWS, GCP, Cloud/On-prem Hybrid

- AWS, Azure, GCP

More Different Than Alike

13

By Data Model By Workload

More Different Than Alike

14

By Data Model
By Workload

By Infrastructure

Snowflake

By Tenancy Model

By Pricing Model

By Security Model

By Availability

By Durability

15

What Do “Cloud” DBs Have in Common?

- Runs on infrastructure not managed by users
- Users = Application developer, database administrator (“DBA”)

- Access and manage databases through APIs
- Users don’t get access to binaries
- Users don’t get to decide on the version (more or less)
- Certainly no access to resources (machines, storage) actually running the databases

- Pay as much as you “use”
- But definition of “use” varies

Why use / make a “cloud”
database?

16

17

Why use / make anything
new in infrastructure?

The Why

- Users: have hard and undifferentiated problems
- Undifferentiated = Not unique to user’s business

- Providers: solve hard and undifferentiated problems better,
cheaper

18

Hard, Undifferentiated Problems for Database User

- Database Users
- Application developer, database administrator (“DBA”)
- Differentiated Problems: application logic, schema, access policy

- Hard, undifferentiated problems?
- Provisioning: get me a database to (develop, test, stage, go live) with
- Security: everyone with access to the data is suppose to

– Policy is differentiated. Mechanism is not.

- Durability: data, once written, can be read
- Availability: everyone who is suppose to have access to the data, can get to it
- Performance: data loads and queries finish quickly (enough)

– Schema and query optimization is differentiated. Having the optimal settings/hardware is not

- Scaling: data size, concurrent users, complexity of queries

So hard, and so
Undifferentiated
That…
There are many
books on how to
keep databases
up and running

19

20

Solving Hard Problems Cheaper: Economy of Scale

- Attract talent with the scale
of the problem (remove the
pain of DB admin for
millions)

- Pay them well because the
scale of the business

Standardized
Environment &

Tooling

Database &
Operational

Expertise

Large Pool of
Shared Resources

- Opinionated about the
hardware, network
topology, OS, library
versions, etc.

- Automate and self-serve
through standardized
tooling

- Higher tolerance for peaks,
lulls, and failures of
individual customers

Cloud DB = DB + Deploy on “Cloud” ?

A decade in
cloud databases

21

A Decade of Cloud Databases

22

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

A Decade of Cloud Databases + 2020

23

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

2020

Managed
On-prem…..

- RDS@AWS
Outpost

- Azure Stack

24

2009 - 2013: Stick a DB on the Cloud

- 2009: AWS Relational Database Service (RDS)
- Deploy MySQL on the cloud.
- Provide a web console and command-line tool (aws cli) to provision & manage the database instance
- Single Availability Zone

Region: an independent failure domain

Example: AWS has 22 regions, more coming

Primer on Infrastructure

25

24

Regions, AZs, and Data Centers

- A single region has multiple availability zones
- AZs are connected with low latency links (fiber); Isolated from one another for most faults

- E.g. power, networking, software upgrades
- Each AZ has multiple DCs (discrete physical building housing data halls, with rows of racks)

26

Region

AZ1 AZ2 AZ3

Data Center 1
(DC1)

Data Center 3
(DC3)

Data Center 5
(DC5)

Data Center 2
(DC2)

Data Center 4
(DC4)

Data Center 6
(DC6)

27

2009 - 2013: Stick a DB on the Cloud

- 2009: AWS Relational Database Service (RDS)
- Deploy MySQL on the cloud.
- Provide a web console and command-line tool (aws cli) to provision & manage the database instance
- Single Availability Zone

- Did it solve problems better?
- Provisioning: Simple and cheap to get started. Didn’t need to ask a DBA and get approval (typically)
- Security: Probably harder because cloud is not to be trusted.

– “Where’s your data?” “Is it colocated with someone else’s data?”
- Durability: Still need to do your own backup/recovery.
- Availability: Single AZ. So not that great.

– Generally even today, cloud providers availability SLA for instances are per region (ec2: 99.99%)
- Performance: On your own. Choose from a set of RDS instance types
- Scalability: On your own, but you do have more resources.

- Cheaper?

28

2009 - 2013: Stick a DB on the Cloud

- 2009: AWS Relational Database Service (RDS)

- 2010: RDS announces Multi-AZ support with synchronous replicas
- Automatically fail over
- Optional

- Solving problems better?
- In addition to better provisioning & scaling experience….
- Availability: Don’t have the SLA history, but presumably this is better!

29

2009 - 2013: Stick a DB on the Cloud

- 2009: AWS Relational Database Service (RDS)

- 2010: RDS announces Multi-AZ support with synchronous replicas
- Automatically fail over
- Optional

- 2010: SQL Azure
- A sign of market acceptance “cloud db” is now “a thing”

2013: AWS Redshift

At a glance:

- Data warehouse.
- ParAccel bolted onto AWS

What’s the big deal?

- Focus on “no management” database
- Pricing (especially low upfront cost)

- “... most data in an enterprise is “dark data”: data that is collected but not easily analyzed.”
- “Our goal with Amazon Redshift was not to compete with other data warehousing engines, but to compete with

non-consumption.“ (1)

(1) “Amazon Redshift and the Case for Simple Data Warehouses”, SIGMOD 2015

30

Redshift: Solving the Hard Problems?

- Provisioning: create a cluster by choosing node type & #
- Disruptively simple for its time

31

Redshift: Solving the Hard Problems?

- Provisioning: create a cluster by choosing node type & #
- Disruptively simple for its time

- Security: data encryption @ rest and in transit. Integrated with IAM
- Durability: automated backup, restore, patching, failure detection, and repair

- Snapshot automation: most frequently at 1hr, least frequently at 24hr
- Availability

- 99.9%
- Performance

- Goal was to minimize tuning. Primary decision being cluster size & node type
- However, column compression type, sort and distribution model can still be impactful.

- https://fivetran.com/blog/warehouse-benchmark

- Scalability: enable cluster resizing through management console
- Some resizing (adding nodes) has short downtime (~5min)
- Others (changing node types) can have very long downtimes (1+ days)

32

https://fivetran.com/blog/warehouse-benchmark

33

2009 - 2013: Stick a DB on the Cloud

- 2009: AWS Relational Database Service (RDS)

- 2010: RDS announces Multi-AZ support with synchronous replicas
- Automatically fail over
- Optional

- 2010: SQL Azure
- A sign of market acceptance “cloud db” is now “a thing”

- 2013: AWS Redshift
- The most “management free” for the time
- Competitive pricing vs performance for the time…
- But things changed fast….

A Decade of Cloud Databases

34

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

Traditional Architecture Meets New Reality

Traditional architectures: handful of commercial hardware, co-located with very low network latency

New Reality: At scale, with commodity hardware, everything fails. Constantly.

- Compute instances fail, or gets shut down (to scale up/down, to save cost).
- → Instance coupled with storage → instance fails = storage fails
- → Decouple compute from storage

- Storage fails
- → Replication is a requirement... through network (potentially high latency network)

- Network fails
- → Replication traffic stalls 35

Storage Storage Storage Storage

36

2014: Amazon Aurora

At a Glance
- OLTP, ACID
- Supports SQL

Commercial Success
“Since Aurora's original release, it has been the fastest-growing service in the history of AWS.”

-- Werner Vogel (CTO, AWS)

Research Recognition
- SIGMOD ‘17 "Amazon Aurora: Design Considerations for High Throughput Cloud"
- SIGMOD ‘18 "Amazon Aurora: On Avoiding Distributed Consensus for I/Os, Commits, and Membership

Changes,"
- SIGMOD Systems Award 2019

“For fundamentally redesigning relational database storage for cloud environments”

https://www.allthingsdistributed.com/files/p1041-verbitski.pdf
https://dl.acm.org/citation.cfm?id=3183713.3196937
https://dl.acm.org/citation.cfm?id=3183713.3196937

Cloud Databases: Network is the new Bottleneck

- High availability → Multi-AZ deployment → replication traffic through high latency network
- Scaling in data size / concurrent transactions → more to replicate

Source: "Amazon Aurora: Design Considerations for High Throughput Cloud" in 2017 SIGMOD

Source: "Amazon Aurora: Design Considerations for High Throughput Cloud" in 2017 SIGMOD

37

Can we get away with only
replicating log?

https://www.allthingsdistributed.com/files/p1041-verbitski.pdf
https://www.allthingsdistributed.com/files/p1041-verbitski.pdf

Aurora: Shared Log/Storage Service + Log is Database

38

Log/Storage
multi-tenant service

Foreground (sync):
- Receives redo log
- Writes to disk & ack

Background (async):
- Identify & fill gaps in log
- Materialize new pages
- Backs up to S3

S3 for continuous
backup

Storage

Aurora: A Closer Look @ Key Design Decisions

39

- Centralized log/storage server → Redo-log processing pushed
to the storage layer

- The only communication between database tier (blue) and storage
tier are redo logs

- I/O per transaction 7.7x fewer than mirrored MySQL

- 6 replicas spread across 3 AZs → ⅔ quorem
- Tolerate 1AZ+1: not possible with 4 replicas

- Storage is striped to be 10GiB each
- High availability → MTTF(ailure) >> MTTR(ecovery)
- 10GiB can be repaired in 10s over 10Gbps network

- Minimize latency for foreground processes (writes)
- Background: e.g. garbage collection
- Long background queue will cause foreground to pause
- Dealt with the same way as losing a replica
- → High performance

Aurora: Performance

- Writes and reads scale linearly
- 5x MySQL 5.7

- Scales better with database size
- On 100G DB 67x faster for writes,
- On 1TB DB 34x faster

- Scaling with concurrent connections

- Replica lag: 2.6 - 5.3ms
- (compare to MySQL 1,000 - 300,000ms)

40

Aurora: Solving Hard Problems Better & Cheaper?

- Durability
- Continuously backed up to S3 - automatic
- No need for creating snapshots
- Point-in-time recovery

- Availability
- 99.99% for multi-AZ deployments

- 52.6 minutes / year
- 99.9% for single-AZ
- Recent: zero-downtime upgrades ← more on this later

- Performance: recall previous slide

- Cost? Not sure

41

Aurora vs. Snowflake

42

Storage
SQL

Transaction Mgmt
Multi-tenant
Control Plane

Caching

Storage
Services

Txn Processing
Caching

Txn Processing
Caching

Txn Processing

Snowflake Computing - 2012 Founding, 2015 GA

- Data warehouse

- Most well-known for the “separate storage from compute” architecture
- Note: query parsing & optimization has been moved to multi-tenant, cloud services layer (unlike Aurora)
- Storage layer: S3 (and later, Azure Blob storage)

- Important but under-appreciated innovations
- Provisioning
- Security
- Durability
- Developer programmability

43

Snowflake: Closer Look @ Architecture

- Why S3: Value durability & availability over all else
- Pros: strong durability (99.9999999%) and availability (99.99999%)
- Cons: Access latency, performance variance, CPU overhead on connection, PUT/DELETE only on whole

objects (GET supports partial)

44

- Design
- Tables horizontally partitioned into files (equivalent

to traditional database blocks/pages)
- GET supports partial retrieval: queries can get the

header + part of file they’re interested
- Local cache: table files, LRU replacement

- S3 stores temp queries results that do not
fit into local cache

- Shared amongst workers using consistent
hashing

- File stealing: node can steal files from another slow
node, retrieve directly from S3

Snowflake: Emerging Properties of Shared Storage

- Instant scaling
- New virtual warehouses creation is instant, regardless of the size of database

- Performance isolation
- Different workloads on different virtual warehouses

45

- Data sharing
- Virtual warehouse can query over different

databases
- Data mart use case: sharing and selling of data

Snowflake: Provisioning

- T-shirt sizing of clusters

46

Snowflake: Security

- Encryption: automatic with a hierarchy of keys

- Automatic key rotation: 30 days (only one offering this?)

- Key retirement & re-keying
- Optional. Rekey after 1 years
- No downtime

- Tri-secret
- Account master key = client-provided + Snowflake managed
- Client responsible for key availability

- VPS: Virtual Private Snowflake
- Nothing is shared, not even cloud services layer
- E.g. metadata, query parsing/optimization, etc.

47

Snowflake: Time Travel and Fail Safe

- Immutable data structures allow for time travel queries
- 1 - 90 days time travel (90 days is enterprise)

- Failsafe: for DR. No query. Just restore

- Automatically available: no need to turn anything “on”

48

SELECT * FROM my_table
AT(TIMESTAMP => ’Mon, 01 May 2015 16:20:00 -0700’::timestamp);

SELECT * FROM my_table AT(OFFSET => -60*5); -- 5 min ago

SELECT * FROM my_table BEFORE(STATEMENT => ’8e5d0ca9-005e-44e6-b858-a8f5b37c5726’);

Snowflake: Availability

- 99.9% for enterprise client
https://support.snowflake.net/s/question/0D50Z000098T39RSAS/what-sla-availability-does-snowflake-guarantee

49

- Online upgrades
- Multiple versions running at once. Metadata and

cache is shared.
- Pro: progressive rollout
- Con: metadata storage and data formats always

backward compatible
- Upgrade once a week -- this is a big deal

- The whole process likely starts with
- a single-region 1% canary,
- → 10% of a region,
- → 50% → 90%,
- then other regions.

https://support.snowflake.net/s/question/0D50Z000098T39RSAS/what-sla-availability-does-snowflake-guarantee

Snowflake: Developer Programmability

- Semi-structured data
- VARIANT type. ‘Schema-later” approach
- ETL (extract, transform, and load) becomes ELT (extract, load, and transform)
- Without losing performance

50

Snowflake: Solving Hard Problems Better & Cheaper?

- Provisioning: easy T-shirt sizing

- Security: automatic key rotation, optional key retirement

- Durability: automatic backup with time-travel queries

- Availability: 99.9%, online upgrades

- Not as good as Aurora, but sufficient for data warehouse, and not bad for a company that’s not been
operating for very long

- Performance: existing benchmarks show Snowflake beating BigQuery, Redshift, etc. on TPC-DS

- But it’s highly dependent on configuration and how much you’re willing to pay

- Scalability: resize warehouse up and own anytime

- Programmability: semi-structured data support with good performance

51

Online Upgrades - Challenges

- Functional, performance, concurrency regressions
- Version compatibility when there’s a protocol change

- Can v1 and v2 co-exist?
- Can v1 read what’s written by v2? Vice versa?
- Is rollback safe? (Deploy will fail at some point)

- Version compatibility for the database
- Metadata format, data format
- Can v1 and v2 co-exist?
- Is rollback safe?

- Database compute:
- cache is important for performance
- How to grade without impacting performance?

52

Online Upgrades - Typical Stages

53

Build Unit Tests Integration +
End-to-end Pre-Prod (1 box)

Prod
(1 box Region 1)

Testing Environments

Pre-Prod (Full)

Prod
(30% - 90% -> 99%

Region 1)

Prod
(99% Region 2)

Prod
(99% Region 3, 4,

...)

Prod
(100% All Regions)

Pre-Production: One-box Testing

- Send traffic to both versions -- important to have good canary workloads that
simulate production

- Discover compatibility issues with one-box
- Roll to whole fleet for performance, concurrency testing. With sufficient bake time.

54

Production Rollout

- Region 1: pick a low traffic region to minimize impact if something goes wrong.
- Roll AZ by AZ
- 1 box in AZ1; bake; 30 - 90- 99 in all AZ1
- Go to rest of Region 1.

- Region 2: pick a high traffic region with high variety of user requests. More opportunity to
discover functional/performance issues.

- Roll out in percentages.

- Regions 3,4,5: Can roll out faster
- All regions

Bake time between changes

Always be ready to roll back (rollback testing is part of testing, as well) 55

Rollout Tradeoffs: Safety vs. Speed

- Sufficient bake-time to not compromise safety

- Fast enough that features and fixes get to users quickly
- Especially if you have to patch a security vulnerability

- Warmup database computes to prevent user-perceivable query performance drop

56

A Decade of Cloud Databases

57

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

General Problem: Over/Under Provisioning

- Workload is often not constant
- Source: re:Invent 2018

- Utilization % = Workload / Computing Resource
- If computing resource is constant but workload varies…..
- Either utilization is too low (often the case) or too high (crash → lose sales/ads/revenue)

- Cloud DBs improved this problem by making macro-adjustments possible
- E.g. you can plan for change in computing resource knowing your workload pattern
- Not very accurate or fine grained. Still a lot of waste

58

Snowflake: Multi-cluster Virtual Warehouse

Before Multi-cluster:
- Snowflake Virtual Warehouse can be set to auto-suspend.
- Implication: the first query after suspend, and restart, will be very slow.

With Multi-cluster:
- Virtual warehouse with min/max # clusters (between 1-10)
- 1 minute intervals to determine whether a cluster should be shut down

- 2-3 successive checks of idleness will cause shutdown (in standard mode)
- Existing running warehouses continue to serve queries
- Snowflake calls this “scaling out” for concurrency

- Whereas larger virtual warehouse is “scaling up”

59

Aurora “Serverless”

- GA 2018

- Different provisioning model
- Aurora “provisioned”: you pick the database instance type.
- Aurora “serverless”: you specify the min and max Aurora Capacity Unit (ACU)

- You specify when you want compute to be paused: e.g. after X minutes of inactivty
- Aurora will scale up and down the instances for you

- Storage scales from 10GB - 64TB
- Warm pool: reduces start up cost

- Good for: spiky workloads

- Criticism: This is not serverless
- What is serverless anyway? Next

60

A Decade of Cloud Databases

61

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

Serverless Database

What is serverless?
- An extreme form of “pay for as much as you use”
- No provisioning of servers → No server to manage or scale up / down.
- Serverless functions: AWS Lambda, lots of startups building ecosystem
- The definition has been broadening, some even includes SaaS in general

What is serverless database?
- No provisioning, not even in T-shirt sizes, or min-max scaling. Only send queries.
- API to execute query

- … But you don’t really know where it is evaluated…
- It is very likely that from query to query, they will not run on the same computing resource
- May not even on the same cloud provider (Fauna deploys across GCP and AWS)...

Problem?
- Security and compliance can be a pretty big hurdle. May take both technical and regulatory innovations to

overcome

62

BigQuery

- Data warehouse
- E.g. Limit: 100 concurrent interactive queries (not fetched from cache, or errors)

- Language:
- “BigQuery SQL” -- now “LegacySQL” (e.g. ARRAY vs REPEATED, INT64 vs INTEGER)
- “Standard SQL” -- SQL 2011

- Data model: They encouraged denormalized schema → big wide tables.
- In order to keep some structure, it supports nested column types (RECORD data type)

- E.g. book table has a nested column author, which has author_id, name, date-of-birth, etc.
- Obvious problem: what if you need author information somewhere else?

- Almost document-like in that case

- Data can be anywhere, external to Google cloud
- Determined at the time of creation of dataset. It cannot be changed afterwards.
- All tables from a query must be stored in the same location (this is very different from Snowflake)
- Even copying table must go into the same location

63

BigQuery: Solving Hard Problems Better, Cheaper?

- Provisioning: problem gone. No need.
- Security: Standard, encryption @ rest and in transit
- Durability: 7-day history of changes, with point-in-time snapshot queries
- Availability: 99.9%
- Performance:

- Latest fivetran benchmark shows it within 2x of Snowflake and Redshift, on 100GB and 1TB TPC-DS
- Scaling: No operations needed
- Cheaper?

- Data storage: $0.02/GB active (first 10GB free/month), 50% for long term (not edited for 90 days)
- Queries: on-demand is by “bytes processed”. $5/TB (1st TB free)
- Possible surprises:

- Even if you set a LIMIT on the results, you’re still charged by data processed
- Cancelling a job may cause full charge
- Partitioning and clustering is recommended as a method to reduce cost

- Flat rate pricing was introduced for query cost (Currently in Alpha stage)
- Monthly: $10k/mo for 500 “slots” / Annual $8500/mo for 500 slots

64

https://www.google.com/search?q=performance+big+query+snowflake&rlz=1C5CHFA_enUS760US760&oq=performance+big+query+snowflake&aqs=chrome..69i57j0l5.4875j1j4&sourceid=chrome&ie=UTF-8

DynamoDB

- Key-value store
- Provisioning

- Unit: 1 table
- Throughput capacity: Read Capacity Unit (RCU), Write Capacity Unit (WCU)

- 1 RCU → 1 strongly consistent read/sec or 2 eventually consistent read/sec, for item < 4kB in size
- 1 WCU → 1 write / sec, item < 1kb in size
- Burst capacity: can retain up to 5 minutes of unused read/write capacity for burst
- Can be autoscaled with min-max

- Security: standard, Identity management integrated into AWS IAM
- Durability: on-demand. With point-in-time recovery

- Consistency: eventually and strongly consistent reads (2018, not default, 2x more expensive),
- Limitations: Each transaction include up to 10 unique items, or up to 4MB of data, in single region

- Global tables optional. Default is regional
- Availability: 99.999% global, 99.99% regional

65

FaunaDB - 2016 GA, 2019 Managed Cloud

- Globally distributed, ACID support
- “Calvin: Fast Distributed Transactions for Partitioned Database Systems” SIGMOD2012
- It relies on creating a total ordering of transactions up front before execution

- Each replica then executes independently. No coordination.

- Provisioning, Security: fairly standard

- Durability: claims strict serializability with externally consistent transactions
- Jepsen report: rigorous test of distributed systems to determine empirically the consistency model.

- Availability: no SLA except for enterprise custom pricing, but….
- Multi-cloud: even a single cluster can be distributed across different cloud providers

- Developer Programmability
- Document data model
- GraphQL as an interface

66

A Decade of Cloud Databases

67

Take existing DB, Operate on Cloud
- Build some tool around deployment

automation, management
- E.g. Amazon RDS first available with MySQL,

SQL Azure

Serverless
- Google BigQuery (2011)
- DynamoDB (2012)

Auto-Scaling
- Snowflake multi-cluster

warehouse
- Aurora Serverless

Globally Distributed
- Spanner used internally @

Google, paper published

Separate Storage from
Compute

- Aurora (OLTP), Snowflake (OLAP)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Globally Distributed
- Cloud Spanner on GCP
- FaunaDB
- CosmosDB

Serverless
- FaunaDB
- MongoDB Atlas

Spanner

At a Glance

- Globally distributed, ACID, OLTP

- Internally used originally, by Ads. Now: payment, Gmail, etc.

- 2017: became part of Cloud Spanner and publically available

- Built on BigTable. A replacement storage engine is being developed

- Key enabler: timestamping using TrueTime API, directly exposing clock uncertainty

- Timestamp used to create serializability

- Spanner slows down when uncertainty is large

- Applications can specify constraints controlling where (which data center) to place the data, to
control latency to user

68

Spanner: Solving Hard Problems Better & Cheaper?

- Provisioning:
- Specify node count. 2TB storage/node.
- Can add nodes, and sometimes, can remove….

- Cannot remove nodes is data < 2TB, or, Spanner has created a large number of splits for your
instance data and unable to manage splits after removing nodes.

- No “suspend” mode. Nodes are dedicated resources.

- Security: standard, IAM, encryption @ rest & in transit

- Durability:
- 2018: Import/Export functionality of database into Avro format

- Availability: 99.999% for multi-region. 99.99% single region
- An extra 9 than Aurora

- Pricing: You pay for global scale
- Compute: $0.9-$1.26/hr regional, $3-$9/hr multi-region
- Storage: $0.3-$0.34/gb regional, $0.5-$0.9/gb multi-region
- Network: Egress between regions $0.01/GB

- Inter-continental egress: at internet egress rate -- $0.11 - $0.23/GB 69

CosmosDB

At a glance:

- Multimodal (relational, document, json, etc.)
- Different consistency levels. Administrator sets default, overridable by clients

- OLTP. Plug into Spark to do analytics

70

CosmosDB: Comprehensive SLAs

- Durability
- Manual failover: takes 5 minutes
- Monthly Consistency Attainment SLA: 99.99%

- Monthly Consistency Attainment % = 100% - Average Consistency Violation Rate
- Average Consistency Violation Rate = Consistency violation / hour in billing month
- Consistency Violation Rate = Successful requests that could not be delivered when performing the

consistency guarantees / total # requests
- Availability: 99.999% multi-region, 99.99% single region.

- Add new region: 60 minutes
- Performance:

- Monthly Throughput %: 99.99%
- Monthly throughput % = 100% - Average Error Rate
- Error rate = Throughput Failed Requests / Total Requests per hour
- Throughput Failed Requests = Rate-limited requests results in error code.

- p99 latency attainment %: 99.99%
- P99 latency attainment = 100% - Average Excessive Latency Rate
- Excessive Latency Rate: @ one-hour intervals # successful requests resulted in p99 latency >=

10ms for read or 10ms for write. 71

Trends and Outlook

72

Historical Trends

Transition away from explicitly determining compute resource, toward using abstractions

- Explicitly specifying type of compute/storage → abstraction
- E.g. “Aurora Compute Unit”, Snowflake “Credits”, BigQuery “Slots”

- Explicitly specifying size of compute → a range
- Snowflake multi-cluster, Aurora serverless
- BigQuery, DynamoDB have always been this way

Transition away from having to do work for the right thing to happen, toward having to do work to get the
wrong thing to happen

- Multi-zone is optional → multi-zone by default
- Maybe even global distribution by default one day?

- Backup-recovery optional → backup-recovery automatic, fine-grained point-in-time
- User-managed keys → service-managed keys, rotation, and retirement
- Eventual consistency → ACID

73

What Does the Future Hold?

- 2009 - 2019: Massive advancements in “management-free” databases
- Improvements in provisioning ease, durability, availability, performance
- Much better up-front cost, and maybe overall cost effectiveness

- 2019-2020
- Hybrid cloud vs on-prem

- AWS Outpost: AWS on premise, managed by AWS. Heavy upfront cost (min $118,000)
- Azure Stack: your own “certified” hardware. Managed by users, with MSFT support
- GCP option coming?

- 2021+?
- Even less management

- Move away from ability to do anything wrong… like last slide
- Make databases better for developer

- Programming model: Reactive? Databases that natively support push?
- Upgrade… schema management between DB and app still a pain
- Debuggability (like distributed tracing)

- More functionality?
- ML/AI integration?

74

Thank You.

75

