
 ☕DATA 514 Section 8/9 Worksheet

This doc outlines the running Employees/Regist example, as well as how it should be
implemented in the various NoSQL options we’ll be discussing. We will add a new table to
the running example, ParkingTickets.

As a reminder, these are the schema and example values. Note that Frances doesn’t have
a car; Magda has two, and nobody employed at UW owns the Aston Martin.

Employees
UserID Name Job ParkingPermit

123 Leslie TA C15

345 Frances TA NULL

567 Magda Prof E18

789 Quinn Prof NULL

Regist
UserID Car LicensePlate

123 Charger 123 AAA

567 Civic MMM 1234

567 Ferrari MMM 5678

789 Picklemobile PIK 1024

007 Aston Martin XYZ 0007

ParkingTickets
LicensePlate ParkingL

ot
Date Amount

MMM 1234 C15 2022-11-20 $10

MMM 1234 E01 2022-11-21 $15

PIK 1024 E18 2022-11-22 $10

XYZ 0007 C19 2022-11-01 $10

MMM 1234 E01 2022-11-22 $20

You may also refer to the following ER diagram, which was presented in section. While this
diagram includes an additional entity (Salaries) it also accurately represents how the tables
would be represented in an ER diagram.

Application / Use-Cases

This is a parking enforcement app which supports the following methods:

1. [infrequent] Listing the permitted parking lot and per-car tickets incurred by each user
o method sig is uid -> [{car1, [{tix1}, {tix2}]}, {car2, []}

]
2. [frequent] Counting how many tickets a license plate has ever had

o method sig is plate -> int or it can be plate -> [{tix1}, {tix2}
]

o We use the output of this method to determine the citation amount.
3. [multiple times / sec] Determining whether a plate is allowed to be a specific lot

o method sig is (plate, lot) -> true/false or it can be plate ->
lot

Because NoSQL design is so intimately tied to its use-cases, there are three decisions which
will need to be made for each system:

● Method 2: should we store a count of the tickets, or the actual tickets themselves?
Note that the latter introduces the possibility of data anomalies (which may be
deemed acceptable)

● Method 3: What key should we use to track registration and permitting, and how do
we represent an existing permit?

● How should we handle cars without owners (the Aston Martin) or employees
without cars (Frances)? Is data loss acceptable or not?

Question 1: Relational Databases

Write a SQL query to complete each of the proposed methods, assuming the provided
tables.

1. For a given userid, select the per-car permitted parking lot and tickets issued. (Sort
by the license plate.)

2. For a given license plate, return the number of tickets issued.
3. For a given license plate, return the permitted lot

What indexes would you consider for this set up?

Question 2: Key-Value Data Store

Describe how you would implement the Employees/Regist application using a key-value
data store. Your description should contain enough detail that we understand the key (or
keys if you have multiple “types” of keys), any structure that you introduce into the key, and
the structure of a key’s value.

Question 3: Document Store

Describe how you would implement the Employees/Regist application using a document
store database. Your description should contain enough detail that we understand all the
types in your document.

Question 4: Wide Column Database

Describe how you would implement the Payroll/Regist application using a wide column
database. Your description should contain enough detail that we understand the keyspace
(eg, do you have different “types” of keys?), the column families and their contained
columns, as well as whether you use explicit timestamps.

Question 5: Graph Database

Describe how you would implement the Payroll/Regist application using a graph database.
Your description should include enough detail that we understand the relationships between
the data, and you should provide a sample of how you might execute the suggested queries.

