
Author: Hannah C. Tang (hctang@cs)
Last Update: May 2024
Licensing: CC BY-SA 4.0

Introduction
This doc outlines the running Payroll/Regist example we’ve been using all quarter, as well as
how it should be implemented in the various NoSQL options we’ll be discussing. We will add a
new table to the running example, ParkingTickets.

As a reminder, this is the schema and we've included some example values. Note that Frances
doesn’t have a car; Magda has two, and nobody employed at UW owns the Aston Martin.

Payroll

UserID Name Job ParkingPermit SalaryHistory

123 Leslie TA C15 50k

345 Frances TA NULL 60k, 50k

567 Magda Prof E18 120k, 110k, 100k

789 Quinn Prof NULL 100k

Regist

UserID Car LicensePlate

123 Charger 123 AAA

567 Civic MMM 1234

567 Ferrari MMM 5678

789 Picklemobile PIK 1024

007 Aston Martin XYZ 0007

ParkingTickets

LicensePlate ParkingLot Date Amount

MMM 1234 C15 2022-11-20 $10

MMM 1234 E01 2022-11-21 $15

PIK 1024 E18 2022-11-22 $10

XYZ 0007 C19 2022-11-01 $10

https://creativecommons.org/licenses/by-sa/4.0/

MMM 1234 E01 2022-11-22 $20

Application
This is a parking enforcement app which supports the following methods:

1. [infrequent] Listing the permitted parkling lot and per-car tickets incurred by each user
○ method sig is uid -> [{car1, [{tix1}, {tix2}]}, {car2, []}]

2. [frequent] Counting how many tickets a license plate has ever had
○ method sig is plate -> int or it can be plate -> [{tix1}, {tix2}]
○ We use the output of this method to determine the citation amount.

3. [multiple times / sec] Determining whether a plate is allowed to be a specific lot
○ method sig is (plate, lot) -> true/false or it can be plate -> lot

Because NoSQL design is so intimately tied to its use-cases, there are three decisions which
will need to be made for each system:

● Method 3: should we store the license plate and permitted lot as the key, with the value
being true and the expectation that values which don’t exist should default to false?

● Method 2: should we store a count of the tickets, or the actual tickets themselves? Note
that the latter introduces the possibility of data anomalies (which may be deemed
acceptable)

● How should we handle cars without owners (the Aston Martin) or employees without
cars (Frances)? Is data loss acceptable or not?

Key/Value Store
Method 3 should just have the key be(plate, lot); we can represent false implicitly by not
having a row. So this keytype would have 3 k/v pairs (there are only 2 parking permits, but one
of them is allowed to have their cars, plural, share a single permit).

Key Value

123 AAA:C15 true

MMM 1234:E18 true

MMM 5678:E18 true

You could alternatively have the key and value be plate->lot, but that pushes more logic into
the application (to verify that the parked lot equals the permitted lot):

Key Value

123 AAA C15

MMM 1234 E18

MMM 5678 E18

Method 2 is more elegantly implemented with a count rather than a list of tickets (less data to
transfer/store):

Key Value

MMM 1234 3

PIK 1024 1

XYZ 0007 1

But it’s possible to store a list of entire tickets, too. Personally, I prefer to keep it as a count and
use the data stored for method 1 as the “canonical copy” of all ticket information.

Method 1 depends on how you represent orphaned tickets (ie, tickets incurred by cars not
owned by UW employees); if we want to keep this entirely within a K/V store, then we’d have to
introduce a (possibly very large) key to hold all the orphans:

Key Value

123 [C15]

345 [NOPERMIT]

567 [E01, {magda’s civic, [its 3 tickets]]}, {magda’s ferrari, []}]

789 [NOPERMIT, {car:picklemobile, []}]

UNOWNED [NOPERMIT, {car:aston martin, [{parkinglot: C19, date: 2022-11-01,
amount:$10}]}]

Personally, I’d use a different DB; I'd likely choose a RDMS like SQLServer. This allows me to
store the many-to-many data without introducing anomalies; there would be very little
performance penalty since method 1 is invoked so rarely, and tickets are issued merely
“frequently”.

Document Store
Note that we artificially constrain students to designing a single document, which necessarily
means that there will be data loss: if Payroll is contained in Regist, we’ll lose car-less Frances; if
Regist is contained in Payroll, we’ll lose owner-less Aston Martin. We could hack around this by
having a special key to contain “orphans” (eg, “NO_OWNER” -> {Frances}), but in the real

world this is probably best solved by having multiple top-level datasets: Payroll, Regist, and a
pre-computed join of the two tables. The rest of this section assumes we implement the
application using a single document.

Since the two most common operations are keyed off of license plate, we select Regist as the
top-level dataset and license plate as its (hopefully indexed) key:

[
 {“plate”: “123 AAA”,
 “car”: “Charger”,
 “userid”: 123,
 “payroll”: {“name”: “Leslie”, “job”: “TA”, “parkingpermit”: “C15”},
 “tickets”: []
 },
 {“plate”: “MMM 1234”,
 “car”: “Civic”,
 “userid”: 567,
 “payroll”: {“name”: “Magda”, “job”: “Prof”, “parkingpermit”: “E18”},
 “tickets”: [
 {“parkinglot”: “C15”, “date”: “2022-11-20”, “amount”: 10},
 {“parkinglot”: “E01”, “date”: “2022-11-21”, “amount”: 15},
 {“parkinglot”: “E01”, “date”: “2022-11-22”, “amount”: 20}
]
 },
 {“plate”: “MMM 5678”,
 “car”: “Ferrari”,
 “userid”: 567,
 “payroll”: {“name”: “Magda”, “job”: “Prof”, “parkingpermit”: “E18”},
 “tickets”: []
 },
 {“plate”: “PIK 1024”,
 “car”: “Picklemobile”,
 “userid”: 789,
 “tickets”: [
 {“parkinglot”: “E18”, “date”: “2022-11-22”, “amount”: 10}
]
 },
 {“plate”: “XYZ 0007”,
 “car”: “Aston Martin”,
 “tickets”: [
 {“parkinglot”: “C19”, “date”: “2022-11-01”, “amount”: 10}
]
 },
 {“plate”: “CAR LESS”,
 “payroll”: [{“userid”: 345, “name”: “Frances”, “job”: “TA”}]
 }
]

Method 3 is implemented as a plate lookup on the above dataset.

If you’re willing to create multiple datasets, this app could benefit from a pre-computed
(plate, lot)->boolean dataset; users change their license plate or parking permits
maybe once a month (so the likelihood of anomalies are low), and the smaller dataset + slightly
less computation could speed up queries.

Method 2 is also a plate lookup. Because it is less frequently called and also because its
underlying data changes more frequently than method 3’s, the argument for precomputing is
less compelling.

Method 1 should be a full scan of the entire document to build a userid-keyed dictionary, since
the document is currently keyed on the license plate.

Graph
We will have 3 types of nodes: EmployedPerson, RegisteredCar, and ParkingTicket.
They will be connected by 2 types of edges: Registers (linking EmployedPerson's with
RegisteredCar's) and Incurs (linking RegisteredCar's with ParkingTicket's). An
example graph might look like this:

All three methods would be implemented by specifying a graph fragment to match the above
graph against.

Method 3 is implemented as a match on the specified plate and lot. For example, if we
wanted to find whether LicensePlate=123 is allowed to park in Lot=C19, I would search for
a graph fragment where a Person node would have Permit=C19 and is connected via a

Registers edge to a RegisteredCar node with LicensePlate=123. Using the above
example graph, this fragment would match Leslie and her Camry but not Magda and her Civic

Method 2 is implemented similarly. If the query language supports it, I would query for the
number of matches rather than getting the actual matches and then performing the count
manually. Note how this example fragment will match two tickets: the Camry's $10 ticket and its
$15 ticket.

Method 3 likely requires two different graph fragments. The first returns cars that have incurred
tickets (in this example, it would return Magda's Ferrari):

and a second fragment would query for cars that don't have tickets.

Wide Column
There are two access patterns: one for method 3 (to optimize lookup times) and one for
methods 1 and 2 (since performance is not as critical), which indicates a need for two column
families.

There are two possible schemas that would work for the rowkey.

Solution 1: Inspired by Key/Value
Because the Payroll/Registry/ParkingTicket application is so straightforward, it’s possible to
reuse the Key/Value schema. We would need to add a prefix to each rowkey, indicating the
key’s “type”:

● (plate, lot) (type=l) (mnemonic is “parking Lot”)
● plate (type=c) (mnemonic is “Count”)
● userid (type=u) (mnemonic is “User”)

Since there is exactly one value for each rowkey, we can hardcode any column name we want.
For simplicity, we’ll reuse the rowkey prefix as the column name.

 colfam=Lookups colfam=UserInfo

 col=”l” col=”c” col=”u”

l#123 AAA:C15 true

l#MMM 1234:E18 true

l#MMM 5678:E18 true

c#MMM 1234 3

c#PIK 1024 1

c#XYZ 0007 1

u#123 { Leslie’s payroll info, her parking
permit, and empty list of tickets }

u#345 { Frances’ payroll info and empty list
of tickets }

u#567 { Magda’s payroll info, her parking
permit, and 3 tickets}

u#789 { Quinn’s payroll info and single
ticket }

Note that there are no rows which have more than one column; wide column NoSQL databases
handle sparse data elegantly.

Solution 2: Native WideCol
A more “native” wide column schema would notice that method 2 and method 3 are logically
keyed off the same data: the license plate; the difference between the two methods’ signature
was an optimization for when we also knew the parking lot. Since wide column databases give
us more tools to optimize our schema, we can reduce the key “types” to:

● plate (type=p) (mnemonic is “Plate”)
● userid (type=u) (mnemonic is “User”)

We consolidate the (plate, lot)->boolean and plate->count into a single row by
using the parking lot as the column name (as with key/value, the lack of a cell is an implicit
false).

 colfam=Lookups colfam=UserInfo

 col=”C15” col=”E18” col=”c” col=”u”

p#123 AAA true 0

p#MMM 1234 true 3

p#MMM 5678 true 0

p#PIK 1024 1

p#XYZ 0007 1

u#123 { Leslie’s payroll info, her parking
permit, and empty list of tickets }

u#345 { Frances’ payroll info and empty
list of tickets }

u#567 { Magda’s payroll info, her parking
permit, and 3 tickets}

u#789 { Quinn’s payroll info and single
ticket }

	Introduction
	Application
	Key/Value Store
	Document Store
	Graph
	Wide Column
	Solution 1: Inspired by Key/Value
	Solution 2: Native WideCol

