
Homework 7 | NoSQL Design
Updates made to the assignment after its release are highlighted in red.

Objectives: To gain experience with designing schemas in NoSQL systems, and to contrast
these systems with relational schema design.

Due date: Thu, June 5 @ 9pm

Median completion time (24sp): 7 hours

Introduction
Homework Requirements

Data Modelling
Functional Specification

Problem Set
Expected Query Patterns
1. Key-Value Data Store
2. Document Store
3. Wide Column Database - EXTRA CREDIT!
4. Feedback and Reflection

Submission

Introduction
Congratulations! You've been hired at Flightapp, Silicon Valley's hottest unicorn, which sells
tickets to flights that have already departed. Your employers were deeply impressed with your
experience with the July 2015 flights dataset and are excited to have their newhire design a
schema that will ✨WOW!✨ investors and secure their next billion dollars.

To help them choose a schema, they've asked you to write five "one-pagers" describing how to
design Flightapp in the following:

●​ a relational database (eg, Microsoft SQLServer)
●​ a key-value database (eg, AWS DynamoDB)
●​ a document store (eg, Asterix)
●​ a wide column database (eg, Google Cloud Bigtable)
●​ a graph database (eg, Neo4j)

https://en.wikipedia.org/wiki/Unicorn_(finance)

Homework Requirements

Describing a Data Model
For each NoSQL family, we have provided prompts/questions on Gradescope to get you pointed
in the right direction; do them first. These prompts are not required, not worth points, and will
not yield a fully-designed schema; they are, however, enough to guide you approximately
halfway through the design. For the other half, you will provide a few paragraphs of high-level
description and then answer a few questions (which are worth points) that assess your
design's functionality.

The phrase "high level description" means that it is not necessary to give table creation
statements or even to select a specific database management system. While it is tempting to
get into the details of transaction handling or high-performance writes, the goal of this
assignment is to give a brief taste of NoSQL design. The sample solution is only 5 pages long
(including rather large screenshots!) and only describes the rows and columns, plus a short
paragraph about the trickier use-cases (eg, reserve). That’s it. This spec and its associated
documentation is longer than the sample solution!

Some students benefit from being able to create specific key stores/datasets/tables and test
queries on them. For those students, we include a "recommended sandbox"; for students who
do not find sandboxes helpful, you can safely ignore these recommendations. (note: the sample
solution is written without the aid of a sandbox).

Most students find it helpful to see an example problem; to assist, a full solution to the
Payroll/Registry/Tickets system will be posted on June 4th.

Functional Specification
Flightapp consists of the following logical entities. These entities are not necessarily database
tables; it is up to you to decide what entities to store persistently.

●​ Flights / Carriers / Months / Weekdays: modeled the same way as HW 2&3. For this
project you should consider these entities to be read-only. Also, we introduce the
concept of a flight's reservable capacity; if a flight's capacity is n and there are k existing
reservations for it (see below), then its reservable capacity is n-k.​

●​ Users: A user has a username, password, and balance in their account. All usernames
should be unique in the system. A user can have any number of reservations.​

●​ Itineraries: An itinerary is one or more flights connecting an origin city to a destination
city. Unlike HW3, we are not constrained to 3-hop itineraries – there can be an arbitrary
number of intermediate cities – however, we define a direct itinerary as one that does
not have any intermediate cities (in other words, an itinerary consisting of a single flight).​

●​ Reservations: A reservation is similar to an itinerary in that it consists of one or more
flights. Reservations are different in a few key aspects, however:

○​ A reservation is a sequence of flights associated with a specific user
○​ The existence of a reservation decrements the reservable capacity of each of its

component flights. Using the previous example, if flight f has a reservable
capacity of n-k, then only n-k future reservations which include f can be created.
Please note that, unlike the rest of the flight attributes, reservable capacity is not
read-only.

Each reservation can be marked as either be paid or unpaid, and a reservation must
have a unique ID associated with it.

In addition to these logical entities, Flightapp must support the following operations:

●​ create(username, balance, password) - creates a new user account with the specified
parameters. You may refer to lecture 8 for information on hashing.​

●​ search(origin, dest, day_of_month, directonly) - returns itineraries that match a
user's requested parameters. If the user specifies directonly, only direct itineraries
should be returned.​

●​ reserve(fid1, …, fidn) - reserves the specified flights. It should verify:
○​ That all the component flights have remaining reservable capacity
○​ That the user does not have another reservation on the same day

Once these conditions have been verified, reserve() should decrement the flights'
reservable capacity and then assign a unique ID for the reservation.

●​ pay(reservation_id) - decrements the associated user’s balance and marks the
reservation as paid. It is an error if the user attempts to pay for a reservation that they
do not have sufficient funds for.​

●​ list_reservations(user_id) - lists all reservations, both paid and unpaid, for the specified
user.

Problem Set

Expected Query Patterns
Designing a NoSQL schema requires understanding the pattern of reads/writes to its data. You
may make the following assumptions:

●​ Carrier, month, and weekday data will never change.
●​ Flight information will be updated very rarely (eg, once a week). Also, these updates will

happen in bulk; there are no incremental changes to the flight data.
○​ eg, we might replace the entire July 2015 dataset with August 2015’s data.

●​ We expect users to be created rarely (eg, a few times a day), and we expect users to
login at a moderate frequency (eg, a few times an hour).

●​ We expect users to reserve, pay, and view reservations at a moderate frequency (eg, a
few times an hour)

●​ You can assume a moderate number of users (eg, N million, where N is a double-digit
number) registered in your system.

●​ We expect users to search for itineraries quite frequently: several times a second when
aggregated across our full userbase.

1. Relational Database
Present an ER diagram for Flightapp's logical entities. This diagram must be able to support all
of Flightapp's use-cases; notably, if the Flights table is read-only, how might you represent (or
dynamically calculate) a flight's reservable capacity?

Recommended Sandbox: You can use SQLite or your existing Azure SQLServer instance.

2. Key-Value Data Store
Describe how you would implement the flights application using a key-value data store. Your
description should contain enough detail that we understand the key (or keys if you have
multiple “types” of keys), any structure that you introduce into the key, and the structure of a
key’s value.

Recommended Sandbox: If you prefer to instantiate a specific database to test out your ideas or
generate screenshots, we recommend AWS’s DynamoDB; you can download their NoSQL
Workbench for this purpose.

3. Document Store
Describe how you would implement the flights application using a document store database.
Your description should contain enough detail that we understand all the types in your
document.

Recommended Sandbox: If you prefer to instantiate a specific database to test out your ideas or
generate screenshots, we recommend AsterixDB; download their software and start a
single-node instance on your machine.

4. Wide Column Database
Describe how you would implement the flights application using a wide column database. Your
description should contain enough detail that we understand the keyspace (eg, do you have
different “types” of keys?), the column families and their contained columns, as well as whether
you use explicit timestamps.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.html
https://asterixdb.apache.org/

Recommended Sandbox: If you prefer to instantiate a specific database to test out your ideas or
generate screenshots, we recommend Google Cloud Bigtable. Sign up for a free trial for all the
Google Cloud products here, then create a “Cloud Bigtable” instance (depending on where you
are in the UI, Cloud Bigtable is either a “Cloud and Storage” or a “Storage” product); once you
have a Cloud Bigtable instance, create tables/colfamilies/rows using the cbt tool.

5. Graph
Describe how you would implement the flights application using a graph database. Your
description should contain enough detail that we understand all the types of nodes and all the
types of edges, and how they might be used to support Flightapp's operations.

Recommended Sandbox: If you prefer to instantiate a specific database to test out your ideas or
generate screenshots, we recommend Neo4j; you can sign up for a free trial that is good for a
week.

6-9. Reflection and Feedback
Since this is the last homework of the quarter, the reflection encompasses both the current
homework and also course-long observations.

Please note that feedback is required for this assignment; it's been massively retooled for this
quarter, and we appreciate your assistance in assessing the changes.

Submission
Please submit your .pdfs containing the text and all supporting documentation (eg, screenshots,
code snippets), as well as your feedback and reflection answers, to Gradescope.

✨🥂✨ Congratulations! ✨🥂✨ You’ve finished the last homework for DATA 514 :)

https://console.cloud.google.com/freetrial
https://cloud.google.com/bigtable/docs/cbt-overview
https://neo4j.com/

	Homework 7 | NoSQL Design
	Introduction
	Homework Requirements
	Describing a Data Model
	Functional Specification

	Problem Set
	Expected Query Patterns
	
	1. Relational Database
	2. Key-Value Data Store
	3. Document Store
	4. Wide Column Database
	5. Graph
	6-9. Reflection and Feedback

	Submission

