

SeatAssignments
(Flightid, Customerid, seat, seatStatus)

Select seat, seatStatus
From SeatAssignments
Where Flightid = 1 And
seatStatus = 'Free'

Select seat, seatStatus
From SeatAssignments
Where Flightid = 1 And seatStatus = 'Free'

Select seat, seatStatus
From SeatAssignments
Where Flightid = 1 And seatStatus = 'Free'

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• SELECT SUM(money) FROM budget;

•

SELECT inventory FROM products WHERE pid = 1

UPDATE products SET inventory = 0 WHERE pid = 1

SELECT inventory * price FROM products
WHERE pid = 1

•

•

•

•

•

Update SeatAssignments

Set seatStatus = 'Hold', Customerid = 1

WHERE Flightid = 1 and seat = 4 and seatStatus = 'Free’

Update SeatAssignments

Set seatStatus = 'Hold', Customerid = 1

WHERE Flightid = 1 and seat = 4

?

•

•

•

•

[LOCK mode='Exclusive']
Update SeatAssignments

Set seatStatus = 'Hold', Customerid = 1
WHERE Flightid = 1 and seat = 4

and seatStatus = 'Free'

•

•

•

•

•

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
ACID

•

•

•

•

•

•

•

•

•

•

•

•

Select seat, seatStatus

From SeatAssignments

Where Flightid = 1 And seatStatus = 'Free'

Isolation Level Dirty reads Non-repeatable

Reads

Phantoms

Read uncommitted

Read committed

Repeatable Read

Serializable

•

•

•

If a transaction that executes in the absence of any other

transactions (and without system errors) starts with a

database in a consistent state, then the database is also

in a consistent state when the transaction is completed!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Resource Description

RID A row identifier used to lock a single row within a heap.

KEY A row lock within an index used to protect key ranges in

serializable transactions.

PAGE An 8-kilobyte (KB) page in a database, such as data or index

pages.

EXTENT A contiguous group of eight pages, such as data or index

pages.

HoBT A heap or B-tree. A lock protecting a B-tree (index) or the

heap data pages in a table that does not have a clustered

index.

TABLE The entire table, including all data and indexes.

FILE A database file.

APPLICATION An application-specified resource.

METADATA Metadata locks.

ALLOCATION_UNIT An allocation unit.

DATABASE The entire database.

Lock mode Description

Shared (S) Used for read operations that do not change or update data, such as a

SELECT statement.

Update (U) Used on resources that can be updated. Prevents a common form of

deadlock.

Exclusive (X) Used for data-modification operations, such as INSERT, UPDATE, or

DELETE. Ensures that multiple updates cannot be made to the same

resource at the same time.

Intent Used to establish a lock hierarchy. The types of intent locks are: intent

shared (IS), intent exclusive (IX), and shared with intent exclusive (SIX).

Schema Used when an operation dependent on the schema of a table is

executing. The types of schema locks are: schema modification (Sch-M)

and schema stability (Sch-S).

Bulk Update Used when bulk copying data into a table and the TABLOCK hint is

specified.

Key-range Protects the range of rows read by a query when using the serializable

transaction isolation level. Ensures that other transactions cannot insert

rows that would qualify for the queries of the serializable transaction if the

queries were run again.

•

•

DELETE * FROM machinename@Process
WHERE TimeStamp < lastArchiveDate;

•

DELETE * FROM machinename@Process
WHERE TimeStamp < lastArchiveDate;

deleteDate = LastArchiveDate
While (deleteDate > lastDateinTable)
{

DELETE * FROM machinename@Process
WHERE TimeStamp.Date = deleteDate;

deleteDate = deleteDate.Date – 1;
} Do;

• [Shared] [Exclusive]

• [Exclusive] [Shared]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

[Exclusive]

•

•

•

•

•

•

• [SHARED]

•

•

•

BEGIN TRANSACTION
[SQL statement]
[SQL statement]
[SQL statement]
[SQL statement]…

COMMIT or ROLLBACK (=ABORT)

•

• [Shared] [Exclusive]

• [Exclusive] [Shared]

•

•

•

•

•

•

•

UPDATE accounts SET bal = bal – 100
WHERE acct = A;
UPDATE accounts SET bal = bal + 100
WHERE acct = B;

BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

•

BEGIN TRANSACTION;
x = select bal from accounts

where acct = A;
x = x+100
update accounts

set bal = x where acct = A;
COMMIT;

BEGIN TRANSACTION;
y = select bal from accounts

where acct = A;
if y < 100 return “Error”
y = y - 100
update accounts

set bal = y where acct = A;
COMMIT;

•

•

•

•

•

•

•

•

•

•

•

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

A and B are elements

in the database

t and s are variables

in txn source code

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

T
im

e

T1 T2

READ(A,s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T
im

e

Schedule

A schedule is serializable if it is

equivalent to a serial schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.

This is NOT a serial schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

T1: r1(A); w1(A); r1(B); w1(B)

T2: r2(A); w2(A); r2(B); w2(B)

Notation

Key Idea: Focus on conflicting operations

Conflicts: (it means: cannot be swapped)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:

• A node for each transaction Ti,

• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is serializable iff the precedence
graph is acyclic

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

1 2 3

This schedule is NOT conflict-serializable

A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

•

•

•

•

By using locks scheduler ensures conflict-serializability

•

•

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

In every transaction, all lock requests

must precede all unlock requests

The 2PL rule:

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);

Now it is conflict-serializable

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Then there is the

following temporal

cycle in the schedule:

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Then there is the

following temporal

cycle in the schedule:

U1(A)→L2(A) why?

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Then there is the

following temporal

cycle in the schedule:

U1(A)→L2(A)

L2(A)→U2(B) why?

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Then there is the

following temporal

cycle in the schedule:

U1(A)→L2(A)

L2(A)→U2(B)

U2(B)→L3(B)

L3(B)→U3(C)

U3(C)→L1(C)

L1(C)→U1(A)
Contradiction

A New Problem:

Non-recoverable Schedule
T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A)

L2(A); READ(A)

A := A*2

WRITE(A);

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B);

Commit

Rollback

Strict 2PL

All locks are held until the transaction

commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that

are both conflict-serializable and recoverable

T1 T2

L1(A); READ(A)

A :=A+100

WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

U1(A),U1(B); Rollback

…GRANTED; READ(A)

A := A*2

WRITE(A);

L2(B); READ(B)

B := B*2

WRITE(B);

U2(A); U2(B); Commit

None S X

None

S

X

None S X

None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

•

•

•

•

•

•

•

•

•

•

http://www.sqlite.org/atomiccommit.html

Why not write

to disk right now?

None READ

LOCK

RESERVED

LOCK

PENDING

LOCK

EXCLUSIVE

LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

•

•

•

None READ

LOCK

RESERVED

LOCK

PENDING

LOCK

EXCLUSIVE

LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

Phantom Problem

Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)

•

•

•

•

•

•

