Database Systems
DATA 514

Transactions
Concurrency Control

DATA 514 - Winter 2019

Class Overview

e Unit 1: Intro
* Unit 2: Relational Data Models and Query Languages

 Unit 4: Transactions

* Unit 6: DBMS usability, conceptual design
e Unit 7: Non-relational data
* Unit 8: Advanced topics (time permitting)

DATA 514 - Winter 2019

Announcements

e HW5 due Monday, March 4

CSEP514 - Winter 2017

Demo
(see Concurrency demo.sql)

DATA 514 - Winter 2019

Schema: SeatAssignments
(Flightid, Customerid, seat, seatStatus)

[)

Select seat, seatStatus
From SeatAssignments
Where Flightid = 1 And
seatStatus = 'Free’

N R
(S | | |

| O | .|
Il
=

-

NEQECERECE TIEDERCBCTL AL EORC ECCCIC OC

T | S (| |

I)

A Y) A

(S | |V |
'

(SaCZEMiSEIEDEGSKKOSI7K£SSSIS o< 3751 II Or 80 Y0 »0 €0 S0 I0 v

(| | | o)
I Y |
| | | |

:
J[
-.—‘ coe—

=)
[] [] (] ‘ E
Customer 1: views a map showing available seats i % -
i 1 e
-
t mer 1 : i : : -
custiome "g E glmm -
i i W] -
o1 e =2
5 =11 []]|
= o)))
1 o | (. () ()
2 /E (LIl (S——) |
E “g) =I
= < () |
2
i
3
-]
B
%
I
B
3

DATA 514 - Winter 2019

Jsdnsupsz od Jon ysm pnnsdmun wor Jesft fismnis wo 220ms zinsmnpizzs 3ss2 npils of hiofls ne nl

Xy

Concurrency

- 3
[] [] ® 3 E .:
Customer 1: views a map showing available seats g % : i
o - A
- { t
I S s &
{ el -
- {1 = = §
i i = [| | = |
L] % == | [-
A S) (S |
1 = =
? 2 /S‘ () | | \[.][-] ;_‘E
:SI@ | g:
- | Eeallewe O
O *. HEss == F
© 150 | S O | é\
| B
Select seat, seatStatus - sloo ooofs
- e[I &
From SeatAssignments i | SSSlE=s
Where Flightid = 1 And seatStatus = 'Free’ : | l: S
3 = =

Customer 2: requests the same map showing available seats

DATA 514 - Winter 2019

Concurrency

Customer 1: views a map showing available seats

Customer 2: requests the same map showing availablé seats

DATA 514 - Winter 2019

sld:isvslﬂ\bs'qm:ﬂ[j wmmm:«[j mmsuﬂmg Odzﬂbsﬁnudﬁsﬂ@

=

NEQECERECEIEDERCBCNC AL EOPC ECCCIC OC

=

B

H
I
B

Jripift vadions $osls2 10 seniinoa osls2 voy lidnu bseniing fon ;s 29pneds dss2

008-TET pmood

I ||
() |
() o
)) |
)

|
[()
]
|

EXSIHOIW“I 0 €0 €0 10 A

A A

J
|
|
|
]
|
|
|
JC)
J
J
|
|
]
|
|

[
[
[

|
()| |
))

1))

Xy

(SOEZENESEICDEGSSSKDSI7MESSSIS o< Eyﬂ II OI 80 Y0 0 €0 €0 IO v

Jeifnaups2 od on ysm gninsdmun wor Jesft flsvnis wo 220ms zinamngizes dss2 npils of holle ns nl

Write:Read Conflict

Customer 1: puts seat 4 on “Hold” % % e H
: B
customer 1: seat 4; status = ‘Hold’ % i e e
3 2 = §
i § gl s 3
L) % | B =
Select seat, seatStatus % = g E
From SeatAssignments i /E Ny
Where Flightid = 1 And seatStatus = 'Free’ - s o |
8 | IEE s men
| Wb
customer 2: Dirty Read? : gl e
> g0 oooge
2 2000 ooolE
H - [| |-
000 OO
]| |]
I BIOCOC IO
B z (%f.;- nﬁl |[C SJ e

Customer 2: requests the same map showing available seats

DATA 514 - Winter 2019 8

Serializability

When the order in which requests are
processed matters!

« Serialize = order-preserving!

Serialization is enforced using locks:
* Writers acquire EXCLUSIVE locks
* Readers acquire SHARED locks

 Readers can opt out if they do not require a view
of the data that is guaranteed to be coherent

* i.e., reflects most recently committed changes, is
repeatable, not dirty, etc.

DATA 514 - Winter 2019

Serializability

o Serialize = order-preserving!

- Serialization is enforced using locks:

Writers acquire EXCLUSIVE locks
Readers acquire SHARED locks

Requests block if the LOCK they require cannot be
acquired

 if aresource is currently SHARED, then an
EXCLUSIVE lock request blocks

 if a resource is currently EXCLUSIVE, then a
SHARED lock request blocks

Requests that block long enough time out!

DATA 514 - Winter 2019 10

Serializability
Serialize = order-preserving!

Serialization is enforced using locks:
* Writers acquire EXCLUSIVE locks

* Only one request at a time can hold an EXCLUSIVE
lock

* Readers acquire SHARED locks

« Multiple Readers can each hold a SHARED lock on
the same resource

Lock management in a high volume, transaction
processing DB is complex!

DATA 514 - Winter 2019

1"

Serializability

e Lock management in a high volume,
transaction processing DB is complex!

High overhead!

* Lock contention impacts Request processing time
* Reduced levels of concurrency

* Time-outs

* Deadlocks

DATA 514 - Winter 2019

12

Lock granularity

e Lock management in a high volume, transaction
processing DB is complex!

 High overhead:
Lock contention
Reduced levels of concurrency

e Best Practice: lock the fewest # of resources for
the shorted possible period of time

* However, most locking in a DBMS is implicit!

DATA 514 - Winter 2019

13

Serializability

Customer 1: puts seat 4 on “Hold”

' customer 1: seat 4; status = ‘Hold’

'mum!sldﬁnlﬁ Okﬂbsﬁludﬁsvk@

* When the order in which requests are
processed matters!

« Serialize = order-preserving!

)

internal customer 2: Dirty Read?

f

Internal Customer 2: requests seat availability across all
flights to between A and B?

DATA 514 - Winter 2019

152 %0 swniinoa Josls2 uoy linu baaniings fon s 29pnedo Jss2

008-TET pmood
A A
NEQECERECEIEDERCBCNCACEOPC ECCCIC 0C 2 II OI 80 YO »0 €0 €0 IO A
===

= 1= O R e
s Y 1 o
5 Y
s
o O |
. EIEE]
I =]
e [)
EEEE BEEE
O |
(- | 5 V|
e S
([| | | |
O e
| Y |

| [=

|
[()|
[))
()
[0)
|

s
()) II

. —

Xy

Jeifnaups2 od on ysm gninsdmun wor Jesft flsvnis wo 220ms zinamngizes dss2 npils of holle ns nl

(EOEZEMSEIEOEQSKKOSZ7MES§§IS o< 37&[II OI 80 Y0 0 €0 €0 IO v

Concurrent Read Anomalies

Dirty Reads

 Concurrent requests can see changes that have not
yet been committed!

Nonrepeatable Reads

 Multiple Reads can yield inconsistent results; may
not reflect current uncommitted changes

Phantom Reads

 Occurs when new rows are added or removed by
another transaction to the record set while it is
being read.

Repeatable Reads: requires serializability!

DATA 514 - Winter 2019

15

Challenges

e Want to execute many apps concurrently
« All these apps read and write data to the same DB
- Simple solution: only serve one app at a time
 Not very performant!

* Better: multiple operations need to be executed
atomically over the DB where access to data that is
subject to change is serialized.

o Serialization:

* despite handling many Requests in parallel, each
Request is executed as if it is a serial process

DATA 514 - Winter 2019

16

Challenges

o Serialization:

- despite handling many Requests in parallel, each
Request appears to be executing as a serial process

* i.e., order-preserving

o the unit of serialization is
- 3 single SQL statement

- multiple SQL statements explicitly flagged as a
“transaction”

DATA 514 - Winter 2019

17

Why is serialization necessary?

e Manager: balance budgets among projects
* Remove $10k from project A
« Add $7k to project B
« Add $3k to project C

e CEO: check company’s total balance
e SELECT SUM(money) FROM budget;

* This is called a “dirty” (i.e., inconsistent) Read
 aka WRITE-READ conflict

DATA 514 - Winter 2019

18

What can go wrong?

App 1:
SELECT inventory FROM products WHERE pid = 1

App 2:
UPDATE products SET inventory = © WHERE pid = 1

App 1:
SELECT inventory * price FROM products
WHERE pid = 1

This is known as an unrepeatable read (aka a READ-
WRITE conflict)

DATA 514 - Winter 2019 19

What can go wrong?

Account 1 =$100
Account 2 = $100
Total = $200

e App 1: App 1: Set Account 1= $200
— Set Account 1 = $200

- Set Account 2 = $0 * App 2: Set Account 2 = $200

* App 2: e App 1: Set Account 2 = $0
— Set Account 2 = $200

- Set Account 1=$0 App 2: Set Account 1=$0

e At the end: e At the end:
- Total = $200 - Total = $0
This is called the lost update, aka a WRITE-WRITE conflict

DATA 514 - Winter 2019

20

What can go wrong?

e Buying tickets to the next Cardi B. concert:
« Fill up form with your mailing address
* Put in debit card number
* Click submit
 Screen shows money deducted from your account
* [Your browser crashes]

00 Atomicity: changes to the database

v , ™ need to be ALL or NOTHING

DATA 514 - Winter 2019 21

Concurrent Data Access in SQL

By default, all Update, Insert and Delete statements
are atomic!

 What is the difference between
Update SeatAssignments

Set seatStatus = 'Hold', Customerid = 1
WHERE Flightid = 1 and seat = 4 and seatStatus = 'Free’

- And -

Update SeatAssignments
Set seatStatus = 'Hold', Customerid = 1
WHERE Flightid = 1 and seat = 4

Y

DATA 514 - Winter 2019 22

Concurrent Data Access in SQL

By default, all Update, Insert and Delete
statements are atomic
- implicit Transactions!
- prevents Race conditions
- enforced by Locking (Lock mode = Exclusive)

 Note: Locking behavior is not specified explicitly in
the SQL language
Implied

[LOCK mode='Exclusive'] behavior

Update SeatAssignments
Set seatStatus = 'Hold', Customerid = 1
WHERE Flightid = 1 and seat = 4

and seatStatus = 'Free’ What needs

to be
o
DATA 514 - Winter 2019 Locked? 23

Concurrent Data Access in SQL

By default, all Update, Insert and Delete
statements are atomic!

- prevents Race conditions
- enforced by Locking (Lock mode = Exclusive)

* Read Policy (Select) = Isolation Levels in SQL
- also enforced by Locking (Lock mode = Shared)

* Locking behavior (Lock Manager):

 Exclusive lock waits until all prior Shared locks are
unlocked

« Shared locks block while an Exclusive lock is held

DATA 514 - Winter 2019

24

Isolation Levels in SQL

“Dirty reads” permitted
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

“Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

“Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

DATA 514 - Winter 2019 25

1. Isolation Level: Read Uncommiitted

 WRITE locks (of potentially long duration)
- Strict 2PL (two-phase Locking)

* No READ locks
* never delay Read-only requests

Possible problems: dirty and inconsistent reads

DATA 514 - Winter 2019

26

2. Isolation Level: Read Committed

* WRITE locks (of potentially long duration)
- Strict 2PL (two-phase Locking)

o “Short duration” READ locks
- acquire locks as necessary while Reading (not 2PL)

* Runs risk of Unrepeatable reads
* i.e., When reading same element twice, may get two
different values
» Use cases?

e Two-Phase Locking:
1. lock acquisition
2, followed strictly by freeing all the locks acquired

DATA 514 - Winter 2019

27

3. Isolation Level: Repeatable Read

e “Long duration” WRITE locks
o Strict 2PL

e “Long duration” READ locks
o Strict 2PL

DATA 514 - Winter 2019 28

This is not serializable yet !!!

4. Isolation Level Serializable

e “Long duration” WRITE locks
o Strict 2PL

e “Long duration” READ locks
o Strict 2PL

* Predicate locking
 To deal with phantoms
° €.8.,
Select seat, seatStatus

From SeatAssignments
Where Flightid = 1 And seatStatus = 'Free’

DATA 514 - Winter 2019

29

v

Write:Read Conflict

Customer 1: puts seat 4 on “Hold”

0 €0 €0 10

======

- ()
I ——]

] mmm-
=

Idsli D MMMAE Okﬂbsﬁl.lskkﬁu[i

customer 1: seat 4; status = ‘Hold’

[|
=(=) e |

Customer 27

Isolation Level Dirty reads Non-repeatable Phantoms
Reads

Read uncommitted

SURECEIENELCBCNC AL /P ECCCIC OC 21 /S IE OF 80 N0

Read committed X
Repeatable Read X X
Serializable x x x

DATA 514 - Winter 2019

lsidnsups2 sd don ysm gninedmun won Jesft fiswiis wo 22005 zinsmngiezs Jss2 npile of hofls ns nl

30

Consequences of concurrency

* Correctness Principle (see Molina, p. 847)

If a transaction that executes in the absence of any other
transactions (and without system errors) starts with a
database in a consistent state, then the database is also
in a consistent state when the transaction is completed!

o “Consistent state” refers to:
 Tables/Relations
- Disk blocks/pages (cf., “dirty pages”)
- individual Rows/tuples or other objects

DATA 514 - Winter 2019

31

Consequences of concurrency

e Lock contention

- Two requests executing concurrently that identify
the same database object(s)

* 3 request that requires a LOCK that cannot be
granted is delayed (by the Scheduler)

 arequest that is delayed long enough will time-out!
* deadlocks are possible:

« T, currently Holds(L,); requests L,

« T, currently Holds(L,); requests L,

DATA 514 - Winter 2019

32

Consequences of concurrency

e Interleaved execution

within a connection, Requests are executed in the
order in which they are received

across connections, multiple Requests are executed
in parallel!

creates potential for Resource contention:
- Pages/Buffers
« Sharing and “false” sharing

* Logging

DATA 514 - Winter 2019

33

Locking strategies

e Pessimistic
* Acquire Read locks (lock mode = shared)

« prohibit actions from other Requests that would
change the data that the current Request identifies

e Optimistic
* no Read locks necessary

* if a conflict occurs due to a Write, rollback the
change(s)

 good performance when lock contention is limited

DATA 514 - Winter 2019

34

Concurrency and Locking

* Locking modes
 SHARED
- multiple Readers = many locks
« EXCLUSIVE

- only one Request at a time can hold an exclusive
LOCK on Resource, r

 no shared LOCKs for r are granted while an
exclusive lock is held on r

» UPDATE (MS SQL Server): reduces the likelihood of
deadlocks

DATA 514 - Winter 2019

35

Concurrency and Locking

e Lock granularity

- simple, one-level SHARED/EXCLUSIVE schemes do
not work well with Indexes

* Locks on b* trees (e.g., Index range scans) perform
much better when there is a lock hierarchy

« automatic LOCK escalation

« fewer individual LOCKs to manage, but
increased (potential) contention

T -»-bm»“

blocked Read requests ILG

SQL Server hierarchical locking

Resource
RID

KEY

PAGE

EXTENT

HoBT

TABLE

FILE

APPLICATION
METADATA
ALLOCATION_UNIT
DATABASE

Description
A row identifier used to lock a single row within a heap.

A row lock within an index used to protect key ranges in
serializable transactions.

An 8-kilobyte (KB) page in a database, such as data or index
pages.

A contiguous group of eight pages, such as data or index
pages.

A heap or B-tree. A lock protecting a B-tree (index) or the
heap data pages in a table that does not have a clustered
index.

The entire table, including all data and indexes.
A database file.

An application-specified resource.

Metadata locks.

An allocation unit.

The entire database.

DATA 514 - Winter 2019

37

Lock mode
Shared (S)

Update (V)

Exclusive (X)

Intent

Schema

Bulk Update

SQL Server lock modes

Description

Used for read operations that do not change or update data, such as a
SELECT statement.

Used on resources that can be updated. Prevents a common form of
deadlock.

Used for data-modification operations, such as INSERT, UPDATE, or
DELETE. Ensures that multiple updates cannot be made to the same
resource at the same time.

Used to establish a lock hierarchy. The types of intent locks are: intent
shared (IS), intent exclusive (I1X), and shared with intent exclusive (SIX).

Used when an operation dependent on the schema of a table is
executing. The types of schema locks are: schema maodification (Sch-M)
and schema stability (Sch-S).

Used

specified.
Protects the range of rows read by a query when using the serializable
transaction isolation level. Ensures that other transactions cannot insert
rows that would qualify for the queries of the serializable transaction if the
queries were run again.

TABLOCK hint is

38

DBMS Locking summary

* Lock acquisition and release is automatic!
 Best practice: Locks of short duration!

e Example:

« Automatic maintenance of time-series at the end of
each Daily data file Push/DB update run

DELETE * FROM machinename@Process
WHERE TimeStamp < LlastArchiveDate;

What is the scope of
the lock?

DATA 514 - Winter 2019

39

DBMS Locking summary

* Lock acquisition and release is automatic!
 Best practice: Locks of short duration!

e Example:

Risk of
time-outs

increases after
the first failure

DELETE * FROM machinename@Process
WHERE TimeStamp < lastArchiveDate;

Improved version:

deleteDate = LastArchiveDate

While (deleteDate > LastDateinTable)

{
DELETE * FROM machinename@Process
WHERE TimeStamp.Date = deleteDate;

deleteDate = deleteDate.Date - 1;
} Do;

40

Lock Time-outs

* Requests delayed by contention for locks are
subject to time-out.
* [Shared] blocks [Exclusive]
« [Exclusive] blocks [Shared]
* Recover and Retry?

* Note: (long running) Requests can time out for
other reasons, too.

DATA 514 - Winter 2019

11

Lock Deadlocks

e aka “deadly embrace”
S e
needs to acquire Y)C
lreeds to ac:quire X -

DATA 514 - Winter 2019

42

Lock Deadlocks Lol =)

e Time-out mechanism:)C:

 Request A times out M m

* Request B can now proceed
* Request B becomes more likely to time-out, too.

* Unraveling the chain of locking events that led
to a deadly embrace can be very difficult!
« implicit locking
* lock escalation
* nested transactions

e etc.
DATA 514 - Winter 2019

-

43

DBMS Locking summary

o Shared/Exclusive modes

- additional auxiliary modes can reduce # of deadlocks

- Optimistic locking policies reduce lock contention, but
increases the amount of work the DBMS must perform
when contention is detected

 Hierarchical (with automatic escalation)
* b+ tree data structure (i.e., Indexes)
- escalation reduces the # of Locks to keep track of,
 but increases the potential for lock contention

DATA 514 - Winter 2019

44

DBMS Locking summary

* Lock contention is often the most serious
performance problem for databases that must
sustain high transaction processing rates!

* e.g., real-time trading and other auctions

o Best practice: ensure Write [Exclusive] Locks are
of short duration!
* Find out where lock-related Time-outs are occurring

« Complications from “explicit” (multi-statement)
Transactions

Do not keep a transaction pending awaiting user input!

DATA 514 - Winter 2019

45

DBMS Locking summary

* Best practice: extract data from active production
R/W DBs to construct Read-only data warehouses
- Single Writer task (stream, Bulk update or Batch)
« Multiple Readers
* Non-repeatable Reads are OK!
* no [SHARED] Locks
* no contention
* reduced overheads
* Do not time-out Long Duration reads

DATA 514 - Winter 2019

46

Explicit Transactions

 multiple SQL statements can be defined to
execute in sequence as a single, atomic unit

BEGIN TRANSACTION
[SQL statement]
[SQL statement]
[SQL statement]
[SQL statement]..

COMMIT or ROLLBACK (=ABORT)

* Note: explicit transactions can be nested! pu

DATA 514 - Winter 2019

Rollback a Transaction
* Initiated by the applications or by the system

e The DB returns to the state prior to the start of
the transaction
* Intermediate DB changes are backed out!

e What are examples?

DATA 514 - Winter 2019

48

Lock Time-outs

* Requests delayed by contention for locks are
subject to time-out.
* [Shared] blocks [Exclusive]
« [Exclusive] blocks [Shared]
* Recover and Retry?

e Complication:

« Time-out in the middle of a3 multi-statement
Transaction

 Abort the operation and Rollback?

DATA 514 - Winter 2019

49

Transactions Demo
(see Concurrency demo.sql)

DATA 514 - Winter 2019

50

ACID

Atomic
« State shows either all the effects of txn, or none of them
Consistent

« Txn moves from a state where integrity holds, to another
where integrity holds

Isolated

- Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

Durable

* Once 3 txn has committed, its effects remain in the
database

DATA 514 - Winter 2019

Atomic

 Definition: A transaction is ATOMIC if all its
updates must happen or not at all.

o Example: transfer $100 from A to B

UPDATE accounts SET bal = bal - 100
WHERE acct = A;

UPDATE accounts SET bal
WHERE acct = B;

(Crash!]

bal + 100

BEGIN TRANSACTION;

UPDATE accounts SET bal = bal — 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

Isolated

e Definition: An execution ensures that txns are
isolated, if the effect of each txn is as if it were
the only txn running on the system.

« Example: Alice deposits $100, Bob withdraws $100

Alice:

from a joint account

BEGIN TRANSACTION;
x = select bal from accounts
where acct = A;
X =x+100
update accounts
set bal = x where acct = A;
COMMIT;

Bob:

BEGIN TRANSACTION;
y = select bal from accounts
where acct = A;
if y <100 return “Error”
y=y-100
update accounts
set bal =y where acct = A;

COMMIT;

Consistent

Recall: integrity constraints govern how values in
tables are related to each other

 Can be enforced by the DBMS, or ensured by the app
Example: account.bal >=0

How consistency is achieved by the app:

 App programmer ensures that txns only takes a
consistent DB state to another consistent state

- DB makes sure that txns are executed atomically

Can defer checking the validity of constraints until
the end of a transaction

Durable

e A transaction is durable if its effects continue
to exist after the transaction and even after the
program has terminated

 How? By writing to disk

DATA 514 - Winter 2019

55

Transaction Recovery Log
SQL Insert, Update, Delete
 Writing the Log: I

* “Before” page DBMS Process
images

« Changed pages
« Change status

]
]
 Commit
* Rollback
* Checkpoint
* indicates that the 8 8
DBisina
consistent state!

DATA 514 - Winter 2019 56

B Checkpoint
B Commit

B Modified
1]
[Original
1]

< Write

ACID

Atomic
Consistent
Isolated
Durable

Enjoy this in HW!

Note:
* By default each statement is its own transaction

 [If auto-commit=off, then each statement starts a
new transaction

DATA 514 - Winter 2019

57

Isolation: The Problem

Multiple transactions are running concurrently
T, T, ...

They read/write some common elements
A, A, ...

How can we prevent unwanted interference ?
The SCHEDULER is responsible for that

DATA 514 - Winter 2019

58

Schedules

A schedule is a sequence
of interleaved actions
from multiple transactions

DATA 514 - Winter 2019

59

Serial Schedule

e A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

 Fact: nothing can go wrong if the system executes
transactions serially

- But database systems don’t do that because we need
better performance

DATA 514 - Winter 2019

60

A and B are elements
In the database

Example t and s are variables

T1 T2

READ(A,t) READ(A, s)
t:=t+100 S .:=85*2
WRITE(A,t) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 S :=S*2
WRITE(B,t) WRITE(B,s)

DATA 514 - Winter 2019

%ource code y

61

Time

A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S = S8*2
WRITE(A,S)
READ(B,s)
S ;= 8*2

WRITE(B,s)

DATA 514 - Winter 2019

62

Another Serial Schedule

T1 T2
READ(A,s)
S :=5*2
WRITE(A,s)
READ(B,s)
D) S :=S*2
£ WRITE(B,s)
- READ(A, 1)
t:=t+100
WRITE(A, t)
READ(B, 1)
t:=t+100
WRITE(B,t)

DATA 514 - Winter 2019

63

Serializable Schedule

A schedule Is serializable if it Is
equivalent to a serial schedule

DATA 514 - Winter 2019

64

A Serializable Schedule

T1 T2
READ(A, t)
t:=t+100
WRITE(A, 1)
READ(A,s)
S = 5*2
WRITE(A,S)
READ(B, t)
t:=t+100
WRITE(B,t)
READ(B,s)
This is a serializable schedule. S ‘= g*?

This iIs NOT a serial schedule

WRITE(B,s)

DATA 514 - Winter 2019

65

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, 1)
READ(A,s)
S :=S8*2
WRITE(A,S)
READ(B,s)
S ;= S8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B, 1)

DATA 514 - Winter 2019

66

How do We Know if a Schedule is
Serializable?

Notation

T, 1 (A); wi(A); r(B); wyi(B)
T, 1,(A); Wo(A); 1,(B); wy(B)

Key lIdea: Focus on conflicting operations

DATA 514 - Winter 2019 67

Conflicts

 Write-Read - WR
e Read-Write - RW
e Write-Write - WW

DATA 514 - Winter 2019

68

Conflict Serializability

Conflicts: (it means: cannot be swapped)

Two actions by same transaction T:: H(X); w;i(Y)

L

Two writes by T;, T, to same element W;(X); w;(X)

. W;(X); 1i(X)
Read/write by T;, T; to same element

r(X); wi(X)

DATA 514 - Winter 2019 69

:

Conflict Serializability

* A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

 Every conflict-serializable schedule is serializable

A serializable schedule may not necessarily be
conflict-serializable

DATA 514 - Winter 2019

70

Conflict Serializability

Example:

r1(A); Wi(A); r(A); wy(A); r1(B); wyi(B); r,(B); w,(B)

DATA 514 - Winter 2019

71

Conflict Serializability

Example:

r1(A); Wi(A); r(A); wy(A); r1(B); wyi(B); r,(B); w,(B)

r1(A); Wi(A); r(B); wi(B); r2(A); Wy (A); r,(B); w,(B)

DATA 514 - Winter 2019

72

Conflict Serializability

Example:

r1(A); wi(A); r(A);

W, (A); r1(B);

W,(B); 15(B); Wy(B)

r1(A); Wi(A); r(B); wi(B); r2(A); Wy (A); r,(B); w,(B)

DATA 514 - Winter 2019 73

Conflict Serializability

Example:

r1(A); wi(A); r(A);

W, (A); r1(B);

~~

W,(B); 15(B); Wy(B)

ri(A); wq(A);

W,(A);

w,(B); 1,(B); wy(B)

r1(A); Wi(A); r(B); wi(B); r2(A); Wy (A); r,(B); w,(B)

DATA 514 - Winter 2019

74

Conflict Serializability

Example:

r1(A); wi(A); r(A);

W, (A); r1(B);

~~

W,(B); 15(B); Wy(B)

ri(A); wi(A); W, (A); wy(B); ro(B); w,(B)
r1(A); Wi(A); 11(B); r(A); (Wo(A); wi(B) r2(B); w,(B)

~~

r1(A); Wi(A); r(B); wi(B); r2(A); Wy (A); r,(B); w,(B)

DATA 514 - Winter 2019

75

Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T,

* An edge from T; to T; whenever an action in T,
conflicts with, and comes before an action in T

* The schedule is serializable iff the precedence
graph is acyclic

DATA 514 - Winter 2019

76

Example 1

r(A); 11(B); Wo(A); r3(A); wi(B); wi(A); rx(B); wy(B)

v @ €)

DATA 514 - Winter 2019 77

Example 1

N

r(A); 11(B); Wo(A); r3(A); wi(B); wi(A); rx(B); wy(B)

This schedule Is conflict-serializable

DATA 514 - Winter 2019 78

Example 2

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

v @ €)

DATA 514 - Winter 2019 79

Example 2

— T

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

This schedule is NOT conflict-serializable

DATA 514 - Winter 2019 80

Scheduler

e Scheduler = is the module that schedules the
transaction’s actions, ensuring serializability

 Also called Concurrency Control Manager

o We discuss next how a scheduler may be
implemented

DATA 514 - Winter 2019

81

Implementing a Scheduler

Major differences between database vendors
* Locking Scheduler

- Aka “pessimistic concurrency control”
« SQLite, SQL Server, DB2
o Multiversion Concurrency Control (MVCC)
- Aka “optimistic concurrency control”
* Postgres, Oracle

We discuss only locking

DATA 514 - Winter 2019

82

Locking Scheduler

Simple idea:
e Each element has a unique lock

e Each transaction must first acquire the lock
before reading/writing that element

o If the lock is taken by another transaction, then
wait
e The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

e Lock on the entire database
« SQLite

e Lock on individual records
* SQL Server, DB2, etc

DATA 514 - Winter 2019

84

Notation

L.(A) = transaction T, acquires lock for element A

U.(A) = transaction T, releases lock for element A

DATA 514 - Winter 2019

85

A Non-Serializable Schedule

T1 T2

READ(A)

A :=A+100

WRITE(A)
READ(A)
A= A*2
WRITE(A)
READ(B)
B :=B*2
WRITE(B)

READ(B)

B :=B+100

WRITE(B)

DATA 514 - Winter 2019

86

Example
T1 12

L,(A); READ(A)

A =A+100

WRITE(A); Uy(A); Ly(B)
L,(A); READ(A)
A= A*2
WRITE(A); U,(A);
L,(B); BLOCKED...

READ(B)

B :=B+100

WRITE(B); U,(B);
...GRANTED; READ(B)
B :=B*2
WRITE(B); U,(B):

Scheduler has ensured a conflict-serializable schedule

87

But...

T1 T2
L,(A); READ(A)

A =A+100

WRITE(A); U (A);

L,(A); READ(A)
A :=A*2
WRITE(A); U,(A);
L,(B); READ(B)
B := B*2
WRITE(B); U,(B);

L,(B); READ(B)

B :=B+100

WRITE(B); U,(B);

Locks did not enforce conflict-serializability !!'! What's wrong ?

Two Phase Locking (2PL)

The 2PL rule:

In every transaction, all lock requests
must precede all unlock requests

DATA 514 - Winter 2019

89

Example: 2PL transactions

T1

T2

L,(A); Ly(B); READ(A)
A :=A+100
WRITE(A); U,(A)

READ(B)
B :=B+100
WRITE(B); U,(B);

Now it is conflict-serializable

L,(A); READ(A)
A= A*2
WRITE(A);

L,(B); BLOCKED...

...GRANTED; READ(B)
B := B*2
WRITE(B); U,(A); U,(B);

920

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

91

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

12

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

12

Then there Is the
following temporal
cycle in the schedule:

93

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

12

Then there Is the
following temporal
cycle in the schedule:
U,(A)2L,(A) why?

94

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

@
A B

12

Then there Is the
following temporal
cycle in the schedule:
Uy (A)>L,(A)
L,(A)2>U,(B) why?

95

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

@
A B

12

Then there Is the
following temporal

cycle in the schedule:

U;(A)2Lo(A)
L,(A)>U,(B)
U,(B)—~>

9
Us(C)=>L,(C)
L,(C)2Uy(A)

Contradiction

A New Problem:

Non-recoverable Schedule
T1 T2

L,(A); Li(B); READ(A)
A =A+100
WRITE(A); U,(A)
L,(A); READ(A)

A= A*2
WRITE(A);
L,(B); BLOCKED...
READ(B)
B :=B+100

WRITE(B); U,(B);
...GRANTED: READ(B)
B := B*2

WRITE(B); U,(A); U,(B);

Commit
Rollback
DATA 514 - Winter 2019

97

Strict 2PL

The Strict 2PL rule:

All locks are held until the transaction
commits or aborts.

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

DATA 514 - Winter 2019

98

T1

Strict 2PL

L,(A); READ(A)
A :=A+100
WRITE(A);

L,(B); READ(B)

B :=B+100
WRITE(B);
U,(A),U;(B); Rollback

L,(A); BLOCKED...

...GRANTED; READ(A)
A= A*2

WRITE(A);

L,(B); READ(B)

B :=B*2

WRITE(B);

U,(A); U,(B); Commit

929

Another problem: Deadlocks
o T, waits for a lock held by T,;
T, waits for a lock held by T;;

e T; waits for....

o T, waits for a lock held by T,

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

DATA 514 - Winter 2019 100

Lock Modes

e S =shared lock (for READ)
e X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S X

None
S
X

DATA 514 - Winter 2019 101

Lock Modes

e S =shared lock (for READ)
e X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S X

None v v v
S v v X
X v X X

DATA 514 - Winter 2019 102

Lock Granularity

* Fine granularity locking (e.g., tuples)
« High concurrency
 High overhead in managing locks
- E.g. SQL Server

* Coarse grain locking (e.g., tables, entire database)
 Many false conflicts

« Less overhead in managing locks
. E.g. SQL Lite

o Solution: lock escalation changes granularity as needed

DATA 514 - Winter 2019 103

Sqlite

o SQLite is very simple
e More info:
http://www.sqlite.org/atomiccommit.html

e Lock types
« READ LOCK (to read)
 RESERVED LOCK (to write)
- PENDING LOCK (wants to commit)
 EXCLUSIVE LOCK (to commit)

DATA 514 - Winter 2019 104

http://www.sqlite.org/atomiccommit.html

Sqlite

Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
They all read data from the database file

If the transaction commits without writing
anything, then it simply releases the lock

DATA 514 - Winter 2019

105

Sqlite

Step 2: when one transaction wants to write

Acquire a RESERVED LOCK
May coexists with many READ LOCKs

Writer TXN may write; these updates are only in
main memory; others don't see the updates

Reader TXN continue to read from the file
New readers accepted
No other TXN is allowed a RESERVED LOCK

DATA 514 - Winter 2019 106

Sqlite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks

e Acquire a PENDING LOCK t Why not write
o disk right now?
e May coexists with old READ LOCKs

 No new READ LOCKS are accepted
e Wait for all read locks to be released

DATA 514 - Winter 2019 107

Sqlite

Step 4: when all read locks have been released
e Acquire the EXCLUSIVE LOCK
* Nobody can touch the database now

 All updates are written permanently to the
database file

e Release the lock and COMMIT

DATA 514 - Winter 2019 108

Sqlite

begin transaction first write commit requested no more read locks
READ RESERVED
LOCK LOCK
ommit

commit executed

DATA 514 - Winter 2019 109

Sqlite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

DATA 514 - Winter 2019 110

Demonstrating Locking in SQLite

T1:
begin transaction;
select * from r;
-- T1 has a READ LOCK
T2:
begin transaction;
select * from r;
-- T2 has a READ LOCK

DATA 514 - Winter 2019 m

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:

update r set b=21 where 3=2;
-- T2 asked for a RESERVED LOCK: DENIED

DATA 514 - Winter 2019 112

Demonstrating Locking in SQLite

13:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

DATA 514 - Winter 2019 113

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

DATA 514 - Winter 2019 114

Demonstrating Locking in SQLite

T3'":
begin transaction;

select * from r;
-- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
commit;
-- releases the last READ LOCK; T1 can commit

DATA 514 - Winter 2019 115

Recap

 What are transactions
« And why do we need them

e How to maintain ACID properties via schedules
- We focus on the isolation property
- We do not discuss atomicity

 How to ensure conflict-serializable schedules with
locks

DATA 514 - Winter 2019 116

SQLite

begin transaction first write commit requested no more read lock
READ RESERVED
LOCK LOCK
commit

commit executed

DATA 514 - Winter 2019 17

Lock Performance

To avoid, use
admission control

thrashing

Throughput (TPS)

Why ?

TPS =
Transactions
per second

Active Transactions

DATA 514 - Winter 2019 118

Phantom Problem

e So far we have assumed the database to be a static
collection of elements (=tuples)

* If tuples are inserted/deleted then the phantom
problem appears

DATA 514 - Winter 2019 19

Suppose there are two blue products, Al, A2:
Phantom Problem

T1 T2

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

Is this schedule serializable ?

DATA 514 - Winter 2019 120

Suppose there are two blue products, Al, A2:
Phantom Problem

T1 T2

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

R1(AL),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3) |

DATA 514 - Winter 2019 121

Suppose there are two blue products, Al, A2:
Phantom Problem

T1 T2

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

R1(A1),R1(A2),W2(A3),R1(AL),R1(A2),R1(A3) |

W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)

Phantom Problem

o A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

 In our example:

« T1: reads list of products
* T2: inserts a new product
* T1:re-reads: a new product appears !

DATA 514 - Winter 2019 123

Dealing With Phantoms

e Lock the entire table
* Lock the index entry for ‘blue’
 If index is available

* Or use predicate locks
* A lock on an arbitrary predicate

Dealing with phantoms is expensive !

DATA 514 - Winter 2019 124

Beware!

In commercial DBMSs:

Default level is often NOT serializable
Default level differs between DBMSs
Some engines support subset of levels!

Serializable may not be exactly ACID
- Locking ensures isolation, not atomicity

Also, some DBMSs do NOT use locking and different
isolation levels can lead to different pbs

Bottom line: Read the doc for your DBMS!

CSEP514 - Winter 2017

125

Next two slides: try them on SQL Azure

CSEP514 - Winter 2017 126

Demonstration with SQL Server

Application 1:

create table R(a int);

insert into R values(1);

set transaction isolation level serializable;
begin transaction;

select * from R; -- get a shared lock

Application 2:

set transaction isolation level serializable;

begin transaction;

select * from R; -- get a shared lock

insert into R values(2); -- blocked waiting on exclusive lock

-- App 2 unblocks and executes insert after app 1
commits/aborts

CSEP514 - Winter 2017 127

Demonstration with SQL Server

Application 1:

create table R(a int);

insert into R values(1);

set transaction isolation level repeatable read;
begin transaction;

select * from R; -- get a shared lock

Application 2:
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
insert into R values(3); -- gets an exclusive lock on new tuple
-- If app 1 reads now, it blocks because read dirty
-- If app 1 reads after app 2 commits, app 1 sees new value

CSEP514 - Winter 2017 128

