CSEP514 Section5:

- Conceptual Schema Design
- Functional Dependency & BCNF

Part I --- Conceptual Design

Normal forms and functional dependencies:

 Anomalies(redundancy, update/deletion anomalies), functional dependencies, attribute closures, BCNF decomposition

 The BCNF (Boyce-Codd Normal Form) ---- A relation R is in BCNF if every set of attributes is either a superkey or its closure is the same set.

Example 1.

Consider the following relational schema and set of functional dependencies. R(A,B,C,D,E,F,G) with functional dependencies:

Example 1 -- Solution.

R(A,B,C,D,E,F,G)

A -->D D --> C F --> EG DC --> BF

Solution: Watch-out! The first FD does NOT violate BCNF so we need to pick another one to decompose. We try the second one:

Try $\{D\}^+ = \{B, C, D, E, F, G\}$. Decompose into R1(B, C, \underline{D} , E, F, G) and R2(\underline{A} ,D).

R2 has two attributes, so it is necessarily in BCNF.

For R1, again not all FDs violate BCNF so we need to be careful. Try $\{F\}^+ = \{E, F, G\}$. Decompose into R11(E, F, G) and R12(B, C, D, F).

Both R11 and R12 are in BCNF.

Example 2.

Relation R(A,B,C,D,E,F) and functional dependencies:

 $A \rightarrow BC$ and $D \rightarrow AF$

Example 2 -- Solution.

Relation R(A,B,C,D,E,F) and FD's A \rightarrow BC and D \rightarrow AF

A→BC violates BCNF since A+ = ABC \neq ABCDEF. So we split R into R1(ABC) and R2(ADEF).

The only non-trivial FD in R1 is $A \rightarrow BC$, and A+ = ABC, so R1 is in BCNF.

R2 has a non-trivial dependency $D \rightarrow AF$ that violates BCNF because $D+ = ADF \neq ADEF$. So we split R2 into R21(DAF) and R22(DE). Both of these are in BCNF since they have no non-trivial dependencies that are not superkeys.

Example 3

Relational schema: R(A,B,C,D,E),

functional dependencies: AB—>C, BC—>D

Example 3 -- solution

Relational schema: R(A,B,C,D,E),

functional dependencies: AB—>C, BC—>D

First step uses BC+=BCD and decomposes into R1(B,C,D), R2(A,B,C,E); second step decomposes R2 into R3(A,B,C) and R4(A,B,E)

Example 4

The relation is R (A, B, C, D, E) and the FDs:

A -> E, BC -> A, and DE -> B

Example 4 – solution 1

The relation is R (A, B, C, D, E) and the FDs: A -> E, BC -> A, and DE -> B

Notice that $\{A\}$ + = $\{A,E\}$, violating the BCNF condition. We split R to R_1(A,E) and R_2(A,B,C,D).

R_1 satisfies BCNF now, but R_2 not because of: {B,C}+ = {B,C,A}. Notice that the fd D E -> B has now disappeared and we don't need to consider it! Split R_2 to: R_2A(B,C,A) and R_2B(B,C,D).

Example 4 – solution 2

The relation is R (A, B, C, D, E) and the FDs:

 $A \rightarrow E$, $BC \rightarrow A$, and $DE \rightarrow B$

Can we split differently? Let's try with the violation $\{B,C\}+=\{B,C,A,E\}$. We initially split to $R_1(B,C,A,E)$ and $R_2(B,C,D)$. Now we need to resolve for R_1 the violation $\{A\}+=\{A,E\}$. So we split again R_1 to $R_1A(A,E)$ and $R_1B(A,B,C)$. The same!

We can also start splitting by considering the BCNF violation {D,E}+ = {D,E,B}. Which is the resulting BCNF decomposition in this case? (it will be a different one)