
DATA 514

Lecture 8: Transactions

DATA514 - Winter 2018 1

Announcements

• WQ6 due Monday, March 12

• HW6 due Monday, March 12

DATA514 - Winter 2018 2

Concurrency

• One of the most important properties of a
modern DBMS is its ability to manage
multiple client sessions simultaneously

• It is important for a DBA to understand how
such concurrency control is managed by the
database as it can have a significant impact
on the overall performance of the database.

DATA514 - Winter 2018 3

Challenges

• Want to execute many apps concurrently
– All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
– What’s the problem?

• Better: multiple operations need to be
executed atomically over the DB

DATA514 - Winter 2018 4

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read aka
WRITE-READ conflict

DATA514 - Winter 2018 5

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read aka
READ-WRITE conflict

DATA514 - Winter 2018 6

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
DATA514 - Winter 2018 7

What can go wrong?
• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address
– Put in debit card number
– Click submit
– Screen shows money deducted from your account
– [Your browser crashes]

DATA514 - Winter 2018 8

Changes to the database
should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

9

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction
DATA514 - Winter 2018

Rollback a Transaction

• Initiated by the applications or by the system

• The DB returns to the state prior to the
transaction

DATA514 - Winter 2018 10

11

ACID
• Atomic

– State shows either all the effects of txn, or none of them
• Consistent

– Txn moves from a state where integrity holds, to
another where integrity holds

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

DATA514 - Winter 2018

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
• Example: move $100 from A to B

BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

12

The atomicity property ensures that, if a debit is made
successfully from one account, the corresponding credit is
made to the other account.

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

• Example: in an application that transfers funds from one
account to another, the isolation property ensures that another
transaction sees the transferred funds in one account or the
other, but not in both, nor in neither.

13

Consistent
• Data is in a consistent state when a transaction

starts and when it ends.
– Can be enforced by the DBMS, or ensured by the app

• Example: in an application that transfers funds from one account
to another, the consistency property ensures that the total value of
funds in both the accounts is the same at the start and end of each
transaction.

• How consistency is achieved by the app:
– App programmer ensures that txns only takes a

consistent DB state to another consistent state
– DB makes sure that txns are executed atomically

DATA514 - Winter 2018 14

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How? By writing to disk

DATA514 - Winter 2018 15

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How can we prevent unwanted interference ?
• The SCHEDULER is responsible for that

DATA514 - Winter 2018 16

Schedules

DATA514 - Winter 2018 17

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Fact: nothing can go wrong if the system executes
transactions serially
– But database systems don’t do that because we need

better performance

18DATA514 - Winter 2018

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

DATA514 - Winter 2018 19

A and B are elements
in the database

t and s are variables
in txn source code

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

DATA514 - Winter 2018 20

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

DATA514 - Winter 2018 21

Ti
m

e

Serializable Schedule

DATA514 - Winter 2018 22

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

DATA514 - Winter 2018 23

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

DATA514 - Winter 2018 24

How do We Know if a Schedule
is Serializable?

DATA514 - Winter 2018 25

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

DATA514 - Winter 2018 26

Conflict Serializability

Conflicts: (it means: cannot be swapped)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
DATA514 - Winter 2018 27

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• A serializable schedule may not necessarily be

conflict-serializable

DATA514 - Winter 2018 28

Conflict Serializability

DATA514 - Winter 2018 29

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

DATA514 - Winter 2018 30

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

DATA514 - Winter 2018 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

DATA514 - Winter 2018 32

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

DATA514 - Winter 2018 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is serializable iff the precedence
graph is acyclic

DATA514 - Winter 2018 34

Example 1

DATA514 - Winter 2018 35

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

DATA514 - Winter 2018 36

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

DATA514 - Winter 2018 37

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

DATA514 - Winter 2018 38

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

• Scheduler = is the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

DATA514 - Winter 2018 39

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle

We discuss only locking
40DATA514 - Winter 2018

Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock

before reading/writing that element

• If the lock is taken by another transaction,

then wait

• The transaction must release the lock(s)

DATA514 - Winter 2018 41By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

DATA514 - Winter 2018 42

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

43DATA514 - Winter 2018

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

44DATA514 - Winter 2018

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

45DATA514 - Winter 2018Scheduler has ensured a conflict-serializable schedule

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?DATA514 - Winter 2018 46

Two Phase Locking (2PL)

DATA514 - Winter 2018 47

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);

Now it is conflict-serializable 48

Two Phase Locking (2PL)

49

Theorem: 2PL ensures conflict serializability

DATA514 - Winter 2018

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

DATA514 - Winter 2018 50

Two Phase Locking (2PL)

51

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

DATA514 - Winter 2018

Two Phase Locking (2PL)

52

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

53

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

54

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
55DATA514 - Winter 2018

Strict 2PL

DATA514 - Winter 2018 56

All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

U1(A),U1(B); Rollback

…GRANTED; READ(A)

A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);

U2(A); U2(B); Commit
57

Another problem: Deadlocks

• T1 waits for a lock held by T2;

• T2 waits for a lock held by T3;

• T3 waits for

• . . .

• Tn waits for a lock held by T1

58DATA514 - Winter 2018

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

59DATA514 - Winter 2018

None S X

None

S

X

Lock compatibility matrix:

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

60DATA514 - Winter 2018

None S X

None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

61

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g. SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g. SQL Lite

DATA514 - Winter 2018

Sqlite

• SQLite is very simple
• More info: http://www.sqlite.org/atomiccommit.html

• Lock types
– READ LOCK (to read)
– RESERVED LOCK (to write)
– PENDING LOCK (wants to commit)
– EXCLUSIVE LOCK (to commit)

DATA514 - Winter 2018 62

http://www.sqlite.org/atomiccommit.html

Sqlite

Step 1: when a transaction begins

• Acquire a READ LOCK (aka "SHARED" lock)
• All these transactions may read happily
• They all read data from the database file
• If the transaction commits without writing

anything, then it simply releases the lock

DATA514 - Winter 2018 63

Sqlite

Step 2: when one transaction wants to write
• Acquire a RESERVED LOCK
• May coexists with many READ LOCKs
• Writer TXN may write; these updates are only

in main memory; others don't see the updates
• Reader TXN continue to read from the file
• New readers accepted
• No other TXN is allowed a RESERVED LOCK

DATA514 - Winter 2018 64

Sqlite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks
• Acquire a PENDING LOCK
• May coexists with old READ LOCKs
• No new READ LOCKS are accepted
• Wait for all read locks to be released

DATA514 - Winter 2018 65

Why not write
to disk right now?

Sqlite

Step 4: when all read locks have been released
• Acquire the EXCLUSIVE LOCK
• Nobody can touch the database now
• All updates are written permanently to the

database file

• Release the lock and COMMIT

DATA514 - Winter 2018 66

Sqlite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

DATA514 - Winter 2018 67

Demonstrating Locking in SQLite

T1:
begin transaction;
select * from r;
-- T1 has a READ LOCK

T2:
begin transaction;
select * from r;
-- T2 has a READ LOCK

DATA514 - Winter 2018 68

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:
update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

DATA514 - Winter 2018 69

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

DATA514 - Winter 2018 70

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

DATA514 - Winter 2018 71

Demonstrating Locking in SQLite

T3':
begin transaction;
select * from r;
-- T3 asked for READ LOCK-- DENIED (due to

T1)

T2:
commit;
-- releases the last READ LOCK; T1 can commit72

Recap
• What are transactions

– And why do we need them

• How to maintain ACID properties via schedules
– We focus on the isolation property
– We do not discuss atomicity

• How to ensure conflict-serializable schedules with
locks

DATA514 - Winter 2018 73

Lock Performance

DATA514 - Winter 2018 74

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

75

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

DATA514 - Winter 2018

Phantom Problem

Is this schedule serializable ?

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘A3’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

DATA514 - Winter 2018 76

Phantom Problem

77

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

DATA514 - Winter 2018

Suppose there are two blue products, A1, A2:

Phantom Problem

78

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

DATA514 - Winter 2018W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)

79

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

DATA514 - Winter 2018

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !
DATA514 - Winter 2018 80

81

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

DATA514 - Winter 2018

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

82

Possible problems: dirty and inconsistent reads

DATA514 - Winter 2018

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

83

Unrepeatable reads
When reading same element twice,
may get two different values

DATA514 - Winter 2018

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

84

This is not serializable yet !!!

Why ?

DATA514 - Winter 2018

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

85DATA514 - Winter 2018

Beware!
In commercial DBMSs:

• Default level is often NOT serializable
• Default level differs between DBMSs
• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs
• Bottom line: Read the doc for your DBMS!

DATA514 - Winter 2018 86

Next two slides: try them on Azure

DATA514 - Winter 2018 87

Demonstration with SQL Server
Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock

Application 2:
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
insert into R values(2); -- blocked waiting on exclusive lock

-- App 2 unblocks and executes insert after app 1
commits/aborts

DATA514 - Winter 2018 88

Demonstration with SQL Server
Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock

Application 2:
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
insert into R values(3); -- gets an exclusive lock on new tuple

-- If app 1 reads now, it blocks because read dirty
-- If app 1 reads after app 2 commits, app 1 sees new value

DATA514 - Winter 2018 89

