Database Systems
CSE 514

Lectures 06
Size Estimation; NoSQL, JSon

DATAS514 - Winter 2018

Today

 Database statistics and size estimation

 NoSQL and the semistructured data model

DATAS514 - Winter 2018

Query Evaluation Steps

Translate query
string into internal
representation

Logical plan -
physical plan

SQL query
l

[Parse & Check Query]

\ 4

-

Decide how best to
answer query:. query
optimization

)

A

Query Execution

!

Return Results
DATA514 - Winter 2018

Check syntax,
access control,
table names, etc.

Query

Evaluation

Database Statistics

e Collect statistical summaries of stored data
 Estimate size (=cardinality), bottom-up

e Estimate cost by using the estimated size

DATAS514 - Winter 2018

Database Statistics

« Number of tuples T(R) = cardinality
* Number of distinct values of attribute a V(R,a)

« Other statistics (later)

Collection approach: periodic, using sampling 5

Size Estimation Problem

S =SELECT*
FROM R1,...,Rn
WHERE cond; AND cond, AND . .. AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

DATAS514 - Winter 2018 6

Size Estimation Problem

S=SELECT*
FROM R1,...,Rn
WHERE cond; AND cond, AND . .. AND cond,

Remark: T(S) = T(R1) x T(R2) x ... x T(Rn)

DATAS514 - Winter 2018 7

Selectivity Factor

« Each condition cond reduces the size by
some factor called selectivity factor

* Assuming independence, multiply the
selectivity factors

DATAS514 - Winter 2018

Example

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B =S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A< 40 is 2

What is the estimated size of the query output ?

DATAS514 - Winter 2018 9

Example

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k
Selectivity of R.B =S.B is 1/3

Selectivity of S.C=T.Cis 1/10
Selectivity of R A< 40 is 2

What is the estimated size of the query output ?
30k * 200k * 10k * 1/3 * 1/10 * %

Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates

DATAS514 - Winter 2018 11

Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates

(X1, Xs, ..., X), drawn randomly, independently from R, ..., R,

Pr(R,.A=40) = prob. that random tuple in R, has A=40

Descriptive attribute Join indicator (in class...)

Pr(R,.A=40 and Jz; 5 - roc and R,.D = 90) = prob. that ...

E[|SELECT ... WHERE Cond|] = Pr(Cond) * T(R,) * T(R,) * ... * T(R,)

Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates

Three simplifying assumptions

Uniform: Pr(R,.A="a’)=1/V(R, A)

Attribute Indep.: Pr(R;.A=‘a’and R;.B="b") =Pr(R,.A="a’) Pr(R,.B="b")

Join Indep.: Pr(R,,A="a and Jg;g=roc) = Pr(R;.-A=a") Pr(dg1 5= ro.c) 13

Rule of Thumb

e |f selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

DATAS514 - Winter 2018

14

Using Data Statistics

e Conditionis A=c [*value selection on R */
— Selectivity = 1/V(R,A)

 Conditionis A<c /*range selection on R */
— Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

« Conditionis A=B "R Dpg S
— Selectivity = 1 / max(V(R,A),V(S,A))

— (will explain next)

DATAS514 - Winter 2018 15

Selectivity of Join Predicates

Assumption:

« Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included In the set of
B values of S

— Note: this indeed holds when A is a foreign key in R,
and BisakeyinS

DATAS514 - Winter 2018 16

Selectivity of Join Predicates
Assume V(R,A) <= V/(S,B)
» Each tuple tin R joins with T(S)/V(S,B) tuple(s) in S
« Hence T(R M.z S) = T(R) T(S) / V(S,B)

In general: T(R -5 S) = T(R) T(S) / max(V(R,A),V(S,B))

DATAS514 - Winter 2018 17

Selectivity of Join Predicates

Example:

* T(R) = 10000, T(S) = 20000
* V(R,A) =100, V(S,B) =200
 How largeisR D<iy_g S ?

DATAS514 - Winter 2018

18

Histograms

 Statistics on data maintained by the RDBMS

« Makes size estimation much more accurate
(hence, cost estimations are more accurate)

DATAS514 - Winter 2018

19

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ? O,46528 and age<zs(EMpPoOlyee) = ?

DATAS514 - Winter 2018 20

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ? O,46528 and age<zs(EMpPoOlyee) = ?

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

DATAS514 - Winter 2018

21

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ? O,46528 and age<zs(EMpPoOlyee) = ?

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

Estimate = 1200

Estimate = 1*80 + 5*500 = 2582

Types of Histograms

« How should we determine the bucket
boundaries in a histogram ?

DATAS514 - Winter 2018

23

Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms

DATAS514 - Winter 2018

24

Employee(ssn, name, age)

Histograms
Eqg-width:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eq-depth:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

DATAS514 - Winter 2018

25

V-Optimal Histograms

« Defines bucket boundaries in an optimal way,
to minimize the error over all point queries

« Computed rather expensively, using dynamic
programming

* Modern databases systems use V-optimal
histograms or some variations

DATAS514 - Winter 2018 26

Discussion In Class

« Small number of buckets
— Hundreds, or thousands, but not more
— WHY ?

« Not updated during database update, but
recomputed periodically
— WHY ?

DATAS514 - Winter 2018

27

Multidimensional Histograms

Classical example:

SQL query: SELECT ... FROM ...
WHERE Person.city = ‘Seattle’ ...

User “optimizes” it to:

SELECT ... FROM ...
WHERE Person.city = ‘Seattle’
and Person.state = ‘WA’

Big problem! (Why?) 28

Multidimensional Histograms

o Store distributions on two or more attributes

* Curse of dimensionality: space grows
exponentially with dimension

* In practice: only two dimensional histograms

DATAS514 - Winter 2018

29

The New Hipster: NoSQL

DATA514 - Winter 2018

30

NoSQL Motivation

* Originally motivated by Web 2.0 applications

e Goalis to scale simple OLTP-style workloads
to thousands or millions of users
(in class: OLTP v.s. OLAP)

« Users are doing both updates and reads

DATAS514 - Winter 2018 31

What Is the Problem?

Single server DBMS are too small for Web data
Solution: scale out to multiple servers
This is hard for the entire functionality of DMBS

NoSQL: reduce functionality for easier scale up
— Simpler data model

— Simpler transactions -

Serverless

« One data file

« One user
DBMS . One DBMS application
Application
(SQLite) * But only a limited number of
scenarios work with such model

‘ DATAS514 - Winter 2018 33

Client-Server

Client
Applications

DATAS514 - Winter 2018 34

Client-Server

Client
Applications

DATAS514 - Winter 2018 35

Client-Server

Client
@P Applications
=

1

File 1

.

File 2 v

.

| EEEE |
DB Server

* One server running the database

« Many clients, connecting via the ODBC or JDBC
(Java Database Connectivibgrsyatogeler 2018 36

Client-Server

Supports many apps and
many users simultaneously

Server Machine

Client
Applications

File 1 =
-
\ e/
File 2 - ’TTIQ'
. '\?—_ '

|

| EEEE |
DB Server

* One server running the database

« Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol 37

Client-Server

* One server that runs the DBMS (or RDBMS):

— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

DATAS514 - Winter 2018

38

Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

« Many clients run apps and connect to DBMS
— Microsoft's Management Studio (for SQL Server), or
— psdgl (for postgres)
— Some Java program or some C++ program

DATAS514 - Winter 2018 39

Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)
« Many clients run apps and connect to DBMS
— Microsoft's Management Studio (for SQL Server), or
— psdgl (for postgres)
— Some Java program (HW5) or some C++ program
* Clients “talk™ to server using JDBC/ODBC
protocol

DATAS514 - Winter 2018 40

3-Tiers DBMS Deployment

File 1
\/_

File 2 ’
\/_

DB

erver

DATAS514 - Winter 2018 41

3-Tiers DBMS Deployment

\R

File 1 =
\/_
1 | Connection —_—
File 2 (e.g., JDBC) |°
\/_

===
DB

erver App+Web Server

DATAS514 - Winter 2018 42

3-Tiers DBMS Deployment

\R

File 1 —
\/_
1 | Connection —_
File 2 (e.g., JDBC) |°
\/_

| EEEE |
DB Server

[Web-based applications}

App+Web Server

DATAS514 - Winter 2018 43

3-Tiers DBMS Deployment

Flle 1 / App+V\7e=b=S=erver bl

— | "1/'
~— | Connection [— _

File 2 (e.g., JIDBC)| |——

- ®

HTTP/SSL

F | I e 3 App+V\7e=b=S=erver
DB

erver PR

 —

oV
A
L) AR
- ‘.
N
Al
PP
ZrN)
oV
a1
—_— | B .),
2
@
N
Al
PP
ZrN)

oV
App+Web Server 44 Y W

Replicate
App server

for scaleup
Flle 1 App+V\7e=b=S=erver
\/_
~— 1 | Connection [— _
File 2)
g (e.g., JDBC)| | ——
L__1| HTTP/SSL g
===z | App+Web Server , j
DB Server —
Why don’t we replicate ' \ 18-
the DB server too? oy Web Server 45 W H

Replicating the Database

 Much harder, because the state must be
unique, in other words the database must act

as a whole

« Two basic approaches:
— Scale up through partitioning
— Scale up through replication

DATAS514 - Winter 2018

46

Scale Through Partitioning

« Partition the database across many machines in a cluster
— Database now fits in main memory
— Queries spread across these machines

« Can increase throughput
« Easy for writes but reads become expensive!

Transaction

starts here Also touches

data here

Three partitions
DATA514 - Winter 2018 47

Scale Through Replication

« Create multiple copies of each database patrtition
e Spread gueries across these replicas

« Can increase throughput and lower latency

« Can also improve fault-tolerance

« Easy for reads but writes become expensive!

Some
requests

Other
requests

Three replicas
DATA514 - Winter 2018 48

Data Models

Taxonomy based on data models:

>~ » Key-value stores
— e.g., Project Voldemort, Memcached

 Document stores
— e.g., SimpleDB, CouchDB, MongoDB

 Extensible Record Stores
— e.g., HBase, Cassandra

DATAS514 - Winter 2018

49

Key-Value Stores Features

« Data model: (key,value) pairs
— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)

 Operations
— Get(key), Put(key,value)
— Operations on value not supported

« Distribution / Partitioning
— No replication: key k Is stored at server h(k)

— 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

50

Flights(fid, date, carrier, flight _num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

How does query processing work?

51

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

« Option 2: key=date, value=all flights that day

How does query processing work?

52

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record
« Option 2: key=date, value=all flights that day

* Option 3: key=(origin,dest), value=all flights between

How does query processing work? 53

Key-Value Stores Internals

— Data remains in main memory

— One type of impl.: distributed hash table

— Most systems also offer a persistence option

— Others use replication to provide fault-tolerance

— Some offer ACID transactions others do not

DATAS514 - Winter 2018

54

Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

= * Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

DATAS514 - Winter 2018

55

Document Stores Features

« Data model: (key,document) pairs
— Key = string/integer, unique for the entire data
— Document = JSon, or XML

 Operations
— Get/put document by key
— Limited, non-standard query language on JSon

« Distribution / Partitioning
— Entire documents, as for key/value pairs

We will discuss JSon today 56

Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

 Document stores
— e.g., SimpleDB, CouchDB, MongoDB

—=* Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

DATAS514 - Winter 2018

57

Extensible Record Stores

Based on Google’s BigTable
Data model is rows and columns

Scalability by splitting rows and columns over nodes

HBase is an open source implementation of BigTable

DATAS514 - Winter 2018 58

JSon and Semistructured Data

DATAS514 - Winter 2018

59

Where We Are

 So far we have studied the relational data model

— Data is stored in tables(=relations)

— Queries are expressions in the relational calculus (or
relational algebra, or datalog, or SQL...)

« Today: Semistructured data model
— Popular formats today: XML, JSon, protobuf

DATAS514 - Winter 2018 60

JSON - Overview

« JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

* The filename extension Is .json.

We will emphasize JSon as semi-structured data

JSon vs Relational

Relational data model
— Flat structure (tables)
— Schema must be fixed in advanced
— Binary representation: good for performance, bad for exchange
— Query language based on Relational Calculus

Semistructured data model / JSon
— Flexible, nested structure (trees)
— Does not require predefined schema ("self describing”)
— Text representation: good for exchange, bad for performance

DATAS514 - Winter 2018

62

JSon Syntax

{ "book": [

{"id":"01",
"language": "Java’,
"author": "H. Javeson’,
“year”. 2015

2

{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp”,
“price”; 22.25

}

DATAS514 - Winter 2018

JSon Terminology

« Data Is represented in name/value pairs.

« Curly braces hold objects

— Each object is a list of name/value pairs separated
by , (comma)

— Each pair is a name is followed by ":'(colon)
followed by the value

e Square brackets hold arrays and values are
separated by ,(comma).

DATAS514 - Winter 2018 64

JSon Data Structures

« Collections of name-value pairs:
— {"namel”: value1, “name2”; value2, ...}
— The "name” is also called a “key”

 Ordered lists of values:
— [obj1, obj2, obj3, ...]

DATAS514 - Winter 2018

65

Avoid Using Duplicate Keys

The standard allows them, but many implementations don’t

{id":"07",
“title": "Databases”,

"author": "Ullman”,

{"id":"07",
“title": "Databases’,
"author": "Garcia-Molina”, "author": ["Garcia-Molina”,
"Ullman”,
"Widom”]

"author": "Widom”

}

DATAS514 - Winter 2018 66

JSon Datatypes

Number

String = double-quoted
Boolean = true or false
nullempty

DATAS514 - Winter 2018

67

JSon Semantics: a Tree !

{*person”: @
[{*"name”: “Mary”, -

“‘address”:
{“street”."Maple”,
“n0”:345, v
S e 7 Come S22 o
address”: “Thailand’, @@@@ @

“phone™2345678
 Pronerzssred G ™ o>

) Cuerie) (395) seatt

DATAS514 - Winter 2018 68

JSon Data

JSon Is self-describing

Schema elements become part of the data
— Relational schema: person(name,phone)

7 13 7 (13

— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

Consequence: JSon is much more flexible
JSon = semistructured data

DATAS514 - Winter 2018

69

Mapping Relational Data to JSon

person

N

namA naAne ée\)hone

Person

“‘John” 3634 “Sue” 6343 “Dirk” 6363
name phone

{*person”;

John 3634 [{“name”: “John”, “phone”:3634},
Sue 6343 {*name”: “Sue”, "phone”:6343},
. “name”: “Dirk”, "phone”:6383
Dirk 6363 { g }

]

DATAS514 - Winter 2018 70

Mapping Relational Data to JSon

May inline foreign keys

Person

name phone

John 3634

Sue 6343

Orders

personName |date |product
John 2002 | Gizmo
John 2004 | Gadget
Sue 2002 | Gadget

{*Person”:
[{“name”: “John”,
“phone”:3646,
“Orders™:[{"date”:2002,
“product”:"Gizmo’},
{*date”:2004,
“product”."Gadget”}

]
2
{*fname”: “Sue”,
“phone”:6343,
“Orders™:[{"date”:2002,
“product™."Gadget”}

]

JSon=Semi-structured Data (1/3)

« Missing attributes:

{"person”:
[{*name”."John”, “phone”:1234},
{“name”:"Joe"}] —<@
« Could represent in name | phone
a table with nulls John | 1234

Joe

DATAS514 - Winter 2018 72

JSon=Semi-structured Data (2/3)

* Repeated attributes

}

{"person”:
[{“name”:."John”, “phone”: 1234},
{"*name”:"Mary”, “phone™:[1234,5678]}]

* Impossible in

one table:

name

phone

Mary

2345

3456

DATAS514 - Winter 2018

b
Two phones !

P77

73

JSon=Semi-structured Data (3/3)

 Attributes with different types in different objects

{“person”:
[{"name”:"Sue”, “phone™:3456},
{"*name™{*first”."John”,"last™."Smith”},”"phone”:2345}

} | -

Structured
_ name !
 Nested collections

« Heterogeneous collections

DATAS514 - Winter 2018 74

