
Database Systems

CSE 514

Lectures 06

Size Estimation; NoSQL, JSon

DATA514 - Winter 2018 1

Today

• Database statistics and size estimation

• NoSQL and the semistructured data model

DATA514 - Winter 2018 2

Query Evaluation Steps

Parse & Check Query

Decide how best to

answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query

string into internal

representation

Check syntax,

access control,

table names, etc.

Query

Evaluation

3

Logical plan

physical plan

DATA514 - Winter 2018

DATA514 - Winter 2018 4

Database Statistics

• Collect statistical summaries of stored data

• Estimate size (=cardinality), bottom-up

• Estimate cost by using the estimated size

DATA514 - Winter 2018 5

Database Statistics

• Number of tuples T(R) = cardinality

• Number of distinct values of attribute a V(R,a)

• Other statistics (later)

Collection approach: periodic, using sampling

Size Estimation Problem

DATA514 - Winter 2018 6

S = SELECT *

 FROM R1, …, Rn

 WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)

Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

Size Estimation Problem

DATA514 - Winter 2018 7

Remark: T(S) ≤ T(R1) × T(R2) × … × T(Rn)

S = SELECT *

 FROM R1, …, Rn

 WHERE cond1 AND cond2 AND . . . AND condk

Selectivity Factor

• Each condition cond reduces the size by

some factor called selectivity factor

• Assuming independence, multiply the

selectivity factors

DATA514 - Winter 2018 8

Example

DATA514 - Winter 2018 9

SELECT *

FROM R, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)

S(B,C)

T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3

Selectivity of S.C = T.C is 1/10

Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

Example

DATA514 - Winter 2018 10

SELECT *

FROM R, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)

S(B,C)

T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3

Selectivity of S.C = T.C is 1/10

Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

30k * 200k * 10k * 1/3 * 1/10 * ½

= 1TB

Statistical Model

S = SELECT list

 FROM R1 as x1, …, Rk as xk

 WHERE Cond -- a conjunction of predicates

What is the probability space?

DATA514 - Winter 2018 11

Statistical Model

(x1, x2, …, xk), drawn randomly, independently from R1, ..., Rk

Pr(R1.A = 40) = prob. that random tuple in R1 has A=40

Pr(R1.A = 40 and JR1.B = R2.C and R2.D = 90) = prob. that …

E[|SELECT ... WHERE Cond|] = Pr(Cond) * T(R1) * T(R2) * ... * T(Rk)

What is the probability space?

S = SELECT list

 FROM R1 as x1, …, Rk as xk

 WHERE Cond -- a conjunction of predicates

Join indicator (in class…) Descriptive attribute

12

Statistical Model

What is the probability space?

Three simplifying assumptions

Uniform: Pr(R1.A = ‘a’) = 1/V(R1, A)

Attribute Indep.: Pr(R1.A = ‘a’ and R1.B = ‘b’) = Pr(R1.A = ‘a’) Pr(R1.B = ‘b’)

Join Indep.: Pr(R1.A = ‘a’ and JR1.B = R2.C) = Pr(R1.A = ‘a’) Pr(JR1.B = R2.C)

S = SELECT list

 FROM R1 as x1, …, Rk as xk

 WHERE Cond -- a conjunction of predicates

13

Rule of Thumb

• If selectivities are unknown, then:

selectivity factor = 1/10

[System R, 1979]

DATA514 - Winter 2018 14

15

Using Data Statistics

• Condition is A = c /* value selection on R */
– Selectivity = 1/V(R,A)

• Condition is A < c /* range selection on R */
– Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

• Condition is A = B /* R ⨝A=B S */
– Selectivity = 1 / max(V(R,A),V(S,A))

– (will explain next)

DATA514 - Winter 2018

16

Selectivity of Join Predicates

Assumption:

• Containment of values: if V(R,A) <= V(S,B), then

the set of A values of R is included in the set of

B values of S

– Note: this indeed holds when A is a foreign key in R,

and B is a key in S

DATA514 - Winter 2018

17

Selectivity of Join Predicates

Assume V(R,A) <= V(S,B)

• Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

• Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

DATA514 - Winter 2018

18

Selectivity of Join Predicates

Example:

• T(R) = 10000, T(S) = 20000

• V(R,A) = 100, V(S,B) = 200

• How large is R ⨝A=B S ?

DATA514 - Winter 2018

19

Histograms

• Statistics on data maintained by the RDBMS

• Makes size estimation much more accurate

(hence, cost estimations are more accurate)

DATA514 - Winter 2018

Histograms

DATA514 - Winter 2018 20

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

DATA514 - Winter 2018

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

21

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

22

Types of Histograms

• How should we determine the bucket

boundaries in a histogram ?

DATA514 - Winter 2018 23

Types of Histograms

• How should we determine the bucket

boundaries in a histogram ?

• Eq-Width

• Eq-Depth

• Compressed

• V-Optimal histograms

DATA514 - Winter 2018 24

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)
DATA514 - Winter 2018 25

V-Optimal Histograms

• Defines bucket boundaries in an optimal way,

to minimize the error over all point queries

• Computed rather expensively, using dynamic

programming

• Modern databases systems use V-optimal

histograms or some variations

DATA514 - Winter 2018 26

Discussion in Class

• Small number of buckets

– Hundreds, or thousands, but not more

– WHY ?

• Not updated during database update, but

recomputed periodically

– WHY ?

DATA514 - Winter 2018 27

Multidimensional Histograms

Classical example:

SQL query: SELECT … FROM …

WHERE Person.city = ‘Seattle’ …

User “optimizes” it to:

SELECT … FROM …

WHERE Person.city = ‘Seattle’

 and Person.state = ‘WA’

Big problem! (Why?) 28

Multidimensional Histograms

• Store distributions on two or more attributes

• Curse of dimensionality: space grows

exponentially with dimension

• In practice: only two dimensional histograms

DATA514 - Winter 2018 29

The New Hipster: NoSQL

DATA514 - Winter 2018 30

NoSQL Motivation

• Originally motivated by Web 2.0 applications

• Goal is to scale simple OLTP-style workloads

to thousands or millions of users

 (in class: OLTP v.s. OLAP)

• Users are doing both updates and reads

DATA514 - Winter 2018 31

What is the Problem?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for the entire functionality of DMBS

• NoSQL: reduce functionality for easier scale up

– Simpler data model

– Simpler transactions
32

Serverless

DATA514 - Winter 2018 33

User
SQLite:

• One data file

• One user

• One DBMS application

• But only a limited number of
scenarios work with such model

DBMS

Application

(SQLite)

File

Desktop

Data file

Disk

Client-Server

34

Client

Applications

DATA514 - Winter 2018

Client-Server

Connection (JDBC, ODBC)

35

Client

Applications

DATA514 - Winter 2018

Client-Server

Server Machine

Connection (JDBC, ODBC)

36

Client

Applications

• One server running the database

• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3

DATA514 - Winter 2018

Client-Server

Server Machine

Connection (JDBC, ODBC)

37

Client

Applications

• One server running the database

• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Supports many apps and

many users simultaneously

DB Server

File 1

File 2

File 3

38

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or

– Some beefy system, or

– A cloud service (SQL Azure)

DATA514 - Winter 2018

39

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or

– Some beefy system, or

– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or

– psql (for postgres)

– Some Java program or some C++ program

DATA514 - Winter 2018

40

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or

– Some beefy system, or

– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or

– psql (for postgres)

– Some Java program (HW5) or some C++ program

• Clients “talk” to server using JDBC/ODBC
protocol

DATA514 - Winter 2018

3-Tiers DBMS Deployment

DB Server

File 1

File 2

File 3

41

Browser

DATA514 - Winter 2018

3-Tiers DBMS Deployment

DB Server

File 1

File 2

File 3

42

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL

Browser

DATA514 - Winter 2018

3-Tiers DBMS Deployment

DB Server

File 1

File 2

File 3

43

App+Web Server

Web-based applications

Connection

(e.g., JDBC)

HTTP/SSL

Browser

DATA514 - Winter 2018

3-Tiers DBMS Deployment

DB Server

File 1

File 2

File 3

44

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

3-Tiers DBMS Deployment

DB Server

File 1

File 2

File 3

45

Why don’t we replicate

the DB server too?

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Replicate

App server

for scaleup

Replicating the Database

• Much harder, because the state must be

unique, in other words the database must act

as a whole

• Two basic approaches:

– Scale up through partitioning

– Scale up through replication

DATA514 - Winter 2018 46

Scale Through Partitioning

• Partition the database across many machines in a cluster

– Database now fits in main memory

– Queries spread across these machines

• Can increase throughput

• Easy for writes but reads become expensive!

DATA514 - Winter 2018 47

Transaction

starts here Also touches

data here

Three partitions

Scale Through Replication

• Create multiple copies of each database partition

• Spread queries across these replicas

• Can increase throughput and lower latency

• Can also improve fault-tolerance

• Easy for reads but writes become expensive!

DATA514 - Winter 2018 48

Some

requests
Other

requests

Three replicas

Data Models

Taxonomy based on data models:

• Key-value stores

– e.g., Project Voldemort, Memcached

• Document stores

– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores

– e.g., HBase, Cassandra

DATA514 - Winter 2018 49

☞

Key-Value Stores Features

• Data model: (key,value) pairs

– Key = string/integer, unique for the entire data

– Value = can be anything (very complex object)

• Operations

– Get(key), Put(key,value)

– Operations on value not supported

• Distribution / Partitioning

– No replication: key k is stored at server h(k)

– 3-way replication: key k stored at h1(k),h2(k),h3(k)

 How does get(k) work? How does put(k,v) work? 50

Example

• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)

Carriers(cid, name)

How does query processing work? 51

Example

• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)

Carriers(cid, name)

How does query processing work? 52

Example

• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)

Carriers(cid, name)

How does query processing work? 53

Key-Value Stores Internals

– Data remains in main memory

– One type of impl.: distributed hash table

– Most systems also offer a persistence option

– Others use replication to provide fault-tolerance

– Some offer ACID transactions others do not

DATA514 - Winter 2018 54

Data Models

Taxonomy based on data models:

• Key-value stores

– e.g., Project Voldemort, Memcached

• Document stores

– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

DATA514 - Winter 2018 55

☞

Document Stores Features

• Data model: (key,document) pairs

– Key = string/integer, unique for the entire data

– Document = JSon, or XML

• Operations

– Get/put document by key

– Limited, non-standard query language on JSon

• Distribution / Partitioning

– Entire documents, as for key/value pairs

We will discuss JSon today 56

Data Models

Taxonomy based on data models:

• Key-value stores

– e.g., Project Voldemort, Memcached

• Document stores

– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

DATA514 - Winter 2018 57

☞

Extensible Record Stores

• Based on Google’s BigTable

• Data model is rows and columns

• Scalability by splitting rows and columns over nodes

• HBase is an open source implementation of BigTable

DATA514 - Winter 2018 58

JSon and Semistructured Data

DATA514 - Winter 2018 59

Where We Are

• So far we have studied the relational data model

– Data is stored in tables(=relations)

– Queries are expressions in the relational calculus (or

relational algebra, or datalog, or SQL…)

• Today: Semistructured data model

– Popular formats today: XML, JSon, protobuf

DATA514 - Winter 2018 60

JSON - Overview

• JavaScript Object Notation = lightweight text-

based open standard designed for human-

readable data interchange. Interfaces in C,

C++, Java, Python, Perl, etc.

• The filename extension is .json.

DATA514 - Winter 2018 61 We will emphasize JSon as semi-structured data

JSon vs Relational

• Relational data model

– Flat structure (tables)

– Schema must be fixed in advanced

– Binary representation: good for performance, bad for exchange

– Query language based on Relational Calculus

• Semistructured data model / JSon

– Flexible, nested structure (trees)

– Does not require predefined schema ("self describing”)

– Text representation: good for exchange, bad for performance

DATA514 - Winter 2018 62

63

JSon Syntax
{ "book": [

 {"id":"01",

 "language": "Java”,

 "author": ”H. Javeson”,

 “year”: 2015

 },

 {"id":"07",

 "language": "C++",

 "edition": "second"

 "author": ”E. Sepp”,

 “price”: 22.25

 }

]

}

DATA514 - Winter 2018

JSon Terminology

• Data is represented in name/value pairs.

• Curly braces hold objects

– Each object is a list of name/value pairs separated

by , (comma)

– Each pair is a name is followed by ':'(colon)

followed by the value

• Square brackets hold arrays and values are

separated by ,(comma).

DATA514 - Winter 2018 64

JSon Data Structures

• Collections of name-value pairs:

– {“name1”: value1, “name2”: value2, …}

– The “name” is also called a “key”

• Ordered lists of values:

– [obj1, obj2, obj3, ...]

DATA514 - Winter 2018 65

Avoid Using Duplicate Keys

DATA514 - Winter 2018 66

{"id":"07",

 ”title": ”Databases”,

 "author": ”Garcia-Molina”,

 "author": ”Ullman”,

 "author": ”Widom”

}

{"id":"07",

 ”title": ”Databases”,

 "author": [”Garcia-Molina”,

 ”Ullman”,

 ”Widom”]

}

The standard allows them, but many implementations don’t

JSon Datatypes

• Number

• String = double-quoted

• Boolean = true or false

• null empty

DATA514 - Winter 2018 67

68

JSon Semantics: a Tree !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John

Thai

phone

23456

{“person”:

 [{“name”: “Mary”,

 “address”:

 {“street”:“Maple”,

 “no”:345,

 “city”: “Seattle”}},

{“name”: “John”,

 “address”: “Thailand”,

 “phone”:2345678}}

]

}

DATA514 - Winter 2018

69

JSon Data

• JSon is self-describing

• Schema elements become part of the data

– Relational schema: person(name,phone)

– In Json “person”, “name”, “phone” are part of the

data, and are repeated many times

• Consequence: JSon is much more flexible

• JSon = semistructured data

DATA514 - Winter 2018

Mapping Relational Data to JSon

DATA514 - Winter 2018 70

name name name phone phone phone

“John” 3634 “Sue” “Dirk” 6343 6363

Person

person

name phone

John 3634

Sue 6343

Dirk 6363

{“person”:

 [{“name”: “John”, “phone”:3634},

 {“name”: “Sue”, ”phone”:6343},

 {“name”: “Dirk”, ”phone”:6383}

]

}

Mapping Relational Data to JSon

71

Person

name phone

John 3634

Sue 6343

May inline foreign keys

Orders

personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
 “phone”:3646,
 “Orders”:[{“date”:2002,
 “product”:”Gizmo”},
 {“date”:2004,
 “product”:”Gadget”}
]
 },
 {“name”: “Sue”,
 “phone”:6343,
 “Orders”:[{“date”:2002,
 “product”:”Gadget”}
]
 }
]

}

72

JSon=Semi-structured Data (1/3)

• Missing attributes:

• Could represent in

a table with nulls
name phone

John 1234

Joe -

DATA514 - Winter 2018

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Joe”}]
}

no phone !

73

JSon=Semi-structured Data (2/3)

• Repeated attributes

• Impossible in

one table:
name phone

Mary 2345 3456 ???

DATA514 - Winter 2018

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Mary”, “phone”:[1234,5678]}]
}

Two phones !

74

JSon=Semi-structured Data (3/3)

• Attributes with different types in different objects

• Nested collections

• Heterogeneous collections

DATA514 - Winter 2018

{“person”:
 [{“name”:”Sue”, “phone”:3456},
 {“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]
}

Structured

name !

