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Today

 Database statistics and size estimation

 NoSQL and the semistructured data model
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Database Statistics

e Collect statistical summaries of stored data
 Estimate size (=cardinality), bottom-up

e Estimate cost by using the estimated size
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Database Statistics

« Number of tuples T(R) = cardinality
* Number of distinct values of attribute a V(R,a)

« Other statistics (later)

Collection approach: periodic, using sampling 5




Size Estimation Problem

S =SELECT*
FROM R1,...,Rn
WHERE cond; AND cond, AND . .. AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.
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Size Estimation Problem

S=SELECT*
FROM R1,...,Rn
WHERE cond; AND cond, AND . .. AND cond,

Remark: T(S) = T(R1) x T(R2) x ... x T(Rn)
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Selectivity Factor

« Each condition cond reduces the size by
some factor called selectivity factor

* Assuming independence, multiply the
selectivity factors
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Example

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B =S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A< 40 is 2

What is the estimated size of the query output ?
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Example

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k
Selectivity of R.B =S.B is 1/3

Selectivity of S.C=T.Cis 1/10
Selectivity of R A< 40 is 2

What is the estimated size of the query output ?
30k * 200k * 10k * 1/3 * 1/10 * %



Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates
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Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates

(X1, Xs, ..., X), drawn randomly, independently from R, ..., R,

Pr(R,.A=40) = prob. that random tuple in R, has A=40

Descriptive attribute Join indicator (in class...)

Pr(R,.A=40 and Jz; 5 - roc and R,.D = 90) = prob. that ...

E[ |SELECT ... WHERE Cond| ] = Pr(Cond) * T(R,) * T(R,) * ... * T(R,)



Statistical Model

What is the probability space?

S = SELECT list
FROM Rj;as Xy, ..., R as x,
WHERE Cond -- a conjunction of predicates

Three simplifying assumptions

Uniform: Pr(R,.A="a’)=1/V(R, A)

Attribute Indep.: Pr(R;.A=‘a’and R;.B="b" ) =Pr(R,.A="a’) Pr(R,.B="b")

Join Indep.: Pr(R,,A="a and Jg;g=roc) = Pr(R;.-A=a") Pr(dg1 5= ro.c) 13




Rule of Thumb

e |f selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]
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Using Data Statistics

e Conditionis A=c [*value selection on R */
— Selectivity = 1/V(R,A)

 Conditionis A<c /*range selection on R */
— Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

« Conditionis A=B "R Dpg S
— Selectivity = 1 / max(V(R,A),V(S,A))

— (will explain next)
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Selectivity of Join Predicates

Assumption:

« Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included In the set of
B values of S

— Note: this indeed holds when A is a foreign key in R,
and BisakeyinS
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Selectivity of Join Predicates
Assume V(R,A) <= V/(S,B)
» Each tuple tin R joins with T(S)/V(S,B) tuple(s) in S
« Hence T(R M.z S) = T(R) T(S) / V(S,B)

In general: T(R -5 S) = T(R) T(S) / max(V(R,A),V(S,B))
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Selectivity of Join Predicates

Example:

* T(R) = 10000, T(S) = 20000
* V(R,A) =100, V(S,B) =200
 How largeisR D<iy_g S ?
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Histograms

 Statistics on data maintained by the RDBMS

« Makes size estimation much more accurate
(hence, cost estimations are more accurate)
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Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ?  O,46528 and age<zs(EMpPoOlyee) = ?
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Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ?  O,46528 and age<zs(EMpPoOlyee) = ?

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500
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Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Oage=ag(EMPOly€E) = ?  O,46528 and age<zs(EMpPoOlyee) = ?

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

Estimate = 1200

Estimate = 1*80 + 5*500 = 2582




Types of Histograms

« How should we determine the bucket
boundaries in a histogram ?
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Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms
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Employee(ssn, name, age)

Histograms
Eqg-width:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eq-depth:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)
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V-Optimal Histograms

« Defines bucket boundaries in an optimal way,
to minimize the error over all point queries

« Computed rather expensively, using dynamic
programming

* Modern databases systems use V-optimal
histograms or some variations
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Discussion In Class

« Small number of buckets
— Hundreds, or thousands, but not more
— WHY ?

« Not updated during database update, but
recomputed periodically
— WHY ?
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Multidimensional Histograms

Classical example:

SQL query: SELECT ... FROM ...
WHERE Person.city = ‘Seattle’ ...

User “optimizes” it to:

SELECT ... FROM ...
WHERE Person.city = ‘Seattle’
and Person.state = ‘WA’

Big problem! (Why?) 28




Multidimensional Histograms

o Store distributions on two or more attributes

* Curse of dimensionality: space grows
exponentially with dimension

* In practice: only two dimensional histograms
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The New Hipster: NoSQL
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NoSQL Motivation

* Originally motivated by Web 2.0 applications

e Goalis to scale simple OLTP-style workloads
to thousands or millions of users
(in class: OLTP v.s. OLAP)

« Users are doing both updates and reads
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What Is the Problem?

Single server DBMS are too small for Web data
Solution: scale out to multiple servers
This is hard for the entire functionality of DMBS

NoSQL: reduce functionality for easier scale up
— Simpler data model

— Simpler transactions -



Serverless

« One data file

« One user
DBMS . One DBMS application
Application
(SQLite) * But only a limited number of
scenarios work with such model
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Client-Server

Client
Applications
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Client-Server

Client
Applications
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Client-Server

Client
@P Applications
=

1

File 1

.

File 2 v

.

| EEEE |
DB Server

* One server running the database

« Many clients, connecting via the ODBC or JDBC
(Java Database Connectivibgrsyatogeler 2018 36




Client-Server

Supports many apps and
many users simultaneously

Server Machine

Client
Applications

File 1 =
-
\ e/
File 2 - ’TTIQ'
. '\?—_ '

|

| EEEE |
DB Server

* One server running the database

« Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol 37




Client-Server

* One server that runs the DBMS (or RDBMS):

— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

DATAS514 - Winter 2018

38



Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

« Many clients run apps and connect to DBMS
— Microsoft's Management Studio (for SQL Server), or
— psdgl (for postgres)
— Some Java program or some C++ program
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Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)
« Many clients run apps and connect to DBMS
— Microsoft's Management Studio (for SQL Server), or
— psdgl (for postgres)
— Some Java program (HW5) or some C++ program
* Clients “talk™ to server using JDBC/ODBC
protocol
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3-Tiers DBMS Deployment

File 1
\/_

File 2 ’
\/_

DB

erver
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3-Tiers DBMS Deployment

\R

File 1 =
\/_
1 | Connection —_—
File 2 (e.g., JDBC) |°
\/_

===
DB

erver App+Web Server
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3-Tiers DBMS Deployment

\R

File 1 —
\/_
1 | Connection —_
File 2 (e.g., JDBC) |°
\/_

| EEEE |
DB Server

[Web-based applications}

App+Web Server
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3-Tiers DBMS Deployment
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Replicate
App server

for scaleup
Flle 1 App+V\7e=b=S=erver
\/_
~— 1 | Connection [ — _
File 2 )
g (e.g., JDBC)| | ——
L__1| HTTP/SSL g
===z | App+Web Server , j
DB Server —
Why don’t we replicate ' \ 18-
the DB server too? oy Web Server 45 W H




Replicating the Database

 Much harder, because the state must be
unique, in other words the database must act

as a whole

« Two basic approaches:
— Scale up through partitioning
— Scale up through replication

DATAS514 - Winter 2018
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Scale Through Partitioning

« Partition the database across many machines in a cluster
— Database now fits in main memory
— Queries spread across these machines

« Can increase throughput
« Easy for writes but reads become expensive!

Transaction

starts here Also touches

data here

Three partitions
DATA514 - Winter 2018 47



Scale Through Replication

« Create multiple copies of each database patrtition
e Spread gueries across these replicas

« Can increase throughput and lower latency

« Can also improve fault-tolerance

« Easy for reads but writes become expensive!

Some
requests

Other
requests

Three replicas
DATA514 - Winter 2018 48



Data Models

Taxonomy based on data models:

>~ » Key-value stores
— e.g., Project Voldemort, Memcached

 Document stores
— e.g., SimpleDB, CouchDB, MongoDB

 Extensible Record Stores
— e.g., HBase, Cassandra

DATAS514 - Winter 2018
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Key-Value Stores Features

« Data model: (key,value) pairs
— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)

 Operations
— Get(key), Put(key,value)
— Operations on value not supported

« Distribution / Partitioning
— No replication: key k Is stored at server h(k)

— 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?
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Flights(fid, date, carrier, flight _num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

How does query processing work?

51



Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

« Option 2: key=date, value=all flights that day

How does query processing work?
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Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record
« Option 2: key=date, value=all flights that day

* Option 3: key=(origin,dest), value=all flights between

How does query processing work? 53




Key-Value Stores Internals

— Data remains in main memory

— One type of impl.: distributed hash table

— Most systems also offer a persistence option

— Others use replication to provide fault-tolerance

— Some offer ACID transactions others do not

DATAS514 - Winter 2018
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Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

= * Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

DATAS514 - Winter 2018
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Document Stores Features

« Data model: (key,document) pairs
— Key = string/integer, unique for the entire data
— Document = JSon, or XML

 Operations
— Get/put document by key
— Limited, non-standard query language on JSon

« Distribution / Partitioning
— Entire documents, as for key/value pairs

We will discuss JSon today 56




Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

 Document stores
— e.g., SimpleDB, CouchDB, MongoDB

—=* Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

DATAS514 - Winter 2018
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Extensible Record Stores

Based on Google’s BigTable
Data model is rows and columns

Scalability by splitting rows and columns over nodes

HBase is an open source implementation of BigTable
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JSon and Semistructured Data

DATAS514 - Winter 2018
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Where We Are

 So far we have studied the relational data model

— Data is stored in tables(=relations)

— Queries are expressions in the relational calculus (or
relational algebra, or datalog, or SQL...)

« Today: Semistructured data model
— Popular formats today: XML, JSon, protobuf
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JSON - Overview

« JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

* The filename extension Is .json.

We will emphasize JSon as semi-structured data



JSon vs Relational

Relational data model
— Flat structure (tables)
— Schema must be fixed in advanced
— Binary representation: good for performance, bad for exchange
— Query language based on Relational Calculus

Semistructured data model / JSon
— Flexible, nested structure (trees)
— Does not require predefined schema ("self describing”)
— Text representation: good for exchange, bad for performance

DATAS514 - Winter 2018

62



JSon Syntax

{ "book": [

{"id":"01",
"language": "Java’,
"author": "H. Javeson’,
“year”. 2015

2

{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp”,
“price”; 22.25

}
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JSon Terminology

« Data Is represented in name/value pairs.

« Curly braces hold objects

— Each object is a list of name/value pairs separated
by , (comma)

— Each pair is a name is followed by ":'(colon)
followed by the value

e Square brackets hold arrays and values are
separated by ,(comma).
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JSon Data Structures

« Collections of name-value pairs:
— {"namel”: value1, “name2”; value2, ...}
— The "name” is also called a “key”

 Ordered lists of values:
— [obj1, obj2, obj3, ...]

DATAS514 - Winter 2018
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Avoid Using Duplicate Keys

The standard allows them, but many implementations don’t

{id":"07",
“title": "Databases”,

"author": "Ullman”,

{"id":"07",
“title": "Databases’,
"author": "Garcia-Molina”, "author": ["Garcia-Molina”,
"Ullman”,
"Widom”]

"author": "Widom”

}
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JSon Datatypes

Number

String = double-quoted
Boolean = true or false
nullempty

DATAS514 - Winter 2018
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JSon Semantics: a Tree !

{*person”: @
[ {*"name”: “Mary”, -

“‘address”:
{“street”."Maple”,
“n0”:345, v
S e 7 Come S22 o
address”: “Thailand’, @@@@ @

“phone™2345678
 Pronerzssred G ™ o>

) Cuerie ) (395 ) seatt
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JSon Data

JSon Is self-describing

Schema elements become part of the data
— Relational schema: person(name,phone)

7 13 7 (13

— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

Consequence: JSon is much more flexible
JSon = semistructured data

DATAS514 - Winter 2018
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Mapping Relational Data to JSon

person

N

namA naAne ée\)hone

Person

“‘John” 3634 “Sue” 6343 “Dirk” 6363
name phone

{*person”;

John 3634 [{“name”: “John”, “phone”:3634},
Sue 6343 {*name”: “Sue”, "phone”:6343},
. “name”: “Dirk”, "phone”:6383
Dirk 6363 { g }

]
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Mapping Relational Data to JSon

May inline foreign keys

Person

name phone

John 3634

Sue 6343

Orders

personName |date |product
John 2002 | Gizmo
John 2004 | Gadget
Sue 2002 | Gadget

{*Person”:
[{“name”: “John”,
“phone”:3646,
“Orders™:[{"date”:2002,
“product”:"Gizmo’},
{*date”:2004,
“product”."Gadget”}

]
2
{*fname”: “Sue”,
“phone”:6343,
“Orders™:[{"date”:2002,
“product™."Gadget”}

]




JSon=Semi-structured Data (1/3)

« Missing attributes:

{"person”:
[{*name”."John”, “phone”:1234},
{“name”:"Joe"}] —<@
« Could represent in name | phone
a table with nulls John | 1234

Joe
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JSon=Semi-structured Data (2/3)

* Repeated attributes

}

{"person”:
[{“name”:."John”, “phone”: 1234},
{"*name”:"Mary”, “phone™:[1234,5678]}]

* Impossible in

one table:

name

phone

Mary

2345

3456
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JSon=Semi-structured Data (3/3)

 Attributes with different types in different objects

{“person”:
[{"name”:"Sue”, “phone™:3456},
{"*name™{*first”."John”,"last™."Smith”},”"phone”:2345}

} | -

Structured
_ name !
 Nested collections

« Heterogeneous collections
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