Database Systems DATA 514

Lecture 5: E/R Diagrams and Constraints

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

 The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
- Reading: Sec. 4.1-4.6

Database Design Process

Conceptual Model:

Relational Model:

Tables + constraints

And also functional dep.

Normalization:

Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema

Entity / Relationship Diagrams

- Entity set = a class
 - An entity = an object

Product

Attribute

city

Relationship

Keys in E/R Diagrams

Every entity set must have a key

What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of A × B
- A={1,2,3}, B={a,b,c,d},
 A × B = {(1,a),(1,b), . . . , (3,d)}
 R = {(1,a), (1,c), (3,b)}

makes is a subset of Product × Company:

Multiplicity of E/R Relations

one-one:

•

many-one

many-many

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (Q. how?)

A. As a set of triples ⊆ Person × Product × Store

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store

[Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to **DATA514 - Winter 2018** at most one entity in E

12

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

Converting Multi-way Relationships to Binary

Converting Multi-way Relationships to Binary

3. Design Principles

What's wrong?

Moral: be faithful to the specifications of the app!

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set → relation
- Relationship → relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

N-N Relationships to Relations

Represent this in relations

N-N Relationships to Relations

Shipment(prod-ID,cust-ID, name, date)

Shipping-Co(name, address)

prod-ID	cust-ID	name	date
Gizmo55	Joe12	UPS	4/10/2011
Gizmo55	Joe12	FEDEX	4/9/2011

N-1 Relationships to Relations

Represent this in relations

N-1 Relationships to Relations

Orders(prod-ID,cust-ID, date1, name, date2) Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Multi-way Relationships to Relations

Purchase(prod-ID, ssn, name)

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a subclass

So --- we define subclasses in E/R

Subclasses to Relations

Product

<u>Name</u>	Price	Category
Gizmo	99	gadget
Camera	49	photo
Toy	39	gadget

Sw.Product

<u>Name</u>	platforms
Gizmo	unix

Software Product

Educational Product

Age Group

Other ways to convert are possible

DATA514 - Winter 2018

Ed.Product

<u>Name</u>	Age Group
Gizmo	toddler
Toy	retired

Modeling Union Types with Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>) University(<u>name</u>)

What Are the Keys of R? R B W

What makes good schemas?

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

- ICs help prevent entry of incorrect information
- How? DBMS enforces integrity constraints
 - Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 - Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Single Value Constraints

Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by *exactly* one company.

Other Constraints

Q: What does this mean?

A: A Company entity cannot be connected by relationship to more than 99 Product entities

Constraints in SQL

Constraints in SQL:

- Keys, foreign keys
- Attribute-level constraints
- Tuple-level constraints
- Global constraints: assertions

Most complex

simplest

 The more complex the constraint, the harder it is to check and to enforce

Key Constraints

Product(name, category)

```
CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))
```

OR:

```
CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
PRIMARY KEY (name))
```

Keys with Multiple Attributes

Product(name, category, price)

```
CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (name, category))
```

Name	Category	Price
Gizmo	Gadget	10
Camera	Photo	20
Gizmo	Photo	30
Gizmo	Gadget	40

Other Keys

```
CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))
```

There is at most one PRIMARY KEY; there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product(name),
date DATETIME)

Referential integrity constraints

prodName is a **foreign key** to Product(name) name must be a **key** in Product

May write just Product if name is PK

Foreign Key Constraints

Example with multi-attribute primary key

```
CREATE TABLE Purchase (
    prodName CHAR(30),
    category VARCHAR(20),
    date DATETIME,
    FOREIGN KEY (prodName, category)
    REFERENCES Product(name, category)
```

(name, category) must be a KEY in Product

What happens when data changes?

Types of updates:

- In Purchase: insert/update
- In Product: delete/update

Product

Name	Category
Gizmo	gadget
Camera	Photo
OneClick	Photo

Purchase

ProdName	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz

What happens when data changes?

- SQL has three policies for maintaining referential integrity:
- NO ACTION reject violating modifications (default)
- CASCADE after delete/update do delete/update
- SET NULL set foreign-key field to NULL
- SET DEFAULT set foreign-key field to default value
 - need to be declared with column, e.g.,
 CREATE TABLE Product (pid INT DEFAULT 42)

Maintaining Referential Integrity

```
CREATE TABLE Purchase (
    prodName CHAR(30),
    category VARCHAR(20),
    date DATETIME,
    FOREIGN KEY (prodName, category)
        REFERENCES Product(name, category)
        ON UPDATE CASCADE
        ON DELETE SET NULL )
```

Product

Name	Category	
Gizmo	gadget	
Camera	Photo	
OneClick	Photo	

Purchase

ProdName	Category
Gizmo	Gizmo
Snap	Camera
EasyShoot	Camera 4

Constraints on attributes:

NOT NULL
CHECK condition

-- obvious meaning...

-- any condition!

Constraints on tuples
 CHECK condition

```
CREATE TABLE Product (
    productID CHAR(10),
    name CHAR(30),
    category VARCHAR(20),
    price INT CHECK (price > 0),
    PRIMARY KEY (productID))
```

```
CREATE TABLE Product (
    productID CHAR(10),
    name CHAR(30),
    category VARCHAR(20)
    CHECK (category in ('toy','gadget','apparel')),
    price INT CHECK (price > 0),
    PRIMARY KEY (productID))
```

```
CREATE TABLE Product (
    productID CHAR(10),
    name CHAR(30) NOT NULL,
    category VARCHAR(20)
    CHECK (category in ('toy','gadget','apparel')),
    price INT CHECK (price > 0),
    PRIMARY KEY (productID))
```

```
CREATE TABLE R (
    A int NOT NULL,
    B int CHECK (B > 50 and B < 100),
    C varchar(20),
    D int,
    CHECK (C >= 'd' or D > 0))
```

What does this constraint do?

```
CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN

(SELECT Product.name
FROM Product),
date DATETIME NOT NULL)
```

What

is the difference from

General Assertions

But most DBMSs do not implement assertions Because it is hard to support them efficiently Instead, they provide triggers

Database Design Process

DATA514 - Winter 2018

Conceptual Model:

Relational Model:

Tables + constraints
And also functional dep.

Normalization:

Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema

Relational Schema Design

Name	SSN	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

<u>SSN</u>	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

- Find out its <u>functional dependencies</u> (FDs)
- Use FDs to <u>normalize</u> the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

Formally:

$$A_1...A_n$$
 determines $B_1...B_m$

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Functional Dependencies (FDs)

<u>Definition</u> $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: ∀t, t' ∈ R, (t.A₁ = t'.A₁ ∧ ... ∧ t.A_m = t'.A_m → t.B₁ = t'.B₁ ∧ ... ∧ t.B_n = t'.B_n)

if t, t' agree herenthien winter agree here

An FD holds, or does not hold on an instance:

EmplD	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

EmplD	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

EmplD	Name	Phone	Position	
E0045	Smith	1234 →	Clerk	
E3542	Mike	9876	Salesrep	
E1111	Smith	9876	Salesrep	
E9999	Mary	1234 →	Lawyer	

But not Phone → Position

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	49
Gizmo	Stationary	Green	Office-supp.	59

Terminology

FD holds or does not hold on an instance

 If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

 If we say that R satisfies an FD F, we are stating a constraint on R

An Interesting Observation

If all these FDs are true:

name → color
category → department
color, category → price

Then this FD also holds:

name, category → price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies!

There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes A₁, ..., A_n

The **closure**, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, ..., A_n \rightarrow B$

- Example: | 1. name → color
 - 2. category → department
 - 3. color, category → price

Closures:

```
name<sup>+</sup> = {name, color}
{name, category}<sup>+</sup> = {name, category, color, department, price}
color^+ = \{color\}
```

Closure Algorithm

```
X={A1, ..., An}.
Repeat until X doesn't change do:
if B<sub>1</sub>, ..., B<sub>n</sub> → C is a FD and B<sub>1</sub>, ..., B<sub>n</sub> are all in X
then add C to X.
```

Example:

- 1. name → color
- 2. category → department
- 3. color, category → price

```
{name, category}* =
      { name, category, color, department, price }
```

Hence: name, category → color, department, price

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B,$

Compute
$$\{A, F\}^+$$
 $X = \{A, F,$

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F,$

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Step 1: Compute X+, for every X:

```
A+ = A, B+ = BD, C+ = C, D+ = D

AB+ =ABCD, AC+=AC, AD+=ABCD,
BC+=BCD, BD+=BD, CD+=CD

ABC+ = ABD+ = ACD+ = ABCD (no need to compute— why?)

BCD+=BCD, ABCD+ = ABCD
```

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X, compute X⁺
- If X⁺ = [all attributes], then X is a superkey
- Try only the minimal X's to get the key

Product(name, price, category, color)

name, category → price category → color

What is the key?

Product(name, price, category, color)

```
name, category → price category → color
```

```
What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
```

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

DATA514 - Winter 2018

Eliminating Anomalies

Main idea:

- X → A is OK if X is a (super)key
- X → A is not OK otherwise
 - Need to decompose the table, but how?

Boyce-Codd Normal Form

Boyce-Codd Normal Form

Dr. Raymond F. Boyce

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:

 \forall X, either X⁺ = X or X⁺ = [all attributes]

BCNF Decomposition Algorithm

```
Normalize(R)

find X s.t.: X \neq X^+ and X^+ \neq [all attributes]

if (not found) then "R is in BCNF"

let Y = X^+ - X; Z = [all attributes] - <math>X^+

decompose R into R1(X \cup Y) and R2(X \cup Z)

Normalize(R1); Normalize(R2);
```


Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

The only key is: {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

In other words:

SSN+ = SSN, Name, City and is it is the SSN nor All Attributes

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	\rightarrow	Nan	ne	City	/
OOIA		INGI	, ic,	Oity	

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Example: BCNF

Example: BCNF

 $\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

Recall: find X s.t. X ⊊ X⁺ ⊊ [all-attrs]

R(A,B,C,D)

$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

Example: BCNF

$$R(A,B,C,D)$$

 $A^+ = ABC \neq ABCD$

Example: BCNF

 $\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

Example: BCNF

Example: BCNF

What happens if in R we first pick B+? Or AB+?

Decompositions in General

$$S_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Lossless Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Lossy Decomposition

What is lossy here?

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

DATA514 - Winter 2018

Decomposition in General

Let: S_1 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m

 S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

The decomposition is called <u>lossless</u> if $R = S_1 \bowtie S_2$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BGNF4decomposition is lossless

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

 $S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

 $S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

A	В	С	D	Why?
а	b1	с1	d	$(a,d) \in S1 = \Pi_{AD}(R)$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

		-		_
A	В	С	D	Why?
а	b1	c1	d	(a,d) ∈S1 = Π _{AD} (R)
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

				_
A	В	C	D	Why?
а	b1	с1	d	(a,d) ∈S1 = Π _{AD} (R)
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)
а3	b	С	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A	В	С	D	Why
а	b1	c1	d	(a,d)
а	b2	С	d2	(a,c)
а3	b	С	d	(b,c,

(a,d) ∈S1	$=\Pi_{AD}(R)$

?

$$(a,c) \in S2 = \Pi_{BD}(R)$$

$$(b,c,d) \in S3 = \Pi_{BCD}(R)$$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A	В	С	D
а	b1	с1	р
а	b2	С	d2
а3	b	С	d

Why?
$(a,d) \in S1 = \Pi_{AD}(R)$
$(a,c) \in S2 = \Pi_{BD}(R)$
$(b.c.d) \in S3 = \Pi_{RCD}(R)$

	A→B						
	Α	В	С	D			
	а	b1	c1	d			
$\neg \rangle$	а	b1	С	d2			
	a3	b	С	d			

	B→	C			
	A	В	С	D	
	а	b1	С	d	
>	а	b1	c _D	ATA51	4 - Winter 2018
	23	h		4	

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" then	n (apply FDs)
--------------	---------------

A->	В			B→	С			
A	В	С	D	A	В	С	D	
а	b1	с1	d	а	b1	С	d	_
а	b1	С	d2	а	b1	c _D	ATA51	<u> </u> 4
а3	b	С	d	а3	b	С	d	

A	В	С	D	Why?
а	b1	c1	d	(a,d) ∈S1 = Π _{AD} (R)
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)
а3	b	С	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

A	В	С	D
а	b1	С	d
a /inter	2018	С	d2
а	b	С	d

 $CD \rightarrow A$

Hence R contains (a,þ,c,d)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF is lossless but can cause loss of ability to check some FDs (see book 3.4.4)
 - 3NF fixes that (is lossless and dependencypreserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies