
DATA 514

Lecture 4: 
Query Execution and Indexes

1DATA514 - Winter 2018



Announcements

• WQ4 is out – due next Sunday
• HW3- due Feb 3

• Midterm, next Tuesday(Feb. 6)
• Check out past exams in our website

– Note that the material covered in past exams is 
not necessarily the same as that covered in our 
exams

2



Query Evaluation Steps

Parse & Check Query

Decide how best to 
answer query: query 

optimization 

Query Execution

SQL query

Return Results

Translate query 
string into internal 

representation

Check syntax, 
access control, 

table names, etc.

Query
Evaluation

3

Logical plan à
physical plan

DATA514 - Winter 2018



From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and

x.price > 100 and
z.city =  ‘Seattle’

4



From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and
z.city =  ‘Seattle’

Can you think of
a “better” plan?

5



From SQL to RA

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σprice>100

σ

Push selections down
the query plan!

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and
z.city =  ‘Seattle’

Can you think of
a “better” plan?

6DATA514 - Winter 2018



From SQL to RA

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σprice>100

σ

Push selections down
the query plan!

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and
z.city =  ‘Seattle’

Can you think of
a “better” plan?

Query optimization: find
an equivalent optimal plan

7DATA514 - Winter 2018



8

From Logical Plans 
to Physical Plans

DATA514 - Winter 2018



Physical Operators

Each of the logical operators may have one or 
more implementations = physical operators

Will discuss several basic physical operators, 
with a focus on join

9DATA514 - Winter 2018



Main Memory Algorithms

Logical operator:

Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the 
tables are in main memory:

1.

2.

3.

10

Product(pid, name, price)

Purchase(pid, cid, store)

DATA514 - Winter 2018



Main Memory Algorithms

Logical operator:
Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the 
tables are in main memory:

1. Nested Loop Join O( ?? )
2. Merge join O( ?? )
3. Hash join O( ?? )

11

Product(pid, name, price)
Purchase(pid, cid, store)

DATA514 - Winter 2018



Main Memory Algorithms

Logical operator:
Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the 
tables are in main memory:

1. Nested Loop Join O(n2)
2. Merge join O(n log n)
3. Hash join O(n) … O(n2)

12

Product(pid, name, price)
Purchase(pid, cid, store)

DATA514 - Winter 2018



BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

13DATA514 - Winter 2018



BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k

14



Query Evaluation Steps Review

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

15



Relational Algebra

16

Give a relational algebra expression for this query

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018



Relational Algebra

17

Πsname(σ scity=�Seattle�∧ sstate=�WA�∧ pno=2 (Supplier  ⨝sid = sid Supply))

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018



18

Supplier Supply

sid = sid

σ scity=�Seattle� ∧ sstate=�WA� ∧ pno=2

Πsname

Relational Algebra

Relational algebra expression is 
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018



19

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=�Seattle� ∧sstate=�WA� ∧ pno=2

Πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

A physical query plan is a logical 

query plan annotated with 

physical implementation details

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid

and  y.pno = 2

and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018



20

Physical Query Plan 2

Supplier Supply

sid = sid

σ scity=�Seattle� ∧sstate=�WA� ∧ pno=2

Πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018



21
Supplier

Supply

sid = sid

σ scity=�Seattle�

Πsname

(Index join
Supply(sid))

(On the fly)

σ pno=2

Physical Query Plan 3

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical 
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

σsstate=�WA�

(Index scan Supplier(sstate))

(On the fly)



22
Supplier

Supply

sid = sid

σ scity=�Seattle�

Πsname

(Index join
Supply(sid))

(On the fly)
σ pno=2

Physical Query Plan 4
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical 
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

σsstate=�WA�

(Index scan Supplier(scity))

(On the fly)

ß Note difference from Plan 3



23
Supplier

sid = sid

σ scity=�Seattle�

Πsname

(Nested loop)

(On the fly)
σ pno=2

Physical Query Plan 5
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical 
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

σsstate=�WA�

(Index scan Supplier(scity))

(On the fly)

Supply

σ pno=2

(Index scan Supply(pno))



Query Optimization Problem

• For each SQL query… many logical plans

• For each logical plan… many physical plans

• Optimizer examines multiple equivalent plans, 

chooses one with minimum cost

24DATA514 - Winter 2018



25

Query Execution

DATA514 - Winter 2018



Iterator Interface
• Iterators: 

– Do not materialize intermediate results
– Children pipeline their results to parents

• Every physical operator maintains its own execution state 
and implements the following methods
– open(): Initialize state and get ready for processing
– next() Operator invokes get_next() recursively on its 

inputs; Performs processing and produces an output 
tuple

– close(): clean-up state

26DATA514 - Winter 2018



An iterator for file scan

27

• state: a block of memory for buffering input 

a pointer to a tuple within the block

• open(): allocate a block of memory

• next(): 
– If no block of has been read yet, read the first block from the disk and 

return the first tuple in the block

– If there is no more tuple left in the current block, read the next block 

of from the disk and return the first tuple in the block 

– Otherwise, return the next tuple in the memory block

• close(): deallocate the block of memory

DATA514 - Winter 2018



Pipelined Query Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

Πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

28

open()

open()

open()

open() open()

DATA514 - Winter 2018



Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

Πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

29

next()

next()

next()

next() next()

Pipelined Query Execution

DATA514 - Winter 2018



Pipelined Execution

• Tuples generated by an operator are 
immediately sent to the parent

• Benefits:
– No operator synchronization issues
– No need to buffer tuples between operators
– Saves cost of writing intermediate data to disk
– Saves cost of reading intermediate data from disk

• This approach is used whenever possible

30DATA514 - Winter 2018



Intermediate Tuple Materialization

• Tuples generated by an operator are written 
to disk an in intermediate table

• No direct benefit
• Necessary:

– For certain operator implementations
– When we don’t have enough memory

31DATA514 - Winter 2018



Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

Πsname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

32DATA514 - Winter 2018



Query Execution Bottom Line

• SQL query transformed into physical plan

– Access path selection for each relation
• Scan the relation or use an index (rest of this lecture)

– Implementation choice for each operator
• Nested loop join, hash join, etc.

– Scheduling decisions for operators
• Pipelined execution or intermediate materialization

33DATA514 - Winter 2018



Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into 

blocks
• Each block contains 

a set of tuples

In the example, we have 4 blocks with 2 tuples each
34

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

DATA514 - Winter 2018



Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

35

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

DATA514 - Winter 2018



Data File Types

The data file can be one of:

• Heap file

– Unsorted

• Sequential file
– Sorted according to some attribute(s) called key

36

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Note: key here means something different from primary key: 
it just means that we order the file according to that attribute.  
In our example we ordered by ID.  Might as well order by fName, 
if that seems a better idea for the applications running on
our database. DATA514 - Winter 2018



Index

• An additional file, that allows fast access to 
records in the data file given a search key

37DATA514 - Winter 2018



Index

• An additional file, that allows fast access to 
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

38DATA514 - Winter 2018



Index

• An additional file, that allows fast access to 
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

• Could have many indexes for one table

39

Key = means here search key

DATA514 - Winter 2018



40

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk

• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key

• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

DATA514 - Winter 2018



41

Example 1:
Index on ID

10

20

50

200

220

240

420

800

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

Clustered Index

DATA514 - Winter 2018



42

Example 2:
Index on fName

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Tom Cruise

… Amy Hanks

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420 Tom Cruise

800

Data File Student

Unclustered Index

DATA514 - Winter 2018



Index Organization

Several index organizations:
• Hash table
• B+ trees – most popular

– They are search trees, but they are not binary 
instead have higher fanout

– Will discuss them briefly next
• Specialized indexes: bit maps, R-trees, 

inverted index

43DATA514 - Winter 2018



B+ Trees Basics

• Parameter d = the degree
• Each node has d<= m<= 2d keys (except root)

• Each leaf has d<= m<= 2d keys

44DATA514 - Winter 2018



45

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

DATA514 - Winter 2018



Searching a B+ Tree

46

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– As above
– Then sequential traversal

DATA514 - Winter 2018



Clustered vs Unclustered

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

47

Every table can have only one clustered and many unclustered indexes

DATA514 - Winter 2018



Scanning a Data File
• Disks are mechanical devices!

– Technology from the 60s; density much higher now
• We read only at the rotation speed!
• Consequence:

Sequential scan is MUCH FASTER than 
random reads
– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

48DATA514 - Winter 2018



Scanning a Data File
• Disks are mechanical devices!

– Technology from the 60s; density much higher now
• We read only at the rotation speed!
• Consequence:

Sequential scan is MUCH FASTER than 
random reads
– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random reading 1-2% of the file ≈ sequential 

scanning the entire file
– Solid state (SSD): $$$ expensive; put indexes, 

other “hot” data there, not enough room for 
everything

49



Getting Practical:
Creating Indexes in SQL

50

CREATE  INDEX V1 ON V(N)

CREATE  TABLE    V(M int,   N varchar(20),    P int);

CREATE  INDEX V2 ON V(P, M)

CREATE  INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CREATE UNIQUE INDEX V4 ON V(N)

DATA514 - Winter 2018



Getting Practical:
Creating Indexes in SQL

51

CREATE  INDEX V1 ON V(N)

CREATE  TABLE    V(M int,   N varchar(20),    P int);

CREATE  INDEX V2 ON V(P, M)

CREATE  INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

DATA514 - Winter 2018



Getting Practical:
Creating Indexes in SQL

52

CREATE  INDEX V1 ON V(N)

CREATE  TABLE    V(M int,   N varchar(20),    P int);

CREATE  INDEX V2 ON V(P, M)

CREATE  INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CREATE UNIQUE INDEX V4 ON V(N)
Not supported

in SQLite

What does this mean?

DATA514 - Winter 2018



Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

53DATA514 - Winter 2018



Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

54

15, namely: (ID), (fName), (lName), (ID,fName),(fName,ID),…

DATA514 - Winter 2018



Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

55

15, namely: (ID), (fName), (lName), (ID,fName),(fName,ID),…

Few!  Each new index slows down updates to Student

DATA514 - Winter 2018



Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

56

18, namely: (ID), (fName), (lName), (ID,fName),(fName,ID),…

Few!  Each new index slows down updates to Student

Index selection is a hard problem



Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java 

application with lots of SQL queries), decide which 
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database 
administration tool

57

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

DATA514 - Winter 2018



Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java 

application with lots of SQL queries), decide which 
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database 
administration tool

58

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

DATA514 - Winter 2018



Index Selection: Which Search Key

• Make some attribute K a search key if the 
WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

59DATA514 - Winter 2018



The Index Selection Problem 1

60

V(M, N, P);

SELECT * 
FROM V
WHERE N=?

SELECT * 
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

DATA514 - Winter 2018



The Index Selection Problem 1

61

V(M, N, P);

SELECT * 
FROM V
WHERE N=?

SELECT * 
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

DATA514 - Winter 2018



The Index Selection Problem 1

62

V(M, N, P);

SELECT * 
FROM V
WHERE N=?

SELECT * 
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A:  V(N) and V(P) (hash tables or B-trees)
DATA514 - Winter 2018



The Index Selection Problem 2

63

V(M, N, P);

SELECT * 
FROM V
WHERE N>? and N<?

SELECT * 
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

DATA514 - Winter 2018



The Index Selection Problem 2

64

V(M, N, P);

SELECT * 
FROM V
WHERE N>? and N<?

SELECT * 
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A:  definitely V(N) (must B-tree); unsure about  V(P)

DATA514 - Winter 2018



The Index Selection Problem 3

65

V(M, N, P);

SELECT * 
FROM V
WHERE N=?

SELECT * 
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

DATA514 - Winter 2018



The Index Selection Problem 3

66

V(M, N, P);

SELECT * 
FROM V
WHERE N=?

SELECT * 
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

A:  V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?



The Index Selection Problem 4

67

V(M, N, P);

SELECT * 
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT * 
FROM V
WHERE N>? and N<?

What indexes ?

DATA514 - Winter 2018



The Index Selection Problem 4

68

V(M, N, P);

SELECT * 
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT * 
FROM V
WHERE N>? and N<?

A: V(N) secondary,   V(P) primary index

DATA514 - Winter 2018



Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

• To Cluster or Not?
– Range queries benefit mostly from clustering 69



70

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE K>? and K<?

DATA514 - Winter 2018



71

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

DATA514 - Winter 2018



72

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

SELECT *
FROM R
WHERE K>? and K<?

DATA514 - Winter 2018



73

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

U
nc

lu
st

er
ed

 in
de

x

SELECT *
FROM R
WHERE K>? and K<?

DATA514 - Winter 2018



DATA514 - Winter 2018 74

Using Subqueries to Solve Problems:
More Examples



Example 0

Main query:  Which employees have salaries 
greater than Richard’s salary?

– What is Richard’s salary?

75

Employees(id, name, salary)
id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30

DATA514 - Winter 2018



Example 0

76

Employees(id, name, salary)

SELECT names
FROM Employees
WHERE  Salary> (SELECT Salary

FROM Employees
WHERE name=‘Richard’)

DATA514 - Winter 2018

id name salary
54 Richard 50

20 Roger 150

33 David 130

23 Nick 30



Example 0

Main query: get the second highest salary?

77

Employees(id, name, salary)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?

– Which employee receives the highest salary ?

78

Employees(id, name, salary)

DATA514 - Winter 2018

id name salary
54 Richard 50

20 Roger 150

33 David 130

23 Nick 30



Example 0

Main query: get the second highest salary?
– Which employee receives the highest salary ?
– Let’s find the other employees, i.e., those who do 

not receive the highest salary.

79

Employees(id, name, salary)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?
– Which employee receives the highest salary ?
– Let’s find the other employees, i.e., those who do 

not receive the highest salary
– Let’s find the maximum salary among those who 

do not receive the highest salary
80

Employees(id, name, salary)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?

This will return the second record in our case

81

Employees(id, name, salary)

SELECT * FROM Employee WHERE Salary 
IN ( SELECT max(Salary) FROM Employee)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?

This will return all records except for the second 
one in our case

82

Employees(id, name, salary)

SELECT * FROM Employee WHERE Salary NOT
IN ( SELECT max(Salary) FROM Employee)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?

This will return 130 in our case.

83

Employees(id, name, salary)

SELECT max(Salary) FROM Employee WHERE Salary NOT
IN ( SELECT max(Salary) FROM Employee)

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 0

Main query: get the second highest salary?

84

Employees(id, name, salary)

Exercise: use a correlated 
subquery!

DATA514 - Winter 2018

id name salary
54 Richard 50
20 Roger 150
33 David 130
23 Nick 30



Example 1

85

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

DATA514 - Winter 2018



Example 1

86

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

DATA514 - Winter 2018



Example 1

87

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar
AND Y.beer = Z.beer
AND X.drinker = Z.drinke

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE EXISTS (SELECT bar

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer)



Negation of Quantifiers

The statement: "It is not true that all x have the 
property P” 
is equivalent to: "There is some x for which ~P
is true".
Example:

– Not all people are honest = Some people are not 
honest.

88DATA514 - Winter 2018



Negation of Quantifiers

The statement: "It is not true that there is 
some x with the property P"
is equivalent to: "No x has the property P" or 
"All x have the property ~P.”
Example: 

– This bar does not serve some beer that I like = 
This bar only severs beer that I don’t like.

– I only frequent bars that serve some beer I like= I 
do not frequent bars that only serves beer I don’t 
like

89DATA514 - Winter 2018



Example 2

90

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

drinker beer
Roger Bud

David Michelob

Nick Bud Lite

Richard Bud

name bar
Roger Joe’s

Roger adam’s

Nick Sue’s

Richard Sue’s

bar beer
Joe’s Bud

adam’s Michelob

adam’s Bud Lite

Sue’s Bud

Likes Frequents Serves

DATA514 - Winter 2018



Example 2

91

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

drinker beer
Roger Bud

David Michelob

Nick Bud Lite

Richard Bud

name bar
Roger Joe’s

Roger adam’s

Nick Sue’s

Richard Sue’s

bar beer
Joe’s Bud

adam’s Michelob

adam’s Bud Lite

Sue’s Bud

Likes Frequents Serves

Find drinkers that frequent some bar that DO NOT serves some
beers they like

DATA514 - Winter 2018



Example 2

92

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that DO NOT serves some
beers they like

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT bar

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer)

DATA514 - Winter 2018



Example 3

93

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

drinker beer
Roger Bud
David Michelob
Nick Bud Lite
Richard Bud

name bar
Roger Joe’s
Roger adam’s
Nick Sue’s
Richard Sue’s
David Sue’s

bar beer
Joe’s Bud
adam’s Michelob
adam’s Bud Lite
Sue’s Bud
Sue’s Michelob

Likes Frequents Serves

Find drinkers that DO NOT frequent some bar that only
serves beers they don’t like! 

DATA514 - Winter 2018


