
DATA 514
Lecture 3
SQL Wrap-up

Relational Algebra

1DATA514 - Winter 2018

Announcements

• HW2 – deadline extended until tomorrow
• WQ3 is open, due on Tuesday

• Homework 3 will be posted tomorrow, due on
• Feb 3

- We are using Microsoft Azure Cloud services!
- Wait for instructions to be posted

2DATA514 - Winter 2018

Recap from last lectures

• Subqueries can occur in every clause:
- SELECT
- FROM
- WHERE

• Monotone queries: SELECT-FROM-WHERE
- Existential quantifier

• Non-monotone queries
- Universal quantifier
- Aggregation

3DATA514 - Winter 2018

Examples of Complex Queries

4

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

1.Find drinkers that frequent some bar that serves some beer they like.

2.Find drinkers that frequent some bar that serves only beers they don’t like.

3.Find drinkers that frequent only bars that serves some beer they like.

DATA514 - Winter 2018

Example 1

5

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

DATA514 - Winter 2018

Example 1

6

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar
AND Y.beer = Z.beer
AND X.drinker = Z.drinker

DATA514 - Winter 2018

Example 1

7

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar
AND Y.beer = Z.beer
AND X.drinker = Z.drinker

What happens if we didn’t write DISTINCT?

DATA514 - Winter 2018

Example 2

8

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

DATA514 - Winter 2018

Example 2

9

Likes(drinker, beer)

Frequents(drinker, bar)

Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

Let’s check if the drinker frequents one of the other bars

DATA514 - Winter 2018

Example 2

10

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

Let’s check if the drinker frequents one of the other bars

Drinkers that frequent some bars that serves some beer they like.

DATA514 - Winter 2018

Example 2

11

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

Let’s check if the drinker frequents one of the other bars

That’s the previous query… but let’s write it with a subquery:

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE EXISTS (SELECT *

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer)

Drinkers that frequent some bars that serves some beer they like.

Example 2

12

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like

Let’s check if the drinker frequents one of the other bars

That’s the previous query… but let’s write it with a subquery:

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer)

Now negate!

Drinkers that frequent some bars that serves some beer they like.

Example 3

13

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

DATA514 - Winter 2018

Example 3

14

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the other drinkers

DATA514 - Winter 2018

Example 3

15

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the other drinkers

Drinkers that frequent some bar that serves only beers they don’t like

DATA514 - Winter 2018

Example 3

16

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the other drinkers

Drinkers that frequent some bar that serves only beers they don’t like

That’s the
previous query!

SELECT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer

DATA514 - Winter 2018

Example 3

17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the other drinkers

Drinkers that frequent some bar that serves only beers they don’t like

That’s the
previous query!

SELECT DISTINCT U.drinker
FROM Frequents U
WHERE U.drinker NOT IN

(SELECT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *

FROM Serves Y, Likes Z
WHERE X.bar=Y.bar

AND X.drinker=Z.drinker
AND Y.beer = Z.beer)

Now find
the other
drinkers:

Unnesting Aggregates

18

Find the number of companies in each city

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Unnesting Aggregates

19

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Company Y
WHERE X.city = Y.city)

FROM Company X

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Unnesting Aggregates

20

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Company Y
WHERE X.city = Y.city)

FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Unnesting Aggregates

21

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Company Y
WHERE X.city = Y.city)

FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Unnesting Aggregates

22

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Product Y, Company Z
WHERE Z.cid=Y.cid
AND Z.city = X.city)

FROM Company X

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Unnesting Aggregates

23

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Product Y, Company Z
WHERE Z.cid=Y.cid
AND Z.city = X.city)

FROM Company X

Product (pname, price, cid)
Company(cid, cname, city)

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cid=Y.cid
GROUP BY X.city

NOT equivalent !
You should know why!

Unnesting Aggregates

24

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Purchase(pid, product, quantity, price)

DATA514 - Winter 2018

Unnesting Aggregates

25

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)
AS TotalSales

FROM Purchase x
WHERE x.price > 1

Purchase(pid, product, quantity, price)

DATA514 - Winter 2018

Unnesting Aggregates

26

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)
AS TotalSales

FROM Purchase x
WHERE x.price > 1 Why twice ?

Purchase(pid, product, quantity, price)

More Unnesting

27

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 100 documents:

This is
SQL by
a novice

SELECT x.login, x.name
FROM Author x,

(SELECT login, count(*) as c
FROM Wrote
GROUP BY login) y

WHERE x.login = y.login and y.c > 100

DATA514 - Winter 2018

More Unnesting

28

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 100 documents:

SELECT Author.login, Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.login, Author.name
HAVING count(wrote.url) >= 100

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

29

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Finding Witnesses

30

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Finding Witnesses

31

To find the witnesses, compute the maximum price
in a subquery

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price=w.maxprice;

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

32

To find the witnesses, compute the maximum price
in a subquery WITH MaxPrices AS

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, MaxPrices w
WHERE u.cid = v.cid

and u.city = w.city
and v.price=w.maxprice;

Product (pname, price, cid)
Company(cid, cname, city)

Or using
the with clause:

Finding Witnesses

33

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
and v.price >= ALL (SELECT y.price

FROM Company x, Product y
WHERE u.city=x.city

and x.cid=y.cid);

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Finding Witnesses

34

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price);

Product (pname, price, cid)
Company(cid, cname, city)

DATA514 - Winter 2018

Summary of SQL

• What you learn from this class:
– Write complex SQL queries (done)
– Tune the database, create indices
– Define constraints

• What you don’t learn in this class
– The rest of the SQL ecosystem
– Learn-as-you go (manual, google)

35DATA514 - Winter 2018

Relational Algebra

36DATA514 - Winter 2018

Where We Are

• Motivation for using a DBMS for managing data
• SQL:

– Declaring the schema for our data (CREATE TABLE)
– Inserting data one row at a time or in bulk (INSERT/.import)
– Modifying the schema and updating the data (ALTER/UPDATE)
– Querying the data (SELECT)

• Next step: More knowledge of how DBMSs work
– Relational algebra and query execution
– Client-server architecture

37DATA514 - Winter 2018

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

38

Logical plan à
physical plan

DATA514 - Winter 2018

The WHAT and the HOW

• SQL = WHAT we want to get form the data

• Relational Algebra = HOW to get the data we want

• The passage from WHAT to HOW is called query
optimization
– SQL -> Relational Algebra -> Physical Plan
– Relational Algebra = Logical Plan

39DATA514 - Winter 2018

Relational Algebra

40DATA514 - Winter 2018

Sets v.s. Bags

So far, we have said that relational algebra and
SQL operate on relations that are sets of tuples.

• Sets: {a,b,c}, {a,d,e,f}, { }, . . .
• Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:
• Set semantics = standard Relational Algebra
• Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

41DATA514 - Winter 2018

Relational Algebra Operators

• Union È, intersection Ç, difference -
• Selection s
• Projection Π
• Cartesian product ´, join ⨝
• Rename r
• Duplicate elimination d
• Grouping and aggregation g
• Sorting t

42

RA

Extended RA

DATA514 - Winter 2018

Union and Difference

What do they mean over bags ?

R1 È R2
R1 – R2

43DATA514 - Winter 2018

What about Intersection ?

• Derived operator using minus

• Derived using join (will explain later)

R1 Ç R2 = R1 – (R1 – R2)

R1 Ç R2 = R1 ⨝ R2

44DATA514 - Winter 2018

Selection
• Returns all tuples which satisfy a condition

• Examples
– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =, <, £, >, ³, <>
combined with AND, OR, NOT

sc(R)

45DATA514 - Winter 2018

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

46DATA514 - Winter 2018

Projection

• Eliminates columns

• Example: project social-security number
and names:
– P SSN, Name (Employee)
– Answer(SSN, Name)

P A1,…,An (R)

47Different semantics over sets or bags! Why?

P Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

48Which is more efficient?

Composing RA Operators

no name zip disease
1 p1 98125 flu

2 p2 98125 heart

3 p3 98120 lung

4 p4 98120 heart

Patient

sdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart

4 p4 98120 heart

zip disease
98125 flu

98125 heart

98120 lung

98120 heart

pzip,disease(Patient)

pzip,disease (sdisease=‘heart’(Patient))

49

zip disease
98125 heart

98120 heart

DATA514 - Winter 2018

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Rare in practice; mainly used to express joins

R1 ´ R2

50DATA514 - Winter 2018

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee ✕ Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cross-Product Example

51DATA514 - Winter 2018

Renaming

• Changes the schema, not the instance

• Example:
– R =rN, S(Employee) makes R be a relation with

attributes N, S and the same tuples as Employee.

r B1,…,Bn (R)

52

Not really used by systems, but needed on paper

DATA514 - Winter 2018

Natural Join

• Meaning: R1⨝R2 = PA(sq (R1 � R2))

• Where:
– Selection s checks equality of all common

attributes (attributes with same names)
– Projection eliminates duplicate common

attributes
53

R1 ⨝R2

DATA514 - Winter 2018

Natural Join Example
A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
PABC(sR.B=S.B(R � S))

54DATA514 - Winter 2018

Natural Join Example 2

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

55DATA514 - Winter 2018

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of R ⨝ S ?

• Given R(A, B, C), S(D, E), what is R ⨝ S
?

• Given R(A, B), S(A, B), what is R ⨝ S ?

56DATA514 - Winter 2018

Theta Join

• A join that involves a predicate

• Here q can be any condition

• For our voters/patients example:

R1 ⨝q R2 = sq (R1 ´ R2)

P ⨝
P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1

V

57

AnonPatient (age, zip, disease)

Voters (name, age, zip)

DATA514 - Winter 2018

Equijoin
• A theta join where q is an equality predicate

• By far the most used variant of join in practice

58DATA514 - Winter 2018

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

59

P.age P.zip P.disease P.name V.zip V.age

54 98125 heart p1 98125 54

20 98120 flu p2 98120 20

DATA514 - Winter 2018

Join Summary
• Theta-join: R q S = sq(R x S)

– Join of R and S with a join condition q
– Cross-product followed by selection q

• Equijoin: R q S = pA (sq(R x S))
– Join condition q consists only of equalities

• Natural join: R S = pA (sq(R x S))
– Equijoin
– Equality on all fields with same name in R and in S
– Projection pA drops all redundant attributes

60DATA514 - Winter 2018

So Which Join Is It ?

When we write R ⨝ S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

61DATA514 - Winter 2018

More Joins

• Outer join
– Include tuples with no matches in the output
– Use NULL values for missing attributes
– Does not eliminate duplicate columns

• Variants
– Left outer join
– Right outer join
– Full outer join

62DATA514 - Winter 2018

Outer Join Example
age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋊ J

P.age P.zip disease job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null 33 98120

63

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120

DATA514 - Winter 2018

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

64

Logical plan à
physical plan

DATA514 - Winter 2018

From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and
z.city = ‘Seattle’

65

From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and
z.city = ‘Seattle’

Can you think of
a “better” plan?

66

From SQL to RA

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σprice>100

σ

Push selections down
the query plan!

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and
z.city = ‘Seattle’

Can you think of
a “better” plan?

67DATA514 - Winter 2018

From SQL to RA

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σprice>100

σ

Push selections down
the query plan!

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and
z.city = ‘Seattle’

Can you think of
a “better” plan?

Query optimization: find

an equivalent optimal plan
68DATA514 - Winter 2018

Extended RA: Operators on
Bags

• Duplicate elimination d
• Grouping g
• Sorting t

69DATA514 - Winter 2018

70

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

sales(product, city, price)

g city, sum(price)→p, count(*) → c

s p > 100

P city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3 = temporary tables

DATA514 - Winter 2018

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

p fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

71

SELECT fields
FROM R, S, …
WHERE condition

DATA514 - Winter 2018

Typical Plan For Block (2/2)

Π fields

γ fields, sum/count/min/max(fields)

σ having condition

σ where condition

join condition

… …
72

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

DATA514 - Winter 2018

How about Subqueries?

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’

and not exists

(SELECT *

FROM Supply P

WHERE P.sno = Q.sno

and P.price > 100)

73

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

DATA514 - Winter 2018

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

74

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

DATA514 - Winter 2018

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

75

De-Correlation

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

DATA514 - Winter 2018

How about Subqueries?

76

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

EXCEPT = set difference

DATA514 - Winter 2018

How about Subqueries?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

77

−

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Finally…

psnopsno

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

DATA514 - Winter 2018

78

From Logical Plans
to Physical Plans

DATA514 - Winter 2018

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,
with a focus on join

79DATA514 - Winter 2018

Main Memory Algorithms
Logical operator:

Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1.
2.
3.

80

Product(pid, name, price)
Purchase(pid, cid, store)

DATA514 - Winter 2018

Main Memory Algorithms
Logical operator:

Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)

81

Product(pid, name, price)
Purchase(pid, cid, store)

DATA514 - Winter 2018

Main Memory Algorithms
Logical operator:

Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1. Nested Loop Join O(n2)
2. Merge join O(n log n)
3. Hash join O(n) … O(n2)

82

Product(pid, name, price)
Purchase(pid, cid, store)

DATA514 - Winter 2018

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

83DATA514 - Winter 2018

BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k

84DATA514 - Winter 2018

Query Evaluation Steps Review

Parse & Check Query

Logical Query Plan

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

85

Logical plan à
physical plan

Physical Query Plan

DATA514 - Winter 2018

Relational Algebra

86

Give a relational algebra expression for this query

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

Relational Algebra

87

Πsname(σ scity=�Seattle�∧ sstate=�WA�∧ pno=2 (Supplier ⨝sid = sid Supply))

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid

and y.pno = 2

and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

88

Supplier Supply

sid = sid

σ scity=�Seattle� ∧ sstate=�WA� ∧ pno=2

Πsname

Relational Algebra

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

89

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=�Seattle� ∧sstate=�WA� ∧ pno=2

Πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

90

Physical Query Plan 2

Supplier Supply

sid = sid

σ scity=�Seattle� ∧sstate=�WA� ∧ pno=2

Πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

Same logical query plan

Different physical plan

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid

and y.pno = 2

and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

91

Supplier Supply

sid = sid

σ scity=�Seattle� ∧sstate=�WA�

Πsname

(File scan) (File scan)

(Sort-merge join)

(Scan & write to T2)

(On the fly)

σ pno=2

(Scan & write to T1)

Physical Query Plan 3
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = �Seattle�
and x.sstate = �WA�

DATA514 - Winter 2018

Query Optimization Problem

• For each SQL query… many logical plans

• For each logical plan… many physical plans

• How do find a fast physical plan?
– Will discuss in a few lectures

92DATA514 - Winter 2018

