
Data Management for Data Science DATA 514

Lecture 1: Introduction, Data Models

Gradience token on the whiteboard: please write it down

Class Goals

- The world is drowning in data!
- Needed: data scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services
 - Help governments become more efficient
- Welcome to 514

Existing tools PLUS data management principles

Staff

- Instructor: Babak Salimi
 - Office hours: TBD, CSE 282

- TA: Ee (Isaac) Ahn
- Office hours:
 - Monday: 5:00 pm 6:00 pm
 - Wednesday: 5:00 pm 6:00 pm ??

About Me

- Postdoctoral Researcher at UW since 2016
- PhD from Carleton University, Canada, Ottawa
- Born in Iran
- Research Interests: Decision Making System, Causal Inference from Big Data, Database Repair and Approximate Query Processing

Course Format

- Lectures Tuesdays, 5pm-7:50pm
 - Location: here!
- Sections: Tuesdays, 8-8:50pm
 - Content: exercises, tutorials, questions
 - Locations: here!
- 6 homework assignments
- 7 web quizzes
- Midterm and final

Communications

- Web page: https://courses.cs.washington.edu/courses/csed514/18wi/
 - Syllabus is there
 - Lectures will be available there (see calendar)
 - Homework assignments will be available there
 - Link to web quizzes is there
- Mailing list
 - Announcements (low traffic must read)
 - Registered students automatically subscribed
- Discussion board
 - THE place to ask course-related questions
 - Today, go to board and enable notifications

Textbook

Main textbook, available at the bookstore:

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom

Second edition.

Most important: COME TO CLASS! ASK QUESTIONS!

Other Texts

Available at the Engineering Library (some on reserve):

- Database Management Systems, Ramakrishnan
- Fundamentals of Database Systems, Elmasri, Navathe
- Foundations of Databases, Abiteboul, Hull, Vianu
- Data on the Web, Abiteboul, Buneman, Suciu

Grading

- Homeworks 30%
- Web quizzes 20%
- Midterm 20%
- Final 30%

Eight Homework Assignments

H1: Sqlite

H2: Basic SQL with SQLite

H3: Advanced SQL with SQL Server

H4: Conceptual Design

H5: JSon

H6: SQL in Java (JDBC)

Check calendar for due dates -- Submit via gitlab!

About the Assignments

- Homework assignments will take time but most time should be spent *learning*
- Do them on your own
- Very practical assignments
- Put everything on your resume!!!
 - SQL, SQLite, SQL Server, SQL Azure JDBC, JSon,...

Deadlines and Late Days

- Assignments are expected to be done on time, but things happen, so...
- You have up to 4 late days
 - No more than 2 on any one assignment
 - Use in 24-hour chunks
- Late days = safety net, not convenience!
 - You should not plan on using them
 - If you use all 4 you are doing it wrong

Six Web Quizzes

- http://newgradiance.com/
- Create account, provide token
- Class token: on the white board, write it down
- No late days closes at 11:00 deadline
- Provides explanations for wrong answers
- Short tests, take many times, best score counts

Exams

- Midterm and Final
 - See course calendar for dates and times
- May bring 1 letter-size, double-side piece of paper with notes
- Closed book. No computers, phones, watches, etc.!
- Check course website for dates
- Location: in class

Academic Integrity

Anything you submit for credit is expected to be your own work

- Of course OK to exchange ideas, but not detailed solutions
- We all know difference between collaboration and cheating
- Attempt to gain credit for work you did not do is misconduct

Now onto the real stuff...

Outline of Today's Lecture

- Overview of database management systems
- Course content

- Data Models
- SQL

Database Management System

What is a DBMS?

Give examples of DBMSs

Database Management System

What is a DBMS?

 A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica
- Open source: MySQL (Sun/Oracle), PostgreSQL, AsterixDB
- Open source library: SQLite

We will focus on relational DBMSs most quarter

An Example: Online Bookseller

What data do we need?

What capabilities on the data do we need?

_

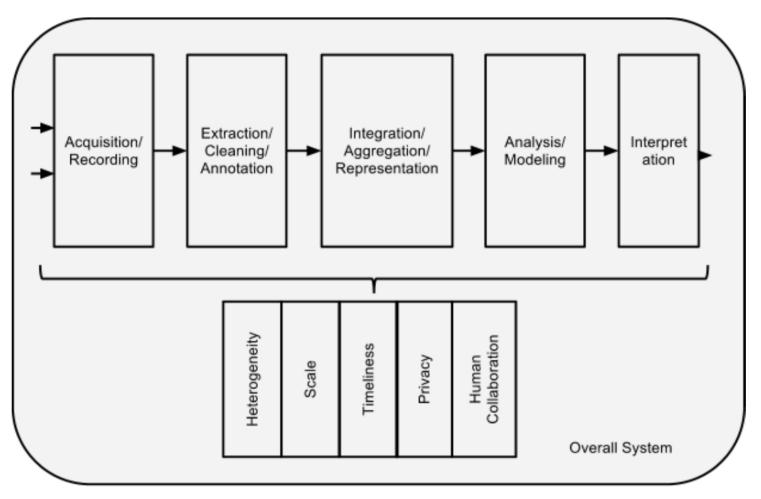
An Example: Online Bookseller

- What data do we need?
 - Data about books, customers, pending orders, order histories, trends, preferences, etc.
 - Data about sessions (clicks, pages, searches)
 - Note: data must be persistent! Outlive application
 - Also note that data is large... won't fit all in memory
- What capabilities on the data do we need?

DATA 514-2018wi

An Example: Online Bookseller

- What data do we need?
 - Data about books, customers, pending orders, order histories, trends, preferences, etc.
 - Data about sessions (clicks, pages, searches)
 - Note: data must be persistent! Outlive application
 - Also note that data is large... won't fit all in memory
- What capabilities on the data do we need?
 - Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, ...
 - Data must be accessed efficiently, by many users
 - Data must be safe from failures and malicious users


Multi-user

- Jane and John both have ID number for gift certificate (credit) of \$200 they got as a wedding gift
 - Jane @ her office orders "The Selfish Gene, R. Dawkins" (\$80)
 - John @ his office orders "Guns and Steel, J. Diamond" (\$100)

Questions:

- What is the ending credit?
- What if second book costs \$130?
- What if system crashes?

Data Analysis Pipeline*

Data Analysis Pipeline* Database system Ex raction/ Integration/ Acquisition/ Analysi Interpret Aggregation/ aning/ Recording Modeling ation otation Representation Heterogeneity Collaboration Timeliness Privacy Human Scale Overall System

DBMS Benefits

Expensive to implement all these features inside the application

DBMS provides these features (and more)

DBMS simplifies application development

Client/Server Architecture

- One server that stores the database (DBMS):
 - Usually a beefy system
 - But can be your own desktop...
 - ... or a huge cluster running a parallel DBMS
- Many clients run apps and connect to DBMS
 - E.g. Microsoft's Management Studio
 - Or psql (for PostgreSQL)
 - Or some Java/C++ program (very typical)
- Clients "talk" to server using JDBC protocol

People

- DB designer: establishes schema
- DB application developer: writes programs that query and modify data
- **DB administrator**: loads data, tunes system, keeps whole thing running
- Data analyst: data mining, data integration
- Data Scientist: analyst, designer, developer, administrator
- DBMS implementer: builds the DBMS

Key Data Mngmt Concepts

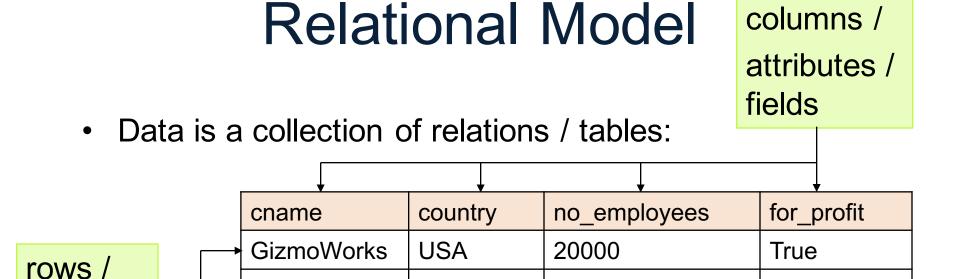
- Data models: how to describe real-world data
 - Relational, XML, graph data (RDF)
- Schema v.s. data
- Declarative query language
 - Say what you want not how to get it
- Data independence
 - Physical independence: Can change how data is stored on disk without maintenance to applications
 - Logical independence: can change schema w/o affecting apps
- Query optimizer and compiler
- Transactions: isolation and atomicity

Review this slide throughout the quarter!

What This Course Contains

- Focus: Using DBMSs
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, datalog
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Query execution
- Semistructured Data Model
 - SQL++,JSon,
- Transactions
- Data integration and data cleaning

Data Models


- Recall our example: want to design a database of books:
 - author, title, publisher, pub date, price, etc
 - How should we describe this data?
- Data model = mathematical formalism (or conceptual way) for describing the data

Data Models

- Relational
 - Data represented as relations
- Semi-structured (JSon)
 - Data represented as trees
- Key-value pairs
 - Used by NoSQL systems
- Graph
- Object-oriented

3 Elements of Data Models

- Instance
 - The actual data
- Schema
 - Describe what data is being stored
- Query language
 - How to retrieve and manipulate data

Japan

Japan

Canada

50000

30000

500

- mathematically, relation is a set of tuples
 - each tuple appears 0 or 1 times in the table
 - order of the rows is unspecified

Canon

Hitachi

HappyCam

tuples /

records

True

True

False

The Relational Data Model

- Degree (arity) of a relation = #attributes
- Each attribute has a type.
 - Examples types:
 - Strings: CHAR(20), VARCHAR(50), TEXT
 - Numbers: INT, SMALLINT, FLOAT
 - MONEY, DATETIME, ...
 - Few more that are vendor specific
 - Statically and strictly enforced

Keys

 Key = one (or multiple) attributes that uniquely identify a record

 Key = one (or multiple) attributes that uniquely identify a record

Key

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

 Key = one (or multiple) attributes that uniquely identify a record

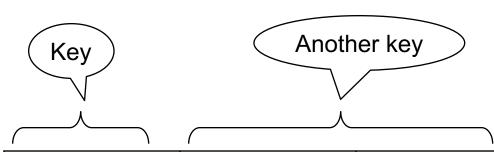
Key)	Not a key

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

 Key = one (or multiple) attributes that uniquely identify a record

Key	Not a key Is this a key?				
	<u>cname</u>	country	no_employees	for_profit	
	GizmoWorks	USA	20000	True	
	Canon	Japan	50000	True	
	Hitachi	Japan	30000	True	
	HappyCam	Canada	500	False	

 Key = one (or multiple) attributes that uniquely identify a record


Key	No: future updates to the database may create duplicate no_employees				
	<u>cname</u>	country	no_employees	for_profit	
	GizmoWorks	USA	20000	True	
	Canon	Japan	50000	True	
	Hitachi	Japan	30000	True	
	HappyCam	Canada	500	False	

Multi-attribute Key

Key = fName,lName (what does this mean?)

<u>fName</u>	<u>IName</u>	Income	Department
Alice	Smith	20000	Testing
Alice	Thompson	50000	Testing
Bob	Thompson	30000	SW
Carol	Smith	50000	Testing

Multiple Keys

<u>SSN</u>	fName	IName	Income	Department
111-22-3333	Alice	Smith	20000	Testing
222-33-4444	Alice	Thompson	50000	Testing
333-44-5555	Bob	Thompson	30000	SW
444-55-6666	Carol	Smith	50000	Testing

We can choose one key and designate it as *primary key* E.g.: primary key = SSN

Foreign Key

Company(<u>cname</u>, country, no_employees, for_profit)
Country(<u>name</u>, population)

Company

Foreign key to Country.name

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

Country

<u>name</u>	population
USA	320M
Japan	127M

Keys: Summary

- Key = columns that uniquely identify tuple
 - Usually we underline
 - A relation can have many keys, but only one can be chosen as *primary key*
- Foreign key:
 - Attribute(s) whose value is a key of a record in some other relation
 - Foreign keys are sometimes called semantic pointer

Query Language

- SQL
 - Structured Query Language
 - Developed by IBM in the 70s
 - Most widely used language to query relational data
- Other relational query languages
 - Datalog, relational algebra

Our First DBMS

- SQL Lite
- Will switch to SQL Server later in the quarter

Demo

What to Do Now

- https://courses.cs.washington.edu/courses/csep514/17wi/
- Webquiz 1 is open
 - Create account at http://www.newgradiance.com/services/servlet/COTC
 - Sign up for class online
 - Webquiz due next Sunday, 11 pm
- Homework 1 is posted
 - Simple queries in SQL Lite
 - Homework due on Tuesday, 11 pm
- Post message on discussion board (say 'hi')