Data Management for Data Science
DATA 514

Lecture 1: Introduction, Data Models

Gradience token on the whiteboard: please write it down
Class Goals

• The world is drowning in data!
• Needed: data scientists to help manage this data
 – Help domain scientists achieve new discoveries
 – Help companies provide better services
 – Help governments become more efficient
• Welcome to 514
 – Existing tools PLUS data management principles
Staff

• Instructor: Babak Salimi
 – Office hours: TBD, CSE 282

• TA: Ee (Isaac) Ahn

• Office hours:
 – Monday: 5:00 pm - 6:00 pm
 – Wednesday: 5:00 pm - 6:00 pm ??
About Me

- Postdoctoral Researcher at UW since 2016
- PhD from Carleton University, Canada, Ottawa
- Born in Iran
- Research Interests: Decision Making System, Causal Inference from Big Data, Database Repair and Approximate Query Processing
Course Format

• Lectures Tuesdays, 5pm-7:50pm
 – Location: here!

• Sections: Tuesdays, 8-8:50pm
 – Content: exercises, tutorials, questions
 – Locations: here!

• 6 homework assignments
• 7 web quizzes

• Midterm and final
Communications

• **Web page:**
 https://courses.cs.washington.edu/courses/csed514/18wi/
 – Syllabus is there
 – Lectures will be available there (see calendar)
 – Homework assignments will be available there
 – Link to web quizzes is there

• **Mailing list**
 – Announcements (low traffic – must read)
 – Registered students automatically subscribed

• **Discussion board**
 – **THE** place to ask course-related questions
 – Today, go to board and enable notifications
Main textbook, available at the bookstore:

Second edition.

Most important: COME TO CLASS! ASK QUESTIONS!
Other Texts

Available at the Engineering Library (some on reserve):

• *Database Management Systems*, Ramakrishnan
• *Fundamentals of Database Systems*, Elmasri, Navathe
• *Foundations of Databases*, Abiteboul, Hull, Vianu
• *Data on the Web*, Abiteboul, Buneman, Suciu
Grading

• Homeworks 30%
• Web quizzes 20%
• Midterm 20%
• Final 30%
Eight Homework Assignments

H1: Sqlite
H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Conceptual Design
H5: JSon
H6: SQL in Java (JDBC)

Check calendar for due dates -- Submit via gitlab!
About the Assignments

• Homework assignments will take time but most time should be spent *learning*

• Do them on your own

• Very practical assignments

• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, SQL Azure JDBC, JSon,…
Deadlines and Late Days

• Assignments are expected to be done on time, but things happen, so…

• You have up to 4 late days
 – No more than 2 on any one assignment
 – Use in 24-hour chunks

• Late days = safety net, not convenience!
 – You should not plan on using them
 – If you use all 4 you are doing it wrong
Six Web Quizzes

- http://newgradiance.com/
- Create account, provide token
- **Class token**: on the white board, write it down
- No late days – closes at 11:00 deadline
- Provides explanations for wrong answers
- Short tests, take many times, best score counts
Exams

• Midterm and Final
 – See course calendar for dates and times

• May bring 1 letter-size, double-side piece of paper with notes

• Closed book. No computers, phones, watches, etc.!

• Check course website for dates

• Location: in class
Academic Integrity

Anything you submit for credit is expected to be your own work

• Of course OK to exchange ideas, but not detailed solutions

• We all know difference between collaboration and cheating

• Attempt to gain credit for work you did not do is misconduct
Now onto the real stuff...
Outline of Today’s Lecture

- Overview of database management systems
- Course content
- Data Models
- SQL
Database Management System

What is a DBMS?

Give examples of DBMSs
Database Management System

What is a DBMS?

• A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

– Oracle, IBM DB2, Microsoft SQL Server, Vertica
– Open source: MySQL (Sun/Oracle), PostgreSQL, AsterixDB
– Open source library: SQLite

We will focus on relational DBMSs most quarter
An Example: Online Bookseller

• What data do we need?

 • What capabilities on the data do we need?
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 – Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
 – Data must be accessed efficiently, by many users
 – Data must be safe from failures and malicious users
Multi-user

• Jane and John both have ID number for gift certificate (credit) of $200 they got as a wedding gift
 – Jane @ her office orders "The Selfish Gene, R. Dawkins" ($80)
 – John @ his office orders "Guns and Steel, J. Diamond" ($100)

• Questions:
 – What is the ending credit?
 – What if second book costs $130?
 – What if system crashes?
Data Analysis Pipeline*

*Challenges and Opportunities with Big Data, 2012
Data Analysis Pipeline*

Database system

Acquisition/Recording → Extraction/Cleaning/Annotation → Integration/Aggregation/Representation → Analysis/Modeling → Interpretation

Overall System

Heterogeneity | Scale | Timeliness | Privacy | Human Collaboration

DATA 514-2018wi

*Challenges and Opportunities with Big Data, 2012
DBMS Benefits

• Expensive to implement all these features inside the application

• DBMS provides these features (and more)

• DBMS simplifies application development
Client/Server Architecture

- One server that stores the database (DBMS):
 - Usually a beefy system
 - But can be your own desktop…
 - … or a huge cluster running a parallel DBMS
- Many clients run apps and connect to DBMS
 - E.g. Microsoft’s Management Studio
 - Or psql (for PostgreSQL)
 - Or some Java/C++ program (very typical)
- Clients “talk” to server using JDBC protocol
People

• **DB designer**: establishes schema
• **DB application developer**: writes programs that query and modify data
• **DB administrator**: loads data, tunes system, keeps whole thing running
• **Data analyst**: data mining, data integration
• **Data Scientist**: analyst, designer, developer, administrator
• **DBMS implementer**: builds the DBMS
Key Data Mngmt Concepts

- **Data models**: how to describe real-world data
 - Relational, XML, graph data (RDF)
- **Schema v.s. data**
- **Declarative query language**
 - Say what you want not how to get it
- **Data independence**
 - Physical independence: Can change how data is stored on disk without maintenance to applications
 - Logical independence: can change schema w/o affecting apps
- **Query optimizer** and compiler
- **Transactions**: isolation and atomicity
What This Course Contains

• **Focus: Using DBMSs**
• Relational Data Model
 – SQL, Relational Algebra, Relational Calculus, datalog
• Conceptual design
 – E/R diagrams, Views, and Database normalization
• Query execution
• Semistructured Data Model
 – SQL++, JSon,
• Transactions
• Data integration and data cleaning
Data Models

• Recall our example: want to design a database of books:
 – author, title, publisher, pub date, price, etc
 – How should we describe this data?
• **Data model** = mathematical formalism (or conceptual way) for describing the data
Data Models

• Relational
 – Data represented as relations
• Semi-structured (JSon)
 – Data represented as trees
• Key-value pairs
 – Used by NoSQL systems
• Graph
• Object-oriented
3 Elements of Data Models

• Instance
 – The actual data

• Schema
 – Describe what data is being stored

• Query language
 – How to retrieve and manipulate data
Relational Model

• Data is a collection of relations / tables:

- columns / attributes / fields
- rows / tuples / records

<table>
<thead>
<tr>
<th>cname</th>
<th>country</th>
<th>no_employees</th>
<th>for_profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GizmoWorks</td>
<td>USA</td>
<td>20000</td>
<td>True</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>True</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>True</td>
</tr>
<tr>
<td>HappyCam</td>
<td>Canada</td>
<td>500</td>
<td>False</td>
</tr>
</tbody>
</table>

• mathematically, relation is a set of tuples
 - each tuple appears 0 or 1 times in the table
 - order of the rows is unspecified
The Relational Data Model

• Degree (arity) of a relation = #attributes
• Each attribute has a type.
 – Examples types:
 • Strings: CHAR(20), VARCHAR(50), TEXT
 • Numbers: INT, SMALLINT, FLOAT
 • MONEY, DATETIME, …
 • Few more that are vendor specific
 – Statically and strictly enforced
Keys

• Key = one (or multiple) attributes that uniquely identify a record
Keys

- Key = one (or multiple) attributes that uniquely identify a record

<table>
<thead>
<tr>
<th>cname</th>
<th>country</th>
<th>no_employees</th>
<th>for_profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GizmoWorks</td>
<td>USA</td>
<td>20000</td>
<td>True</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>True</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>True</td>
</tr>
<tr>
<td>HappyCam</td>
<td>Canada</td>
<td>500</td>
<td>False</td>
</tr>
</tbody>
</table>
Keys

- Key = one (or multiple) attributes that uniquely identify a record

<table>
<thead>
<tr>
<th>cname</th>
<th>country</th>
<th>no_employees</th>
<th>for_profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GizmoWorks</td>
<td>USA</td>
<td>20000</td>
<td>True</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>True</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>True</td>
</tr>
<tr>
<td>HappyCam</td>
<td>Canada</td>
<td>500</td>
<td>False</td>
</tr>
</tbody>
</table>
Keys

• Key = one (or multiple) attributes that uniquely identify a record

<table>
<thead>
<tr>
<th>cname</th>
<th>country</th>
<th>no_employees</th>
<th>for_profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GizmoWorks</td>
<td>USA</td>
<td>20000</td>
<td>True</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>True</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>True</td>
</tr>
<tr>
<td>HappyCam</td>
<td>Canada</td>
<td>500</td>
<td>False</td>
</tr>
</tbody>
</table>

Table showing company names, countries, number of employees, and profit status.
Keys

- Key = one (or multiple) attributes that uniquely identify a record

<table>
<thead>
<tr>
<th>cname</th>
<th>country</th>
<th>no_employees</th>
<th>for_profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GizmoWorks</td>
<td>USA</td>
<td>20000</td>
<td>True</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>True</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>True</td>
</tr>
<tr>
<td>HappyCam</td>
<td>Canada</td>
<td>500</td>
<td>False</td>
</tr>
</tbody>
</table>

No: future updates to the database may create duplicate no_employees
Multi-attribute Key

Key = fName, lName
(what does this mean?)

<table>
<thead>
<tr>
<th>fName</th>
<th>lName</th>
<th>Income</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Smith</td>
<td>20000</td>
<td>Testing</td>
</tr>
<tr>
<td>Alice</td>
<td>Thompson</td>
<td>50000</td>
<td>Testing</td>
</tr>
<tr>
<td>Bob</td>
<td>Thompson</td>
<td>30000</td>
<td>SW</td>
</tr>
<tr>
<td>Carol</td>
<td>Smith</td>
<td>50000</td>
<td>Testing</td>
</tr>
</tbody>
</table>
Multiple Keys

We can choose one key and designate it as *primary key*
E.g.: primary key = SSN
Foreign Key

Company(cname, country, no_employees, for_profit)
Country(name, population)

<table>
<thead>
<tr>
<th>Company</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cname</td>
<td>country</td>
<td>no_employees</td>
<td>for_profit</td>
</tr>
<tr>
<td>Canon</td>
<td>Japan</td>
<td>50000</td>
<td>Y</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>30000</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>population</td>
</tr>
<tr>
<td>USA</td>
<td>320M</td>
</tr>
<tr>
<td>Japan</td>
<td>127M</td>
</tr>
</tbody>
</table>
Keys: Summary

• Key = columns that uniquely identify tuple
 – Usually we underline
 – A relation can have many keys, but only one can be chosen as primary key

• Foreign key:
 – Attribute(s) whose value is a key of a record in some other relation
 – Foreign keys are sometimes called semantic pointer
Query Language

• SQL
 – **Structured Query Language**
 – Developed by IBM in the 70s
 – Most widely used language to query relational data

• Other relational query languages
 – Datalog, relational algebra
Our First DBMS

• SQL Lite
• Will switch to SQL Server later in the quarter
Demo
What to Do Now

• https://courses.cs.washington.edu/courses/csep514/17wi/

• Webquiz 1 is open
 – Create account at http://www.newgradiance.com/services/servlet/COTC
 – Sign up for class online
 – Webquiz due next Sunday, 11 pm

• Homework 1 is posted
 – Simple queries in SQL Lite
 – Homework due on Tuesday, 11 pm

• Post message on discussion board (say ‘hi’)

DATA 514-2018wi