

CSED 502: Computer Vision and Deep Learning

Solutions for Tutorial: NumPy Fundamentals & Backpropagation

Thanks for attending, we hope you found class helpful.

Reference Material

Rules of Broadcasting from Jake VanderPlas' *Python Data Science Handbook*:

- (1) If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.
- (2) If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape.
- (3) If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Chain Rule for One Independent Variable:

Let $z = f(x, y)$ be a differentiable function. Further suppose that x and y are themselves differentiable functions of t , in other words $x = x(t)$ and $y = y(t)$. Then,

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Chain Rule for Two Independent Variables:

Let $z = f(x, y)$ be a differentiable function, where x and y are themselves differentiable functions of a and b . In other words, $x = x(a, b)$ and $y = y(a, b)$. Then,

$$\frac{\partial z}{\partial a} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial a} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial a}$$

and

$$\frac{\partial z}{\partial b} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial b}$$

Generalized Chain Rule:

Let $w = f(x_1, x_2, \dots, x_m)$ be a differentiable function of m independent variables, and let $x_i = x_i(t_1, t_2, \dots, t_n)$ be a differentiable function of n independent variables. Then,

$$\frac{\partial w}{\partial t_j} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial w}{\partial x_m} \frac{\partial x_m}{\partial t_j}$$

for any $j \in 1, 2, \dots, n$.

Intuition for Backprop

Recall some basic facts:

- 1) The loss function L measures how "bad" our current model is.
- 2) L is a function of our parameters W .
- 3) We want to minimize L .

Thus, we update W to minimize L using $\frac{\partial L}{\partial W}$.

For example, if $\frac{\partial L}{\partial W_1}$ was positive, increasing W_1 would increase L . Accordingly, we'd choose to decrease W_1 .

More generally, `weights += (-1 * step_size * gradient)`.

Unfortunately, taking the derivative $\frac{\partial L}{\partial W}$ can get extremely difficult, especially at the scale of state-of-the-art models. For instance, GLM-4.5 has 92 hidden layers and 32 billion parameters. Imagine taking 32 billion derivatives, with each derivative having hundreds of applications of chain rule.

Instead, we employ a technique known as **backprop**.

First, we split our function into multiple equations until there is *one operation per equation*. This process is known as **staged computation**. Next, we take the derivatives of each of these smaller equations, before finally linking them together using **chain rule**.

Common Gates

Feel free to take notes on the common backprop gates here.

1. Dimension: Impossible

Determine if NumPy allows the **addition** of the following pairs of arrays, and if applicable determine what the result's dimensions will be.

(a) Where $x.\text{shape}$ is $(2,)$ and $y.\text{shape}$ is $(2, 1)$

Solution:

Yes. $(2, 2)$.

(b) Where $x.\text{shape}$ is $(4,)$ and $y.\text{shape}$ is $(4, 1, 1)$

Solution:

Yes. $(4, 1, 4)$.

(c) Where $x.\text{shape}$ is $(4, 2)$ and $y.\text{shape}$ is $(2, 4, 1)$

Solution:

Yes. $(2, 4, 2)$.

(d) Where $x.\text{shape}$ is $(8, 3)$ and $y.\text{shape}$ is $(2, 8, 1)$

Solution:

Yes. $(2, 8, 3)$.

(e) Where $x.\text{shape}$ is $(6, 5, 3)$ and $y.\text{shape}$ is $(6, 5)$

Solution:

No. However, if we changed $y.\text{shape}$ to be $(6, 5, 1)$, then we would get a valid operation that results in an array of shape $(6, 5, 3)$. This could be achieved in NumPy by calling either $x + y[:, :, \text{None}]$ or $x + y[:, :, \text{np.newaxis}]$ instead of $x + y$.

Determine if NumPy allows the **matrix multiplication** of the following pairs of arrays, and if applicable determine what the result's dimensions will be.

(f) Where `a.shape` is (5, 4) and `b.shape` is (4, 8).

Solution:

Yes. (5, 8).

(g) Where `a.shape` is (3, 5, 4) and `b.shape` is (3, 4, 8).

Solution:

Yes. (3, 5, 8).

(h) Where `a.shape` is (3, 5, 4) and `b.shape` is (5, 4, 8).

Solution:

No. The batch dimension is not compatible.

(i) Where `a.shape` is (1, 5, 4) and `b.shape` is (5, 4, 8).

Solution:

Yes. (5, 5, 8). Unlike the prior example, we successfully broadcast the batch dimension.

(j) Where `a.shape` is (2, 5, 4) and `b.shape` is (3, 2, 4, 8).

Solution:

Yes. (3, 2, 5, 8).

2. The More (Derivatives) The Merrier

(a) Let $z = 2x + y$, with $x = \ln(t)$ and $y = \frac{1}{3}t^3$. Find $\frac{dz}{dt}$.

Solution:

$$\begin{aligned}\frac{dz}{dt} &= \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \\ &= \frac{\partial}{\partial x}(2x + y) \cdot \frac{\partial}{\partial t}(\ln(t)) + \frac{\partial}{\partial y}(2x + y) \frac{\partial}{\partial t}\left(\frac{1}{3}t^3\right) && \text{Chain Rule} \\ &= 2 \cdot \frac{1}{t} + 1 \cdot t^2 && \text{Solve Partial Derivatives} \\ &= t^2 + \frac{2}{t}\end{aligned}$$

(b) Let $z = x^2y - y^2$ where $x = t^2$ and $y = 2t$. Find $\frac{dz}{dt}$. Your answer should be in terms of t .

Solution:

$$\begin{aligned}\frac{dz}{dt} &= \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} && \text{Chain Rule} \\ &= (2xy)(2t) + (x^2 - 2y)(2) && \text{Substitute Partial Derivatives} \\ &= (2(t^2)(2t))(2t) + ((t^2)^2 - 2(2t))(2) && \text{Definitions of } x \text{ and } y \\ &= (4t^3)(2t) + 2(t^4 - 4t) \\ &= 8t^4 + 2t^4 - 8t \\ &= 10t^4 - 8t\end{aligned}$$

(c) Let $z = 3x^2 - 2xy + y^2$. Also let $x = 3a + 2b$ and $y = 4a - b$. Find $\frac{\partial z}{\partial a}$ and $\frac{\partial z}{\partial b}$.

Solution:

$$\begin{aligned}
 \frac{\partial z}{\partial a} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial a} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial a} && \text{Chain Rule} \\
 &= (6x - 2y)(3) + (-2x + 2y)(4) && \text{Substitute Partial Derivatives} \\
 &= 18x - 6y - 8x + 8y \\
 &= 10x + 2y \\
 &= 10(3a + 2b) + 2(4a - b) && \text{Definitions of } x \text{ and } y \\
 &= 30a + 20b + 8a - 2b \\
 &= 38a + 18b
 \end{aligned}$$

$$\begin{aligned}
 \frac{\partial z}{\partial b} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial b} && \text{Chain Rule} \\
 &= (6x - 2y)(2) + (-2x + 2y)(-1) && \text{Substitute Partial Derivatives} \\
 &= 12x - 4y + 2x - 2y \\
 &= 14x - 6y \\
 &= 14(3a + 2b) - 6(4a - b) && \text{Definitions of } x \text{ and } y \\
 &= 42a + 28b - 24a + 6b \\
 &= 18a + 34b
 \end{aligned}$$

(d) Let $w = f(x, y, z)$, $x = x(t, u, v)$, $y = y(t, u, v)$ and $z = z(t, u, v)$. Find the formula for $\frac{\partial w}{\partial t}$.

Solution:

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$$

3. Compute and Conquer

For each function below, use the staged computation approach to split it into smaller equations.

(a) $f(x, y, z) = (x + y)z$

Solution:

Decompose the function as follows:

- $a = x + y$
- $b = z$
- $f = ab$

(b) $h(x, y, z) = (x^2 + 2y)z^3$

Solution:

Decompose the function as follows:

- $a = x^2$
- $b = 2y$
- $c = a + b$
- $d = z^3$
- $h = cd$

(c) $g(x, y, z) = (\ln(x) + \sin(y))^2 + 4x$

Solution:

Decompose the function as follows:

- $a = \ln(x)$
- $b = \sin(y)$
- $c = a + b$
- $d = c^2$
- $f = 4x$
- $g = d + f$

4. Oh, node way!

For each function below:

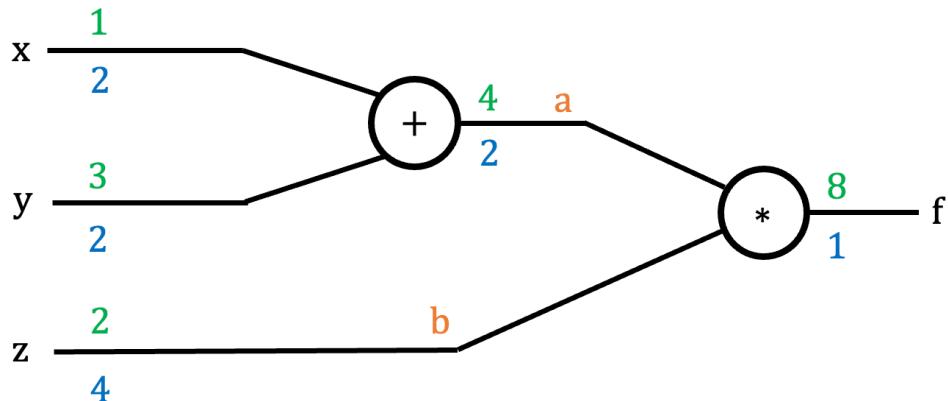
- (i) construct a computational graph
- (ii) do a forward and backward pass through the graph using the provided input values
- (iii) complete the Python function for a combined forward and backward pass

It may be useful to consider how you split these functions into smaller equations in the question above.

(a) $f(x, y, z) = (x + y)z$ with input values $x = 1, y = 3, z = 2$

Solution:

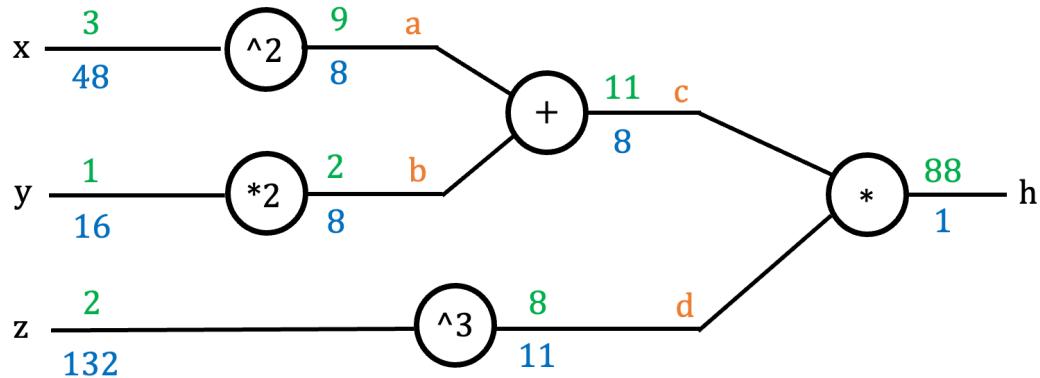
Forward pass values are displayed in green; backward pass values are displayed in blue. The orange letters correspond to the mini-equations from Question 1.



```
1 import numpy as np
2
3 # inputs: NumPy arrays `x`, `y`, `z` of identical size
4 # outputs: forward pass in `out`, gradients for x, y, z in `fx`, `fy`, `fz` respectively
5 def q2a(x, y, z):
6     # forward pass
7     a = x + y
8     b = z
9     f = a * b
10    out = f
11
12    # backward pass
13    ff = 1
14    fb = ff * a
15    fa = ff * b
16    fz = fb * 1
17    fx = fa
18    fy = fa
19
20    return out, fx, fy, fz
```

(b) $h(x, y, z) = (x^2 + 2y)z^3$ with input values $x = 3, y = 1, z = 2$

Solution:



```

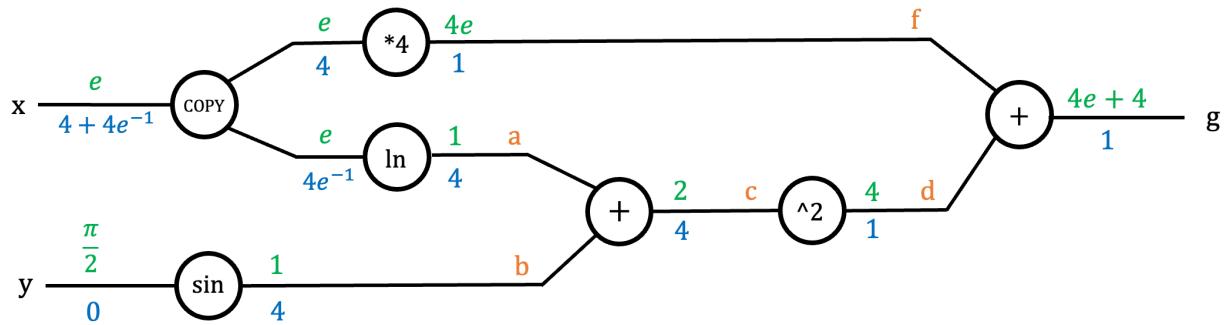
1 import numpy as np
2
3 # inputs: NumPy arrays `x`, `y`, `z` of identical size
4 # outputs: forward pass in `out`, gradients for x, y, z in `hx`, `hy`, `hz` respectively
5 def q2b(x, y, z):
6     # forward pass
7     a = x ** 2
8     b = 2 * y
9     c = a + b
10    d = z ** 3
11    h = c * d
12    out = h
13
14    # backward pass -- right-most gate
15    hh = 1
16    hc = hh * d
17    hd = hh * c
18
19    # backward pass -- top branches
20    ha = hc
21    hb = hc
22    hx = ha * (2 * x)
23    hy = hb * 2
24
25    # backward pass -- bottom branch
26    hz = hd * (3 * (z ** 2))
27
28    return out, hx, hy, hz

```

$$(c) \quad g(x, y, z) = (\ln(x) + \sin(y))^2 + 4x \text{ with input values } x = e, y = \frac{\pi}{2}, z = 2$$

Solution:

We omit z in the computational graph below since it does not appear in the formula for g . It is important to realize that the gradient with respect to z is 0.



A few observations:

- We have a gradient (4) flowing back to y , but it dies on the last gate since $\frac{d}{dy}(\sin(y)) = \cos(y)$ and $\cos(\frac{\pi}{2}) = 0$. This is problematic since it means we don't change y on this gradient descent step despite having feedback suggesting that y should be decremented.
- Since $\ln(x) = \frac{1}{x}$, the local gradient associated with equation a can be undefined if $x = 0$. If you were asked to implement this function and its backwards pass in Python, what are some potential workarounds you might employ?

Python function printed on the following page.

```

1  import numpy as np
2
3  # inputs: NumPy arrays `x`, `y`, `z` of identical size
4  # outputs: forward pass in `out`, gradients for x, y, z in `gx`, `gy`, `gz` respectively
5  def q2c(x, y, z):
6      # forward pass
7      a = np.log(x)
8      b = np.sin(y)
9      c = a + b
10     d = c ** 2
11     f = 4 * x
12     g = d + f
13     out = g
14
15     # backward pass -- right-most gate
16     gg = 1
17     gf = gg
18     gd = gd
19
20     # backward pass -- path via `d`
21     gc = gd * (2 * c)
22     ga = gc
23     gb = gc
24     gx_1 = ga * (x ** -1)
25     gy = gb * np.cos(y)
26
27     # backward pass -- path via `f`
28     gx_2 = gf * 4
29
30     # backward pass -- reconciliation at copy gate
31     gx = gx_1 + gx_2
32
33     # z never appears in the function, so it has no gradient
34     gz = 0
35
36     return out, gx, gy, gz

```

5. Sigmoid Shenanigans

Consider the Sigmoid activation function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

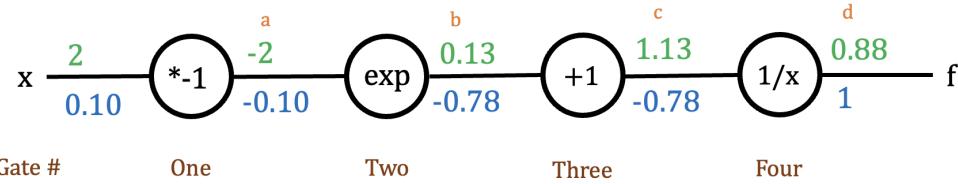
(a) Draw a computational graph and work through the backpropagation. Then, fill in the Python function. If you finish early, work through the analytical derivation for Sigmoid.

As a hint, you could split Sigmoid into the following functions:

$$a(x) = -x \quad b(x) = e^x \quad c(x) = 1 + x \quad d(x) = \frac{1}{x}$$

Observe that chaining these operations gives us Sigmoid: $d(c(b(a(x)))) = \sigma(x)$.

Solution:



(b) Suppose $x = 2$. What would the gradient with respect to x be? Feel free to use a calculator on this part.

Solution:

Recall that downstream = upstream \times local.

At Gate Four, the upstream gradient is 1 and the local gradient is $\frac{\partial}{\partial c} \left(\frac{1}{c} \right) = -\frac{1}{c^2} = -\frac{1}{(1.13)^2} = -0.78$. Thus, the downstream gradient is $1 \times -0.78 = -0.78$.

At Gate Three, the upstream is -0.78 and the local is $\frac{\partial}{\partial b} (b + 1) = 1$. Thus, the downstream is $-0.78 \times 1 = -0.78$.

At Gate Two, the upstream is -0.78 and the local is $\frac{\partial}{\partial a} (e^a) = e^a = e^{-2} = 0.135$. Thus, the downstream is $-0.78 \times 0.135 = -0.10$.

At Gate One, the upstream is -0.10 and the local is $\frac{\partial}{\partial x} (-x) = -1$. Thus, the downstream is $-0.10 \times -1 = 0.10$.

Therefore, $\frac{df}{dx} \approx 0.10$. We use \approx here because we rounded decimals throughout our calculations.

(c) You should have gotten around 0.1. If the step size is 0.2, what would the value of x be after taking one gradient descent step? As a hint, remember that `parameters -= step_size * gradient`.

Solution:

Our parameter, x , started off at 2. Our step size was 0.2 and our gradient is 0.1. Plugging into the equation for gradient descent, the new value for x is $2 - 0.2(0.1) = 2 - 0.02 = 1.98$.

(d) Implement the function below for a full forward and backward pass through Sigmoid.

Solution:

```
1  import numpy as np
2
3  # inputs:
4  # - a numpy array `x`
5  # outputs:
6  # - `out`: the result of the forward pass
7  # - `fx` : the result of the backward pass
8  def sigmoid(x):
9      # provided: forward pass with cache
10     a = -x
11     b = np.exp(a)
12     c = 1 + b
13     f = 1/c
14     out = f
15
16     # TODO: backward pass, "fx" represents  $df / dx$ 
17     ff = 1
18     fc = ff * -1/(c**2)
19     fb = fc * 1
20     fa = fb * np.exp(a)
21     fx = fa * -1
22
23     return out, fx
```

6. A Backprop a Day Keeps the Derivative Away

Consider the following function:

$$f = \frac{\ln x \cdot \sigma(\sqrt{y})}{\sigma((x+y)^2)}$$

Break the function up into smaller parts, then draw a computational graph and finish the Python function.

For reference, the derivative of Sigmoid is $\sigma(x) \cdot (1 - \sigma(x))$.

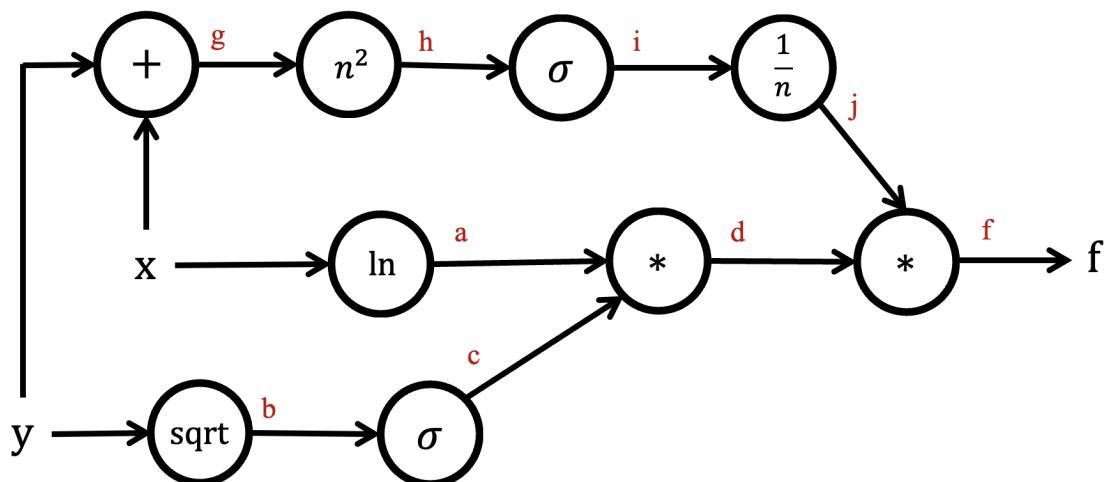
The TA solution breaks the function into 8 additional equations and rewrites f in terms of 2 of those additional equations. Yours doesn't have to match this exactly.

Solution:

We begin by breaking the function down:

Numerator:	$a = \ln x$	$b = \sqrt{y}$	$c = \sigma(b)$
Denominator:	$g = x + y$	$h = g^2$	$i = \sigma(h)$
Final:	$f = dj$		
			$d = a \cdot c$
			$j = \frac{1}{i}$

Although $f = \frac{d}{i}$ is a valid, one-operation gate, we generally try to avoid quotient rule. Therefore, we introduce an extra operation, $i = \frac{1}{j}$, leaving us with $f = di$.



Python function printed on the following page.

```

1  import numpy as np
2
3  # helper function
4  def sigmoid(x):
5      return 1/(1 +np.exp(-x))
6
7  # inputs: numpy arrays `x`, `y`
8  # outputs: forward pass in `out`, gradient for x in `fx`, gradient for y in `fy`
9  def complex_layer(x, y):
10     # forward pass
11     a = np.log(x)
12     b = np.sqrt(y)
13     c = sigmoid(b)
14     d = a * c
15     g = x + y
16     h = g ** 2
17     i = sigmoid(h)
18     j = 1 / i
19     out = d * j
20
21     # backward pass -- output gate
22     ff = 1
23     fd = ff * j
24     fj = ff * d
25
26     # backward pass -- top branch
27     fi = fj * -1 / (i ** 2)
28     fh = fi * sigmoid(h) * (1 - sigmoid(h))
29     fg = fh * 2 * g
30     fx_1 = fg
31     fy_1 = fg
32
33     # backward pass -- middle branch
34     fa = fd * c
35     fx_2 = fa / x
36
37     # backward pass -- bottom branch
38     fc = fd * a
39     fb = fc * sigmoid(b) * (1 - sigmoid(b))
40     fy_2 = fb / (2 * np.sqrt(y))
41
42     # backward pass -- reconciliation
43     fx = fx_1 + fx_2
44     fy = fy_1 + fy_2
45
46     return out, fx, fy

```

7. Vector Virtuosity

Consider the following function,

$$f(W, x) = \|W \cdot x\|^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

where $W \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$.

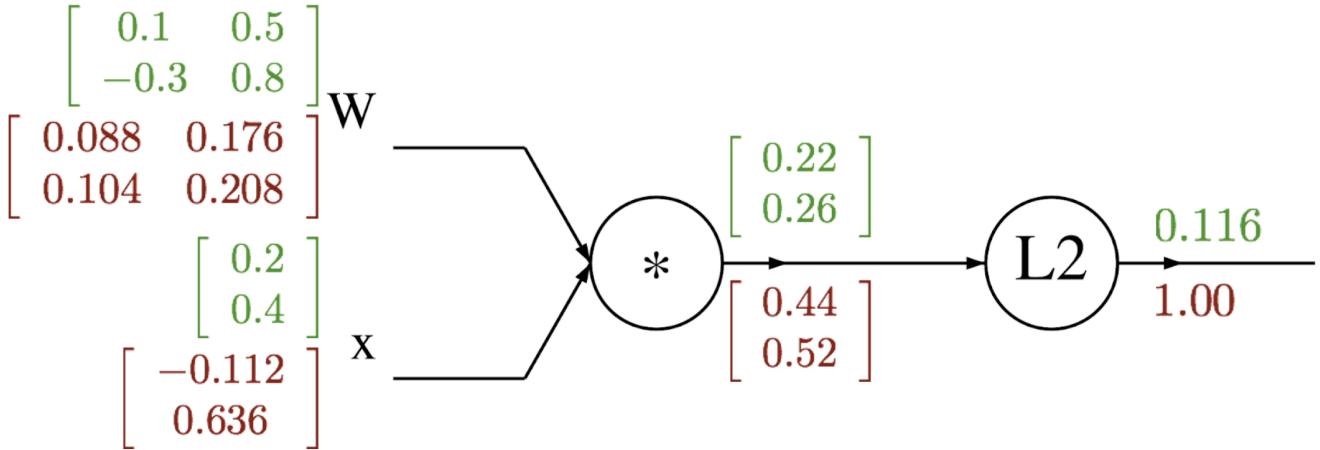
First draw the function's computation graph. Then compute the forward pass for the following inputs.

$$W = \begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} \quad x = \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}$$

Lastly, compute the backward pass. Verify your answer by deriving the closed forms of $\nabla_W f$ and $\nabla_x f$.

Solution:

The forward pass values are printed in green; the backward pass values are in red.



Note that labeling the final gate as "L2" is a bit misleading, since the function f omits the square root typical of an L2 norm. You are encouraged to use a more appropriate label for that gate (e.g., "squared norm").

If we label the intermediate value $q = Wx \in \mathbb{R}^n$, then the gradients can be written as follows.

$$\nabla_q f = 2q \quad \nabla_W f = 2q \cdot x^T \quad \nabla_x f = 2W^T \cdot q$$

If you are struggling to derive the gradients listed above, then you should first check to make sure you arrived at the derivatives listed below. Note that $\mathbf{1}_{\{k=i\}}$ is an indicator function which returns 1 iff $k = i$ and 0 otherwise.

- $\frac{\partial f}{\partial q_i} = 2q_i$
- $\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{\{k=i\}} x_j$ and $\frac{\partial q_k}{\partial x_i} = W_{k,i}$
- $\frac{\partial f}{\partial W_{i,j}} = \sum_{k=1}^n \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}} = \sum_{k=1}^n (2q_k)(\mathbf{1}_{\{k=i\}} x_j) = 2q_i x_j$
- $\frac{\partial f}{\partial x_i} = \sum_{k=1}^n \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} = \sum_{k=1}^n 2q_k \cdot W_{k,i}$