CSED 502: Computer Vision and Deep Learning

Solutions for Tutorial: NumPy Fundamentals & Backpropagation
Thanks for attending, we hope you found class helpful.
Reference Material

Rules of Broadcasting from Jake VanderPlas' Python Data Science Handbook:

(1) If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is
padded with ones on its leading (left) side.

(2) If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that
dimension is stretched to match the other shape.

(3) If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Chain Rule for One Independent Variable:

Let z = f(x,y) be a differentiable function. Further suppose that 2 and y are themselves differen-
tiable functions of ¢, in other words x = z(t) and y = y(t). Then,

dz azdﬁ 8z@

@t ondt oydt

Chain Rule for Two Independent Variables:

Let z = f(z,y) be a differentiable function, where x and y are themselves differentiable functions
of @ and b. In other words, z = x(a,b) and y = y(a,b). Then,

0: 0200 0:0y
da Oxda Oylda

and
0z 82% 0z Oy

9~ 0zob oy ob

Generalized Chain Rule:

Let w = f(x1,22,...,2,) be a differentiable function of m independent variables, and let z; =
x;i(t1,ta,...,ty) be a differentiable function of n independent variables. Then,
ow Jw % ow % ow O0xy,

o, 0m ot oot T dum 0t

forany j €1,2,...,n.

Intuition for Backprop

Recall some basic facts:

1) The loss function L measures how “bad" our current model is.
2) L is a function of our parameters .

3) We want to minimize L.
Thus, we update W to minimize L using gTLV'
For example, if <§WL1 was positive, increasing Wi would increase L. Accordingly, we'd choose to decrease Wj.
More generally, weights += (-1 * step_size * gradient).

Unfortunately, taking the derivative 88—1%/ can get extremely difficult, especially at the scale of state-of-the-art

models. For instance, GLM-4.5 has 92 hidden layers and 32 billion parameters. Imagine taking 32 billion
derivatives, with each derivative having hundreds of applications of chain rule.

Instead, we employ a technique known as backprop.

First, we split our function into multiple equations until there is one operation per equation. This process is
known as staged computation. Next, we take the derivatives of each of these smaller equations, before finally
linking them together using chain rule.

Common Gates

Feel free to take notes on the common backprop gates here.

1. Dimension: Impossible

Determine if NumPy allows the addition of the following pairs of arrays, and if applicable determine what the
result's dimensions will be.

(a) Where x.shape is (2,) and y.shape is (2,1)

Solution:
Yes. (2,2).

(b) Where x.shape

is (4,) and y.shape is (4,1,1)

Solution:
Yes. (4,1,4).

(c) Where x.shape

is (4,2) and y.shape is (2,4,1)

Solution:
Yes. (2,4,2).

(d) Where x.shape is (8,3) and y.shape is (2,8,1)

Solution:
Yes. (2,8,3).

(e) Where x.shape is (6,5,3) and y.shape is (6,5)

Solution:

No. However, if we changed y.shape to be (6,5,1), then we would get a valid operation that results in
an array of shape (6,5,3). This could be achieved in NumPy by calling either x + y[:, :, None] or
x + yl:, :, np.newaxis] instead of x + y.

Determine if NumPy allows the matrix multiplication of the following pairs of arrays, and if applicable determine
what the result’s dimensions will be.

(f) Where a.shape is (5,4) and b.shape is (4,8).

Solution:
Yes. (5,8).

(g) Where a.shape is (3,5,4) and b.shape is (3,4, 38).

Solution:
Yes. (3,5,8).

(h) Where a.shape is (3,5,4) and b.shape is (5,4, 8).

Solution:

No. The batch dimension is not compatible.
(i) Where a.shape is (1,5,4) and b.shape is (5,4, 8).

Solution:

Yes. (5,5,8). Unlike the prior example, we successfully broadcast the batch dimension.
(j) Where a.shape is (2,5,4) and b.shape is (3,2,4,8).

Solution:
Yes. (3,2,5,8).

2. The More (Derivatives) The Merrier
(a) Let z = 2z +y, with z = In(t) and y = 4¢3, Find .
Solution:

de _Ozdr Ozdy
dt Ordt Oydt

0 0 0 0 (1, .
= %<2x+y) : &<ln(t)) + %(2934—1/)& (375 > Chain Rule
=2. % +1-¢2 Solve Partial Derivatives
2
=242
+ t

(b) Let z = 2%y — y? where = t? and y = 2t. Find %. Your answer should be in terms of ¢.

Solution:

dz azdj 82’@ Chain Rule

at " owdt oyt
= (2zy)(2t) + (2% — 2y)(2) Substitute Partial Derivatives
= (2(752)(215)) (2t) + ((752)2 —2(2t))(2) Definitions of = and y
= (4t%)(2t) + 2(t* — 4¢)
=8t 4 21 — 8¢
=10t* — 8¢

(c) Let z = 322 — 22y + 2. Also let x = 3a + 2b and y = 4a — b. Find % and %.

Solution:

82_82@ 82@

%4 - 97 9a + 87y8a Chain Rule
= (6 — 2y)(3) + (—2z + 2y)(4) Substitute Partial Derivatives
= 18z — 6y — 8z 4 8y
=10z + 2y
= 10(3a + 2b) + 2(4a — b) Definitions of z and y
= 30a + 20b + 8a — 2b
= 38a + 18b

gz = g;g:z + gzgz Chain Rule
= (6 — 2y)(2) + (—2z + 2y)(—1) Substitute Partial Derivatives
=12z — 4y + 22 — 2y
= 14z — 6y
= 14(3a + 2b) — 6(4a — b) Definitions of z and y
= 42a + 28b — 24a + 6b
= 18a + 34b

— — — _ ; ow
(d) Let w= f(=,y,2), v = z(t,u,v), y = y(t,u,v) and z = z(t,u,v). Find the formula for 7.

Solution:

dw _Owdr dwdy wd:
ot Ox ot 0Oy ot 0z 0t

3. Compute and Conquer
For each function below, use the staged computation approach to split it into smaller equations.
(a) f(z,y,2) = (z+y)2

Solution:

Decompose the function as follows:

la:x+y
L b:Z
L f:ab

(b) h(z,y,z) = (% + 2y)2°

Solution:
Decompose the function as follows:

2

" a==z
= b=2y
= c=a-+b
w d=2
» h=cd

(c) g(z,y,2) = (In(z) + Sin(y))2 + 4x

Solution:

Decompose the function as follows:

» a=In(z)

= b =sin(y)
» c=a+b
» d=c?
» f=dx
» g=d+ f

4. Oh, node way!
For each function below:

(i) construct a computational graph
(i) do a forward and backward pass through the graph using the provided input values
(iii) complete the Python function for a combined forward and backward pass

It may be useful to consider how you split these functions into smaller equations in the question above.

(a) f(z,y,2) = (x + y)z with input values z =1,y = 3,2 =2

Solution:

Forward pass values are displayed in green; backward pass values are displayed in blue. The orange letters
correspond to the mini-equations from Question 1.

X
4
2
3 8
y f
2
2
Z
4
1 import numpy as np
2
3 # inputs: NumPy arrays "x°, 'y , "z of identical size
4 # outputs: forward pass in “out’, gradients for x, y, z in “fx°, “fy , “fz' respectively
5 def q2a(x, y, z):
6 # forward pass
7 a=x+y
8 b=z
9 f=axb
10 out = f
11
12 # backward pass
13 ff = 1
14 fb = ff * a
15 fa = ff *x b
16 fz = fb * 1
17 fx = fa
18 fy = fa
19
20 return out, fx, fy, fz

(b) h(z,y,z) = (2% + 2y)23 with input values x =3,y = 1,2 = 2

Solution:
3
X
48
1
y
16
2
Z
132
1 import numpy as np
2
3 # inputs: NumPy arrays "x°, 'y , "z of identical size
4 # outputs: forward pass in “out”, gradients for x, y, z in "hx", "hy , “hz respectively
5 def g2b(x, y, 2):
6 # forward pass
7 a = x ®k 2
8 b= 2%y
9 c=a+ b
10 d= z *xk 3
11 h=c=*d
12 out = h
13
14 # backward pass -- right-most gate
15 hh = 1
16 hc = hh * d
17 hd = hh * ¢
18
19 # backward pass -- top branches
20 ha = hc
21 hb = hc
22 hx = ha * (2 * x)
23 hy = hb * 2
24
25 # backward pass —-- bottom branch
26 hz = hd * (3 * (z ** 2))
27
28 return out, hx, hy, hz

(c) g(z,y,2) = (In(z) + sim(y))2 + 4z with input values z = e,y = 5,2 = 2

Solution:

We omit z in the computational graph below since it does not appear in the formula for g. It is important
to realize that the gradient with respect to z is 0.

4e + 4

o | ™NvA
—

A few observations:

= We have a gradient (4) flowing back to y, but it dies on the last gate since diy(sin(y)) = cos(z)
and cos(%5) = 0. This is problematic since it means we don’t change y on this gradient descent step
despite having feedback suggesting that y should be decremented.

1

= Since In(z) = -, the local gradient associated with equation a can be undefined if z = 0. If you

were asked to implement this function and its backwards pass in Python, what are some potential
workarounds you might employ?

Python function printed on the following page.

10

O~NO O W

import numpy as np

inputs: NumPy arrays "x°, 'y , "z of identical size

outputs: forward pass in “out’, gradients for x, y, z in "gx , gy , 8z

def q2c(x, y, z):
forward pass

a = np.log(x)
b = np.sin(y)
c=a+b
d= c *xx 2
f=4x* x
g=d+f

out = g

backward pass -- right-most gate

gg = 1
gf = gg
gd = gd

backward pass -- path via “d°
gc = gd * (2 xc)

ga = gc

gb = gc

gx_1 = ga * (x ** -1)

gy = gb * mnp.cos(y)

backward pass -- path via “f°
gx_ 2 =gf x 4

backward pass -- reconciliation at copy gate
gx = gx_1 + gx_2

z never appears in the function, so it has no gradient
gz = 0

return out, gx, gy, gz

respectively

11

5. Sigmoid Shenanigans

Consider the Sigmoid activation function:

(a)

()

Draw a computational graph and work through the backpropagation. Then, fill in the Python function.
If you finish early, work through the analytical derivation for Sigmoid.

As a hint, you could split Sigmoid into the following functions:
a(z) = —x b(x) =e” cle)=1+z d(z) =
Observe that chaining these operations gives us Sigmoid: d(c(b(a(x)))) = o(x).

Solution:

2 OV (o)l () ()
* o0 \ Mo o W U

Gate # One Two Three Four

Suppose x = 2. What would the gradient with respect to x be? Feel free to use a calculator on this part.

Solution:

Recall that downstream = upstream x local.

At Gate Four, the upstream gradient is 1 and the local gradient is %(%) = -2 = —qigz = 0.78.
Thus, the downstream gradient is 1 x —0.78 = —0.78.

At Gate Three, the upstream is —0.78 and the local is %(b + 1) = 1. Thus, the downstream is
—0.78 x 1 = —0.78.

At Gate Two, the upstream is —0.78 and the local is % (e“) = e% = e 2 =0.135. Thus, the downstream
is —0.78 x 0.135 = —0.10.

At Gate One, the upstream is —0.10 and the local is %(— :c) = —1. Thus, the downstream is
—0.10 x —1 = 0.10.

Therefore, % ~ 0.10. We use =~ here because we rounded decimals throughout our calculations.

You should have gotten around 0.1. If the step size is 0.2, what would the value of x be after taking one
gradient descent step? As a hint, remember that parameters -= step_size * gradient.

Solution:

Our parameter, z, started off at 2. Qur step size was 0.2 and our gradient is 0.1. Plugging into the
equation for gradient descent, the new value for z is 2 — 0.2(0.1) = 2 — 0.02 = 1.98.

12

(d) Implement the function below for a full forward and backward pass through Sigmoid.

Solution:
1 import numpy as np
2
3 # inputs:
4 # - a numpy array “x°
5 # outputs:
6 # - “out’: the result of the forward pass
7 # - "fx° : the result of the backward pass
8 def sigmoid(x):
9 # provided: forward pass with cache
10 a= -x
11 b = np.exp(a)
12 c=1+b
13 f= 1/c
14 out = f
15
16 # TODO: backward pass, "fx" represents df / dx
17 ff = 1
18 fc = ff * -1/(c**2)
19 fb = fc * 1
20 fa = fb * np.exp(a)
21 fx = fa * -1
22
23 return out, fx

13

6. A Backprop a Day Keeps the Derivative Away

Consider the following function:

_ Inz-o (\/ﬂ)
o ((fﬂ + y)z)

Break the function up into smaller parts, then draw a computational graph and finish the Python function.

For reference, the derivative of Sigmoid is o(z) - (1 — o(x)).

The TA solution breaks the function into 8 additional equations and rewrites f in terms of 2 of those additional

equations. Yours doesn’t have to match this exactly.

Solution:

We begin by breaking the function down:

Numerator: a=lInx
Denominator: g=x+y
Final: f=dj

Although f = %l is a valid, one-operation gate, we generally try to avoid quotient rule. Therefore, we introduce

an extra operation, i = % leaving us with f = di.

Python function printed on the following page.

14

O~NO O WN -

import numpy as np
helper function
def sigmoid(x):
return 1/(1 +np.exp(-x))

inputs: numpy arrays ‘X , 'y

outputs: forward pass in “out’, gradient for x in “fx°, gradient for y in “fy~

def complex_layer(x, y):
forward pass

= np.log(x)

= np.sqrt(y)

= sigmoid(b)

= a* c

X+ y

= g *x 2

= sigmoid(h)

=1/ i

ut = d * j

O & H Pk QA 0 T e
[}

backward pass -- output gate

ff = 1

fd = ff * j

fj = £ff x d

backward pass -- top branch

fi = £fj * -1/ (1 ** 2)

fh = fi * sigmoid(h) * (1 - sigmoid(h))
fg = fh * 2 x g

fx_1 = fg

fy_1 = fg

backward pass -- middle branch

fa = fd * ¢

fx 2 = fa / x

backward pass -- bottom branch

fc = fd * a

fb = fc * sigmoid(b) * (1 - sigmoid(b))
fy_2 = fb / (2 * np.sqrt(y))

backward pass -- reconciliation
fx = fx_1 + fx_2
fy = fy_1 + fy_2

return out, fx, fy

15

7. Vector Virtuosity

Consider the following function,
n

FWoa) = W -al> =Y (W xa)}

i=1
where W € R™"*"™ and z € R".

First draw the function's computation graph. Then compute the forward pass for the following inputs.

0.1 0.5 0.2
W= {—0.3 0.8] v {0.4]
Lastly, compute the backward pass. Verify your answer by deriving the closed forms of Vyy f and V. f.

Solution:

The forward pass values are printed in green; the backward pass values are in red.

0.1 0.5]
—0.3 0.8

0-088 0-176 B 022 B

0.104 0.208
. 0.26 0.116

0.2 | sk —> - :@ »
0.4 0.44 _/ 1.00
01121 % | 0.52
0.636

Note that labeling the final gate as "L2" is a bit misleading, since the function f omits the square root typical
of an L2 norm. You are encouraged to use a more appropriate label for that gate (e.g., "squared norm").

If we label the intermediate value ¢ = Wax € R", then the gradients can be written as follows.
Vof =2q Vwf=2q-a" Vaof =2W" g

If you are struggling to derive the gradients listed above, then you should first check to make sure you arrived at
the derivatives listed below. Note that 1} is an indicator function which returns 1 iff £ = ¢ and 0 otherwise.

" oy = 24
0
. 81/35,] = l{k*z} Zj and % = W]“
8 N 9f D <
= o = P 1Tiav5fj = 2 Qo) (Lpesy 75) = 20575

16

