

Lecture 2: Image Classification

Administrative: Assignment 0

- Due 1/13 by 11:59pm
- Easy assignment
- Hardest part is learning how to use colab and how to submit on gradescope
- Worth **0% of your grade**
- Used to evaluate how prepared you are to take this course

Administrative: Assignment 1

Due 1/23 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Course Project

Project proposal due 4/29 11:59pm

Find your teammates on EdStem. We will help find teammates as well.

Collaboration: EdStem

“Is X a valid project for 493G1?”

- Anything related to **deep learning + pixels**
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website

Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Broadcasting

Presenter: Tanush (Head TA)

Syllabus

Deep learning Fundamentals

Data-driven approaches
Linear classification & kNN
Loss functions
Optimization
Backpropagation
Multi-layer perceptrons
Neural Networks
Convolutions
RNNs / LSTMs
Transformers

Practical training skills

Pytorch 1.4 / Tensorflow 2.0
Activation functions
Batch normalization
Transfer learning
Data augmentation
Momentum / RMSProp / Adam
Architecture design

Applications

Image captioning
Interpreting machine learning
Generative AI
Fairness & ethics
Data-centric AI
Deep reinforcement learning
Self-supervised learning
Diffusion
LLMs

Image Classification

A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

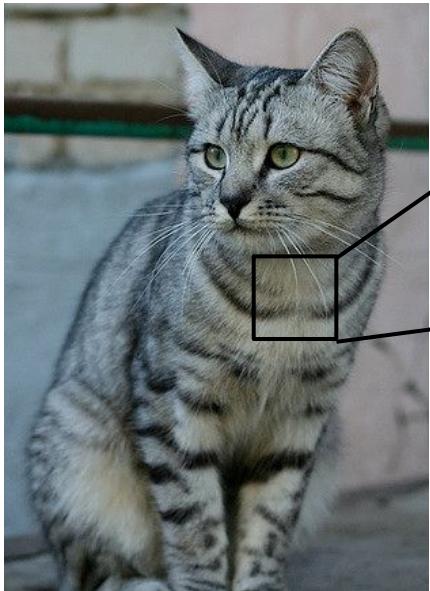
Image Classification: A core task in Computer Vision

(assume given a set of possible labels)



This image by Nikita is
licensed under CC-BY 2.0

The Problem: Semantic Gap



```
[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
 [ 91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
 [ 76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85]
 [ 99 81 93 120 131 127 100 95 98 102 99 96 93 101 94]
 [106 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95]
 [114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91]
 [133 137 147 103 65 81 80 65 52 54 74 84 102 93 85 82]
 [128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
 [125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
 [127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
 [115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
 [ 89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80]
 [ 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
 [ 62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119]
 [ 63 65 75 88 89 71 62 81 128 138 135 105 81 98 110 118]
 [ 87 65 71 87 106 95 69 45 76 130 126 107 92 94 105 112]
 [118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
 [164 146 112 88 82 120 124 104 76 48 45 66 88 101 102 109]
 [157 170 157 126 93 86 114 134 112 97 69 55 70 82 99 94]
 [130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
 [128 112 96 117 150 144 128 115 104 107 102 93 87 81 72 79]
 [123 107 96 86 83 112 153 149 122 109 104 75 80 107 112 99]
 [122 121 102 88 82 86 94 117 145 148 153 102 58 78 92 107]
 [122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]]
```

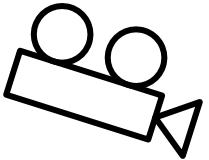
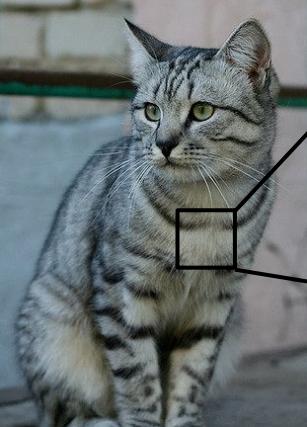
What the computer sees

An image is a tensor of integers between [0, 255]:

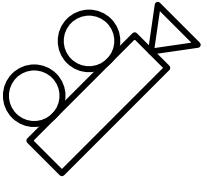
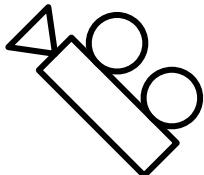
e.g. 800 x 600 x 3
(3 channels RGB)

[This image](#) by [Nikita](#) is
licensed under [CC-BY 2.0](#)

Challenges: Viewpoint variation



```
[1185 112 188 111 184 99 186 99 96 183 112 119 184 97 93 87]  
[ 91 98 182 106 184 79 98 183 99 185 123 136 118 185 94 85]  
[ 76 85 98 185 128 105 87 96 95 99 115 112 106 183 99 85]  
[ 99 88 81 100 128 105 127 98 98 101 108 109 98 75 83 94 84]  
[104 91 86 84 69 91 68 85 101 108 109 98 75 83 94 95]  
[114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91]  
[133 137 147 183 65 81 80 65 52 54 74 84 102 93 85 82]  
[128 137 144 148 105 95 86 78 62 65 63 63 68 73 86 101]  
[102 125 131 147 133 127 116 131 111 98 89 75 61 64 72 80]  
[127 125 131 147 133 127 116 131 111 98 89 75 61 64 72 84]  
[115 111 189 123 150 148 131 118 113 109 108 92 74 65 72 78]  
[ 89 93 98 97 108 147 131 118 113 113 108 106 95 77 80]  
[ 63 77 86 81 77 79 182 123 137 115 111 125 125 130 115 87]  
[ 62 85 88 89 73 62 81 128 138 135 105 81 98 118 118]  
[ 63 65 75 88 89 73 62 81 128 138 135 105 81 98 118 118]  
[ 87 65 71 87 100 95 69 45 76 126 126 107 92 94 105 112]  
[118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]  
[164 147 112 88 102 128 184 78 48 66 70 101 102 108]  
[157 98 102 118 101 93 86 104 128 121 119 89 75 70 83 94]  
[138 128 134 161 139 180 109 118 121 134 114 87 65 53 69 86]  
[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]  
[123 107 96 86 83 112 153 149 122 189 184 75 88 107 112 99]  
[122 121 102 88 82 86 94 117 145 148 153 105 58 78 92 107]  
[122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]
```



All pixels change when
the camera moves!

[This image](#) by [Nikita](#) is
licensed under [CC-BY 2.0](#)

Challenges: Illumination

[This image](#) is [CC0 1.0](#) public domain

[This image](#) is [CC0 1.0](#) public domain

[This image](#) is [CC0 1.0](#) public domain

[This image](#) is [CC0 1.0](#) public domain

RGB values are a function of surface materials, color, light source, etc.

Challenges: Background Clutter

[This image](#) is [CC0 1.0](#) public domain

[This image](#) is [CC0 1.0](#) public domain

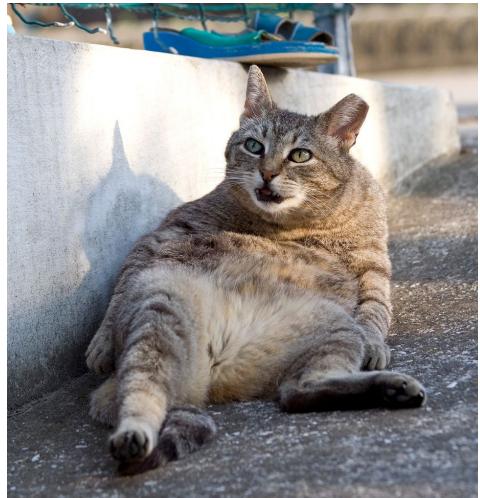
Challenges: Occlusion

[This image](#) is [CC0 1.0](#) public domain

[This image](#) is [CC0 1.0](#) public domain

[This image](#) by [jonsson](#) is licensed
under [CC-BY 2.0](#)

Challenges: Deformation



[This image](#) by [Umberto Salvagnin](#)
is licensed under [CC-BY 2.0](#)

[This image](#) by [Umberto Salvagnin](#)
is licensed under [CC-BY 2.0](#)

[This image](#) by [sare bear](#) is
licensed under [CC-BY 2.0](#)

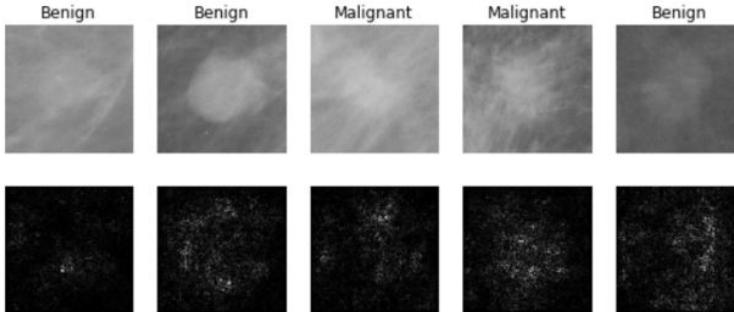
[This image](#) by [Tom Thai](#) is
licensed under [CC-BY 2.0](#)

Challenges: Intraclass variation

[This image](#) is [CC0 1.0](#) public domain

Image classification is a building block for other tasks

Medical Imaging



Levy et al, 2016

Galaxy Classification

Dieleman et al, 2014

From left to right: [public domain by NASA](#), [usage permitted by ESA/Hubble](#), [public domain by NASA](#) and [public domain](#)

Whale recognition

[Kaggle Challenge](#)

This image by Christin Khan is in the public domain and originally came from the U.S. NOAA.

Image classification is a building block for other tasks

Image Captioning

Vinyals et al, 2015
Karpathy and Fei-Fei, 2015

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

All images are CC0 Public domain:
<https://pixabay.com/en/luggage-antique-cat-1643010/>
<https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/>
<https://pixabay.com/en/woman-female-model-portrait-adult-9837167/>
<https://pixabay.com/en/handsstand-lake-meditation-499008/>
<https://pixabay.com/en/baseball-player-shortstop-infield-1045263/>

Captions generated by Justin Johnson using Neuraltalk2

Image classification is a building block for other tasks

Example: Playing Go

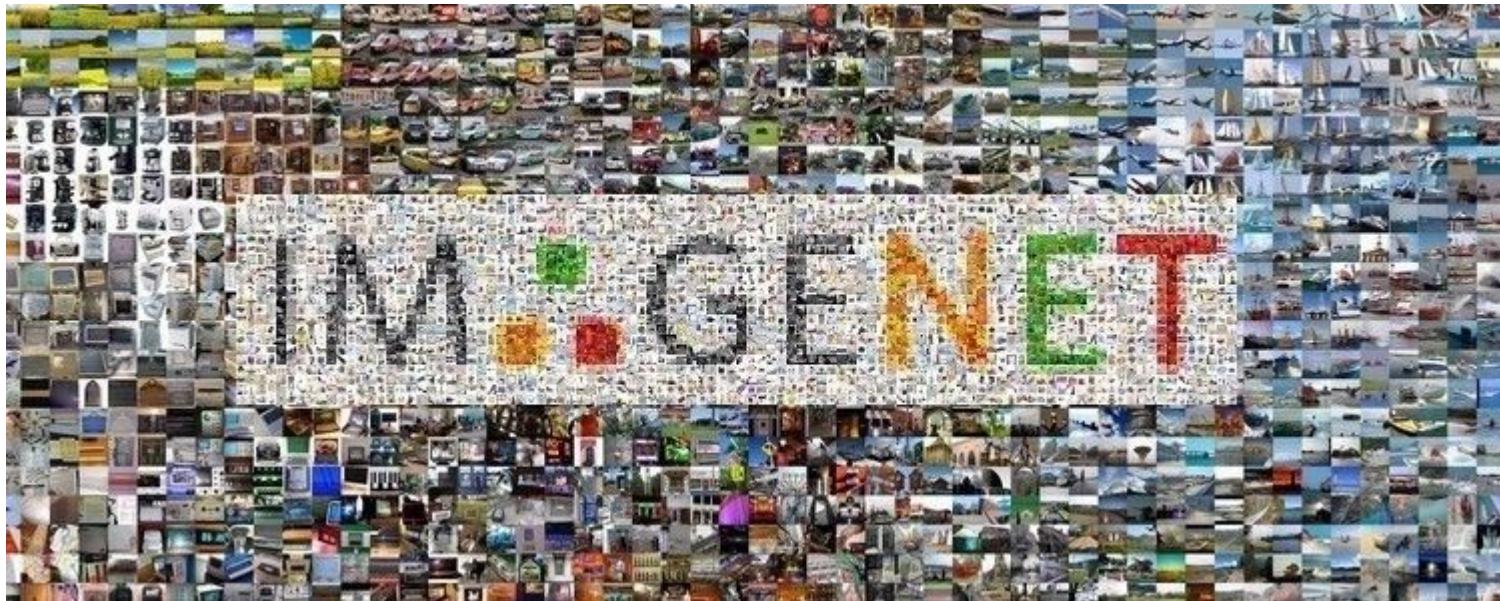
This image is CC0 public domain

$(1, 1)$
 $(1, 2)$
...
 \rightarrow
 $(1, 19)$
...
 $(19, 19)$

Where to
play next?

Modern computer vision algorithms

Classifiers today take 1ms to classify images. And can handle an unlimited (open-set) of categories.



[This image](#) is [CC0 1.0](#) public domain

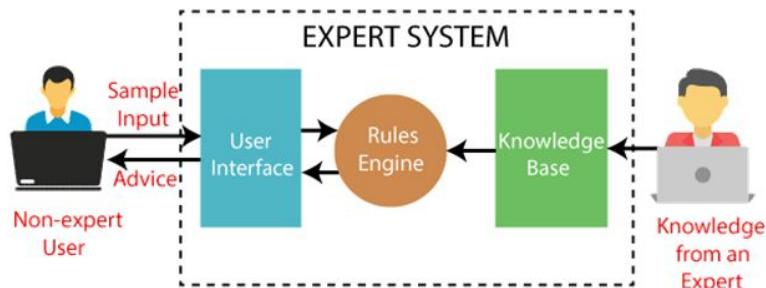
An image classifier: can we implement this as a normal software function?

```
def classify_image(image):  
    # Some magic here?  
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

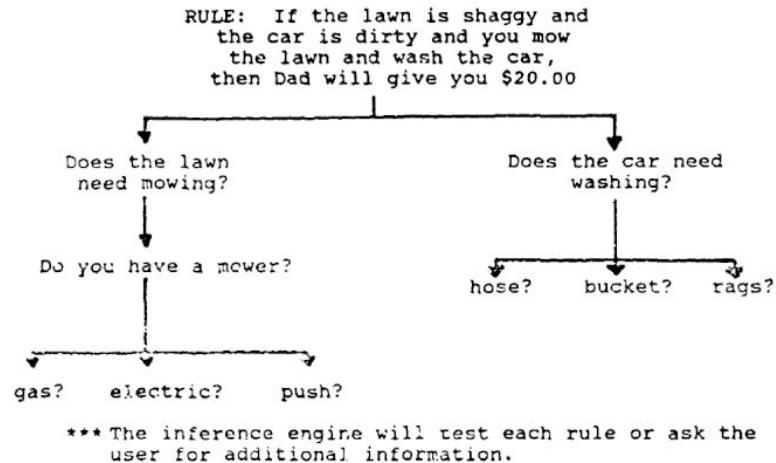
This is why expert systems in the 80s led to the AI winter.



Originally called heuristic programming project.

BACKWARD CHAINING

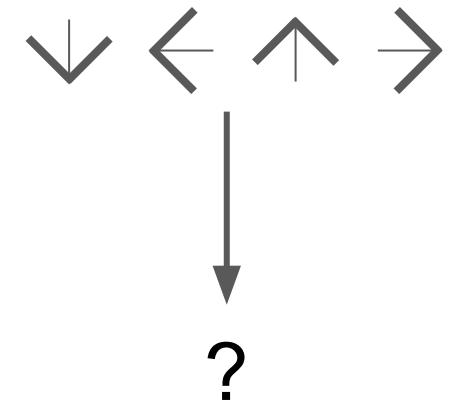
GOAL: Make \$20.00



Attempts have been made

Find edges

Find corners

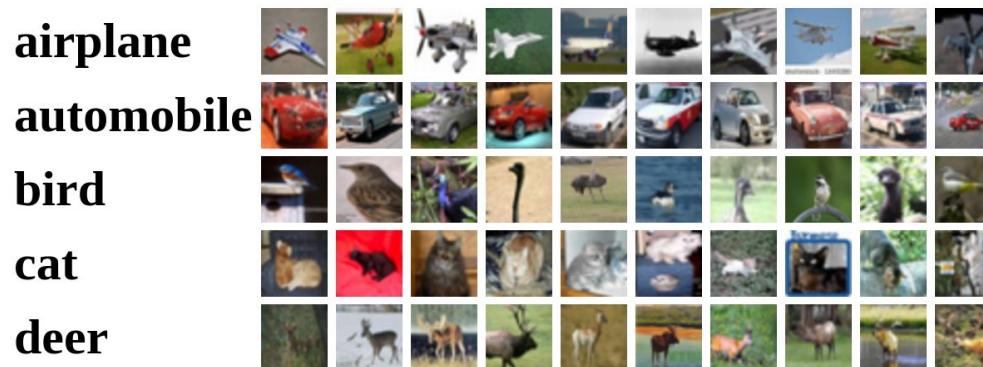


John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels

Example training set



Example dataset: MNIST

10 classes: Digits 0 to 9

28x28 grayscale images

50k training images

10k test images

Example dataset: CIFAR10

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

10 classes

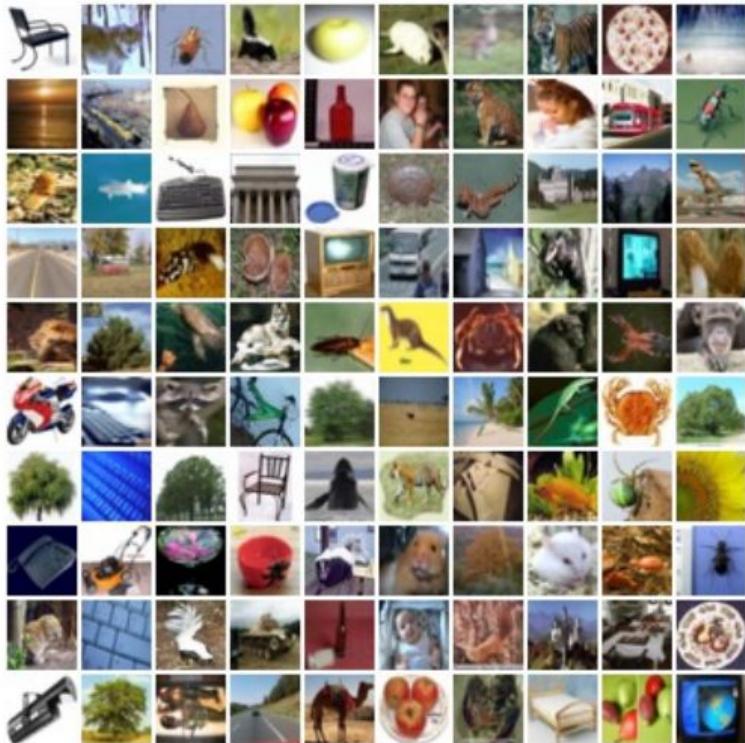
50k training images (5k per class)

10k testing images (1k per class)

32x32 RGB images

We will use this dataset for
homework assignments

Example dataset: CIFAR100



100 classes

50k training images (500 per class)

10k testing images (100 per class)

32x32 RGB images

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

Trees: Maple, oak, palm, pine, willow

Example dataset: ImageNet (ILSVRC challenge)

ILSVRC = ImageNet Large-Scale Visual Recognition Challenge

1000 classes

~1.3M training images (~1.3K per class)

50K validation images (50 per class)

100K test images (100 per class)

Performance metric: Top 5 accuracy

Algorithm predicts 5 labels for each image; one of them needs to be right

Example dataset: MIT Places

365 classes of different scene types

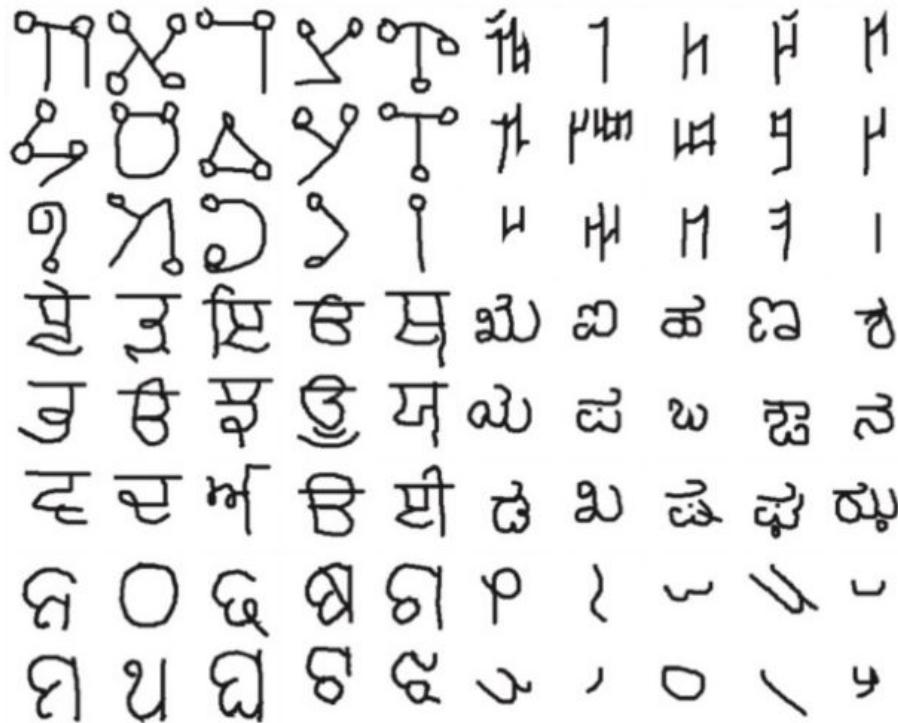
~8M training images

18.25K val images (50 per class)

328.5K test images (900 per class)

Images have variable size, often
resize to **256x256** for training

Example dataset: Omniglot



1623 categories: characters from 50 different alphabets

20 images per category

Meant to test **few shot learning**

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

```
def train(images, labels):  
    # Machine learning!  
    return model
```

```
def predict(model, test_images):  
    # Use model to predict labels  
    return test_labels
```

airplane

automobile

bird

cat

deer

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

```
def train(images, labels):  
    # Machine learning!  
    return model
```

→ Memorize all data and labels

```
def predict(model, test_images):  
    # Use model to predict labels  
    return test_labels
```

→ Predict the label of the most similar training image

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric

$\rightarrow \mathbb{R}$

What is a
good
distance
metric?

Distance Metric to compare images

L1 distance:

$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

test image			
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image			
10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

-

pixel-wise absolute value differences

46	12	14	1
82	13	39	33
12	10	0	30
2	32	22	108

=

add → 456

```

import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred

```

Nearest Neighbor classifier

```

import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred

```

Nearest Neighbor classifier

Memorize training data

```

import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred

```

Nearest Neighbor classifier

For each test image:
 Find closest train image
 Predict label of nearest image

```

import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred

```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

```

import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred

```

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of this course!)

A good implementation:

<https://github.com/facebookresearch/faiss>

Example
outputs from
a NN
classifier on
CIFAR:

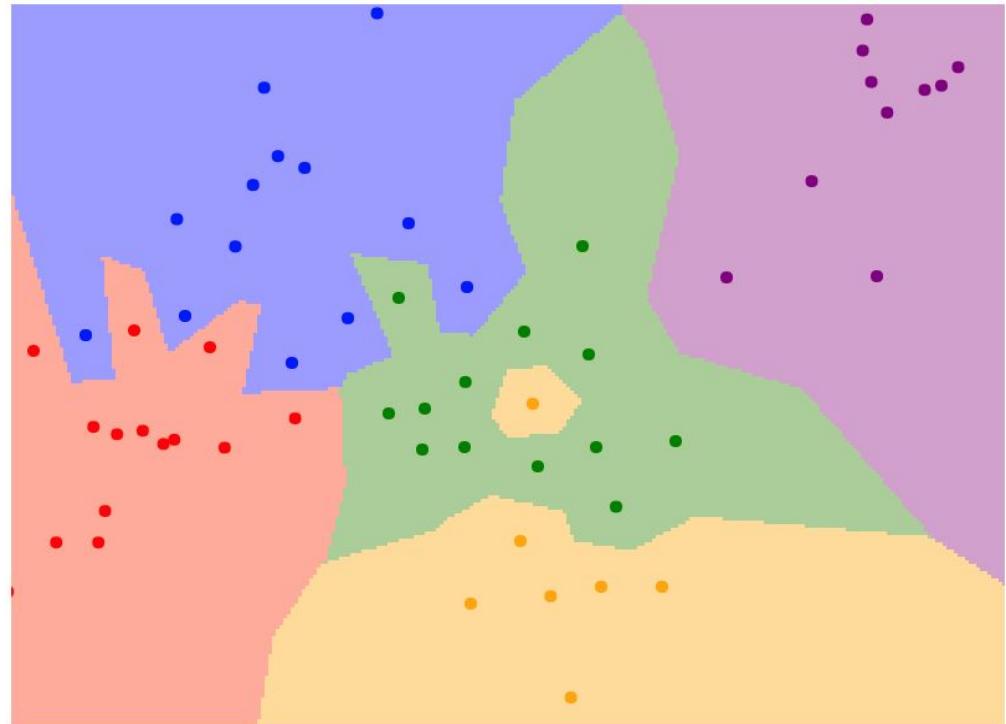


Example
outputs from
a NN
classifier on
CIFAR:

Assume each dot is a training image.

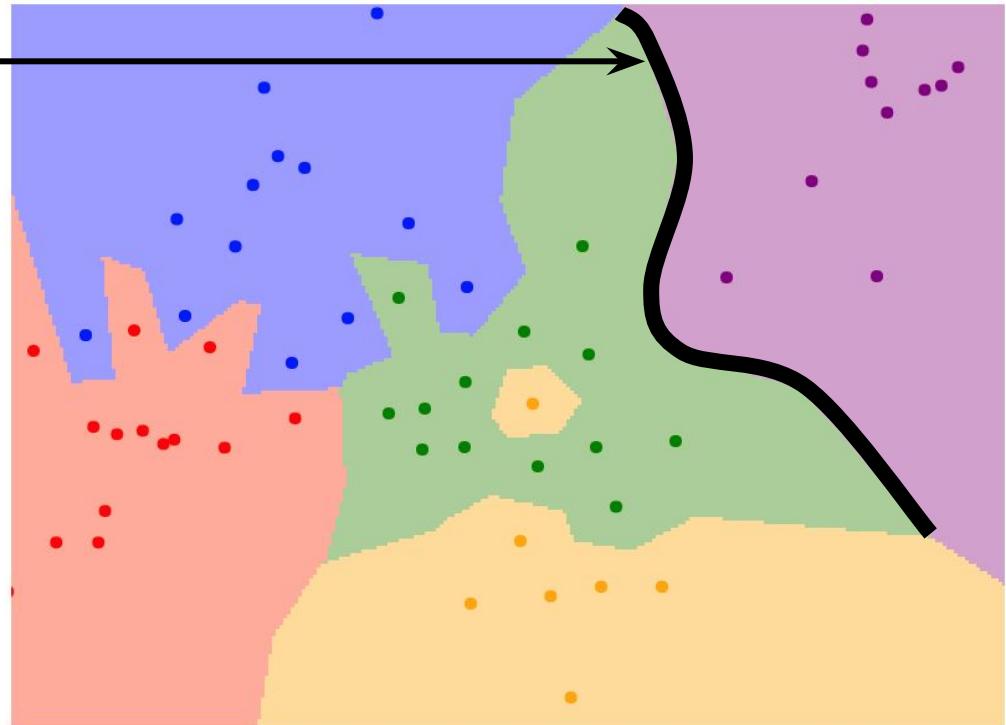
Assume all images are two dimensional.

What does this classifier look like?



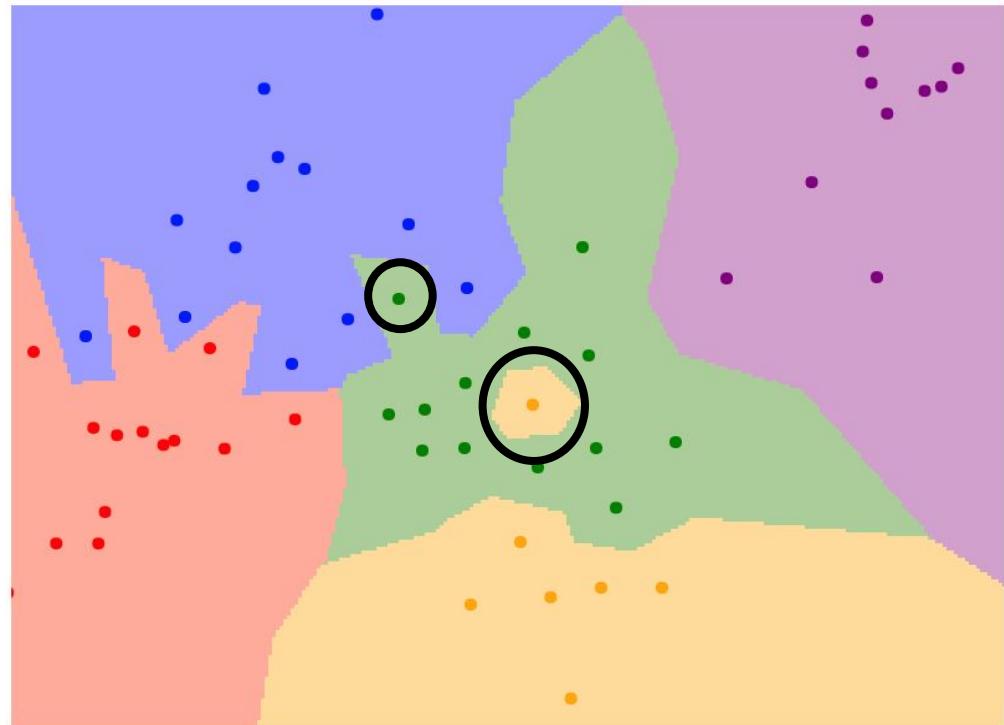
1-nearest neighbor

Decision boundary is the boundary between two classification regions



Yellow point in the middle of green might be mislabeled.

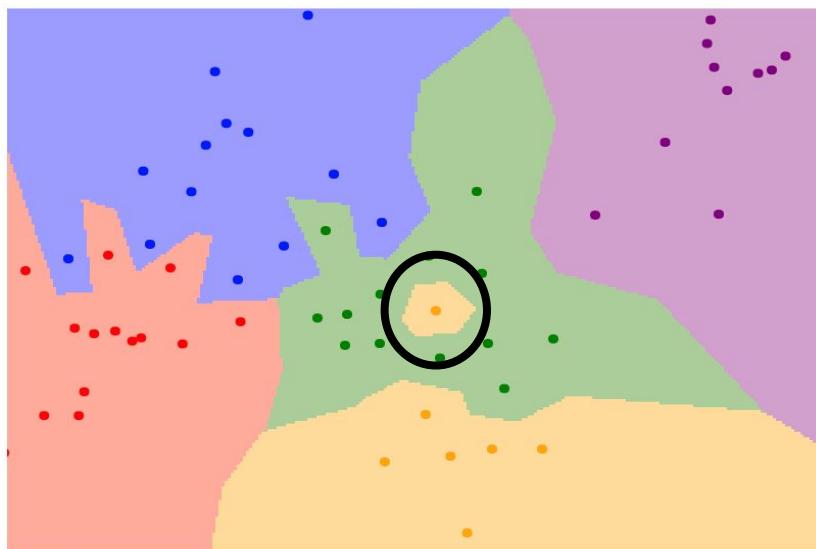
1-NN is not robust to label noise.



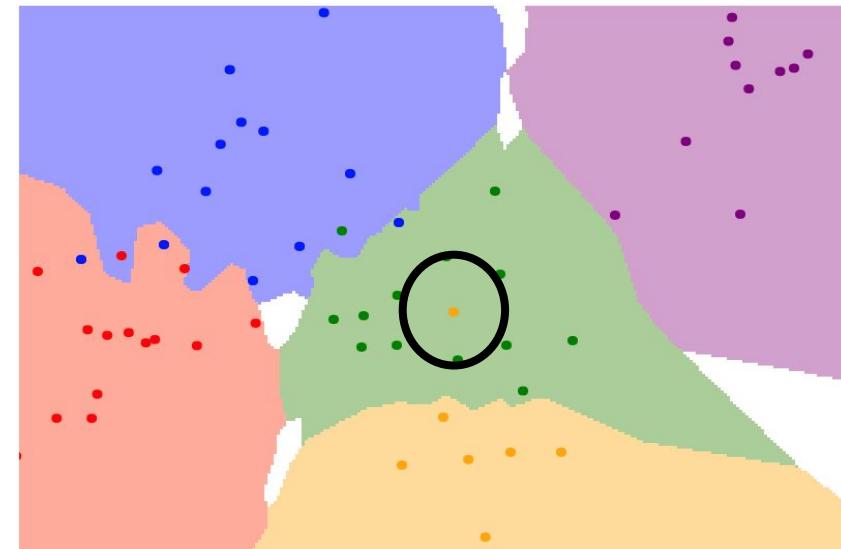
1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take **majority vote** from K closest points



$K = 1$

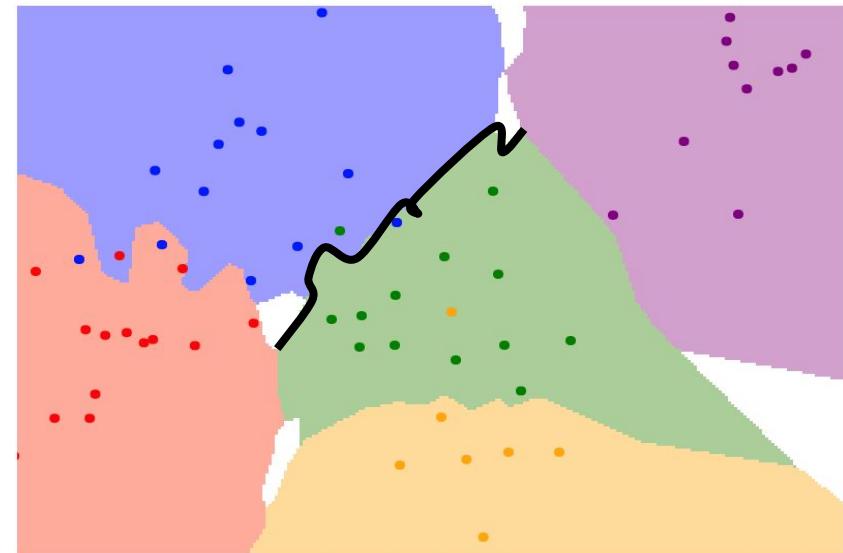


$K = 3$

K-Nearest Neighbors

Using more neighbors helps smooth out rough decision boundaries

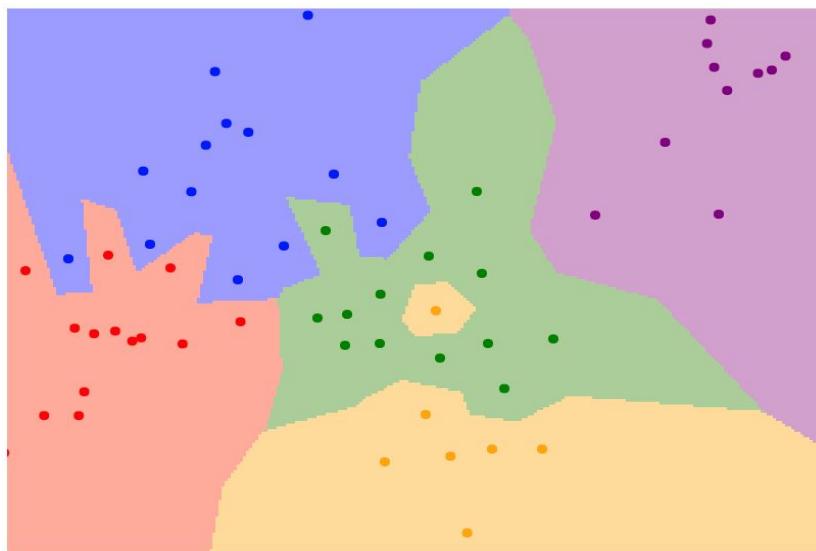
$K = 1$



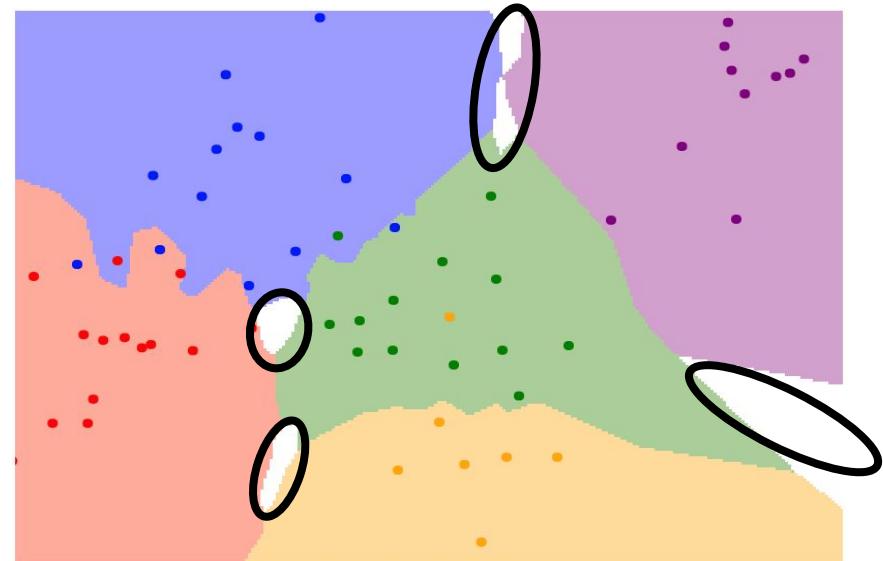
$K = 3$

K-Nearest Neighbors

Find more labels near uncertain white regions



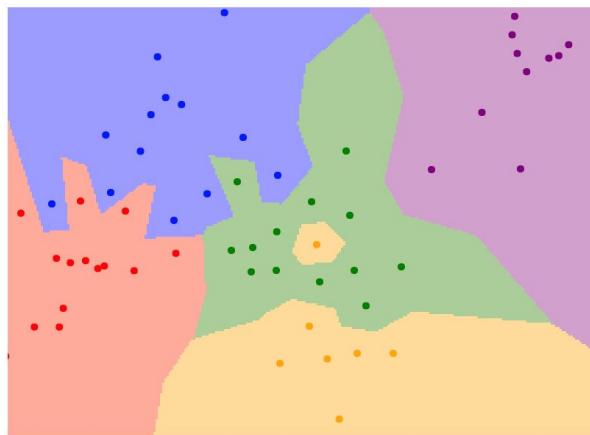
$K = 1$



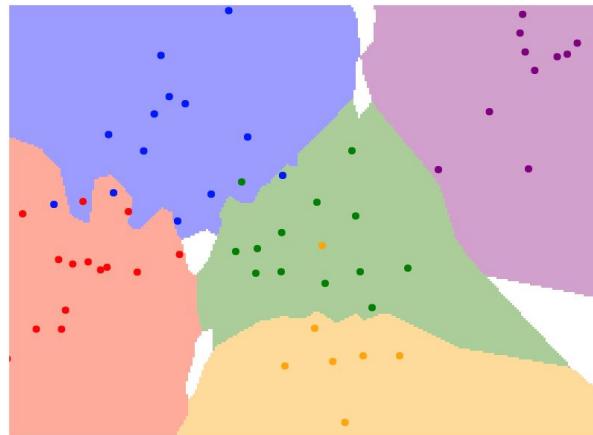
$K = 3$

K-Nearest Neighbors

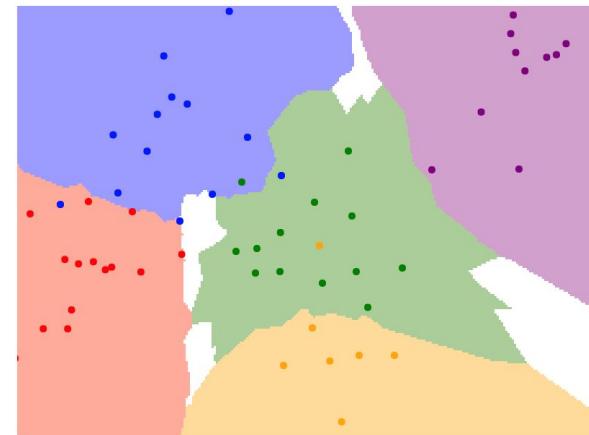
Larger K smooths boundaries more and leads to more uncertain regions



$K = 1$



$K = 3$

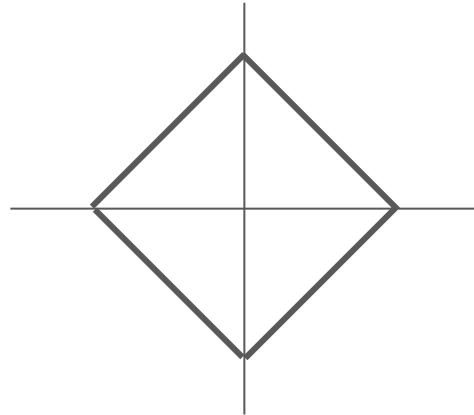


$K = 5$

K-Nearest Neighbors: Distance Metric

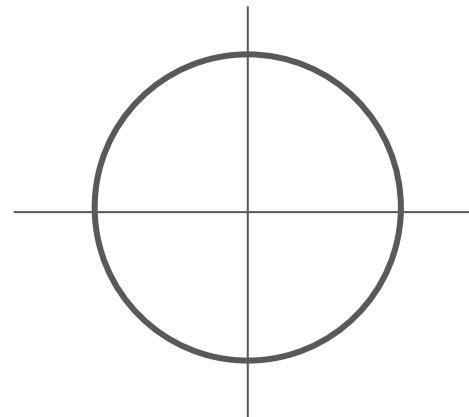
L1 (Manhattan) distance

$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$



L2 (Euclidean) distance

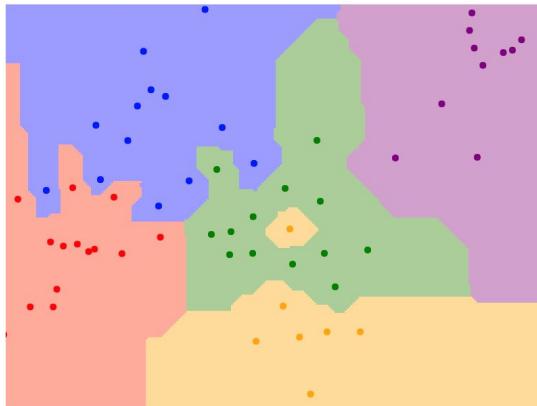
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

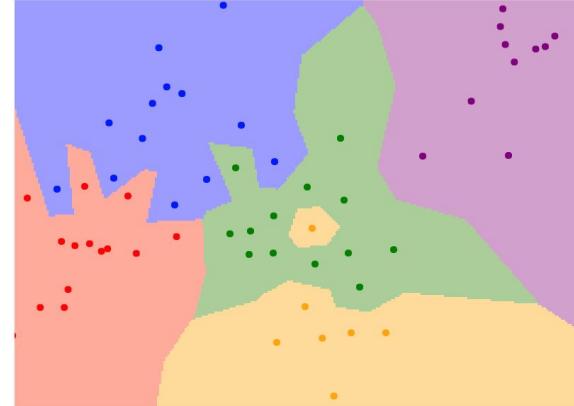
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$



$K = 1$

L2 (Euclidean) distance

$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$



$K = 1$

k-Nearest Neighbor with pixel distance is **never used**.

- Distance metrics on pixels are not informative

[Original image](#) is
CC0 public domain

(All three images on the right have the same pixel distances to the one on the left)

Hyperparameters

What is the best value of k to use?

What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Very problem/dataset-dependent.

Must try them all out and see what works best.

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the **training data**

train

Setting Hyperparameters

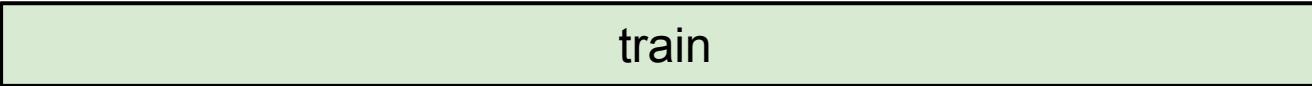
Idea #1: Choose hyperparameters that work best on the **training data**

BAD: $K = 1$ always works perfectly on training data

train

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the **training data**



train

BAD: $K = 1$ always works perfectly on training data

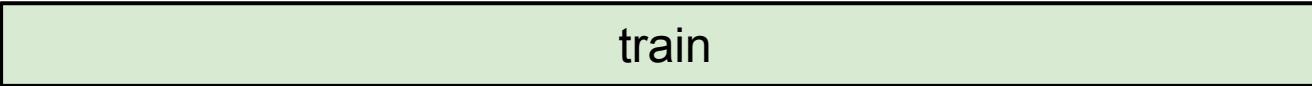
Idea #2: choose hyperparameters that work best on **test data**

train

test

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the **training data**



train

BAD: $K = 1$ always works perfectly on training data

Idea #2: choose hyperparameters that work best on **test data**

train

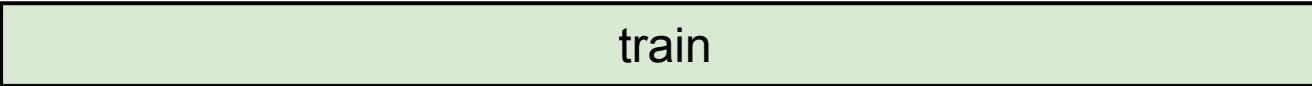
BAD: No idea how algorithm will perform on new data

Never do this!

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the **training data**

BAD: $K = 1$ always works perfectly on training data



train

Idea #2: choose hyperparameters that work best on **test data**

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into **train**, **val**; choose hyperparameters on **val** and evaluate on **test**

Better!

train

validation

test

Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into **folds**,
try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
--------	--------	--------	--------	--------	------

fold 1	fold 2	fold 3	fold 4	fold 5	test
--------	--------	--------	--------	--------	------

fold 1	fold 2	fold 3	fold 4	fold 5	test
--------	--------	--------	--------	--------	------

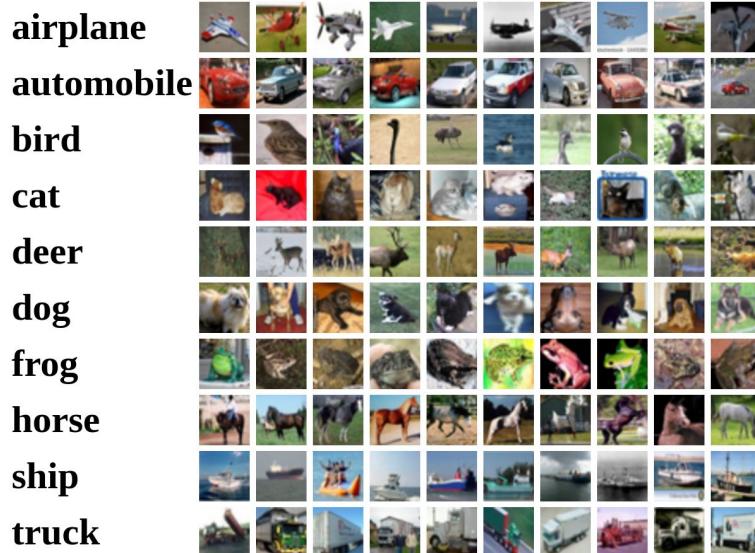
Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes

50,000 training images

10,000 testing images



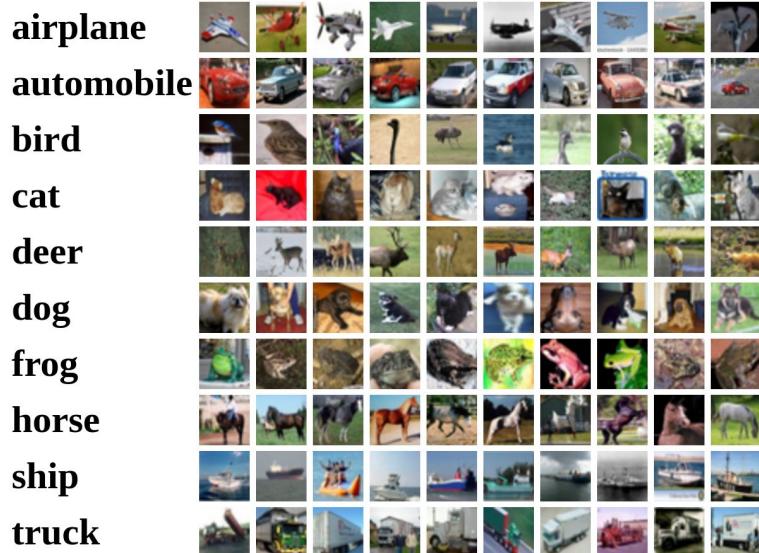
Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes

50,000 training images

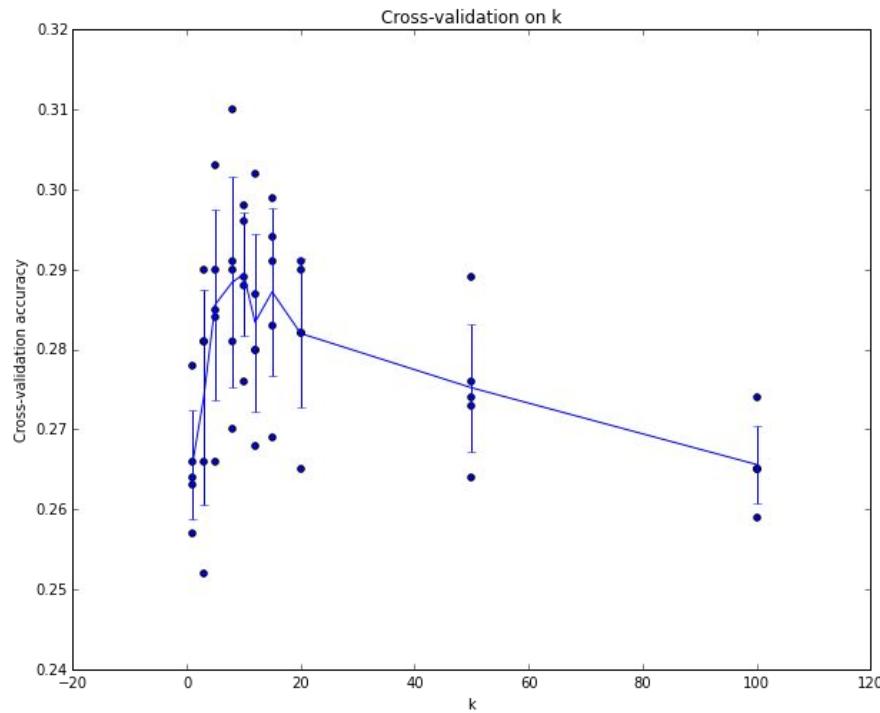
10,000 testing images



Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Setting Hyperparameters



Example of
5-fold cross-validation
for the value of k .

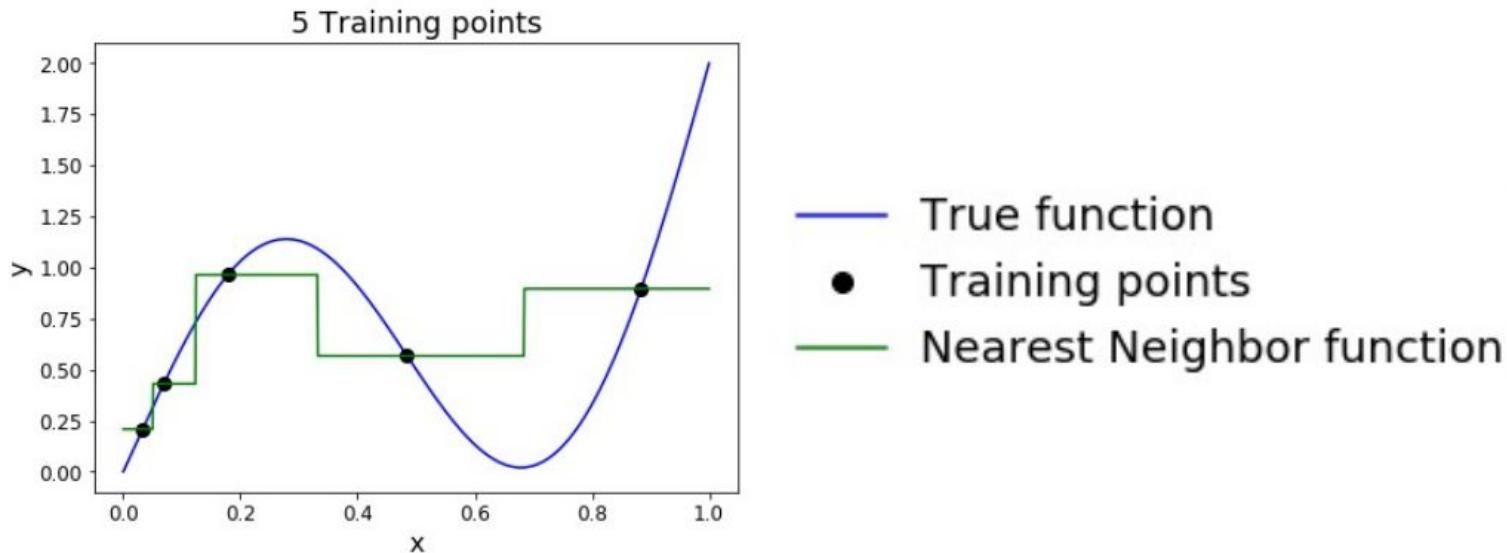
Each point: single
outcome.

The line goes
through the mean, bars
indicated standard
deviation

(Seems that $k \sim 7$ works best
for this data)

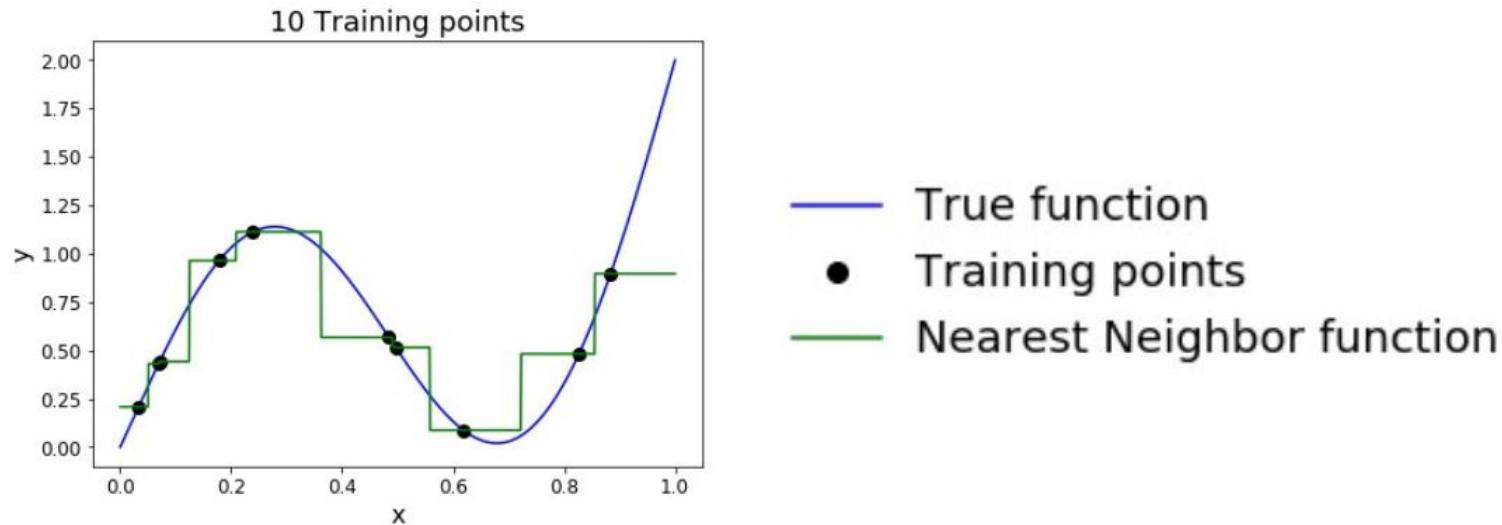
K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent any(*) function!



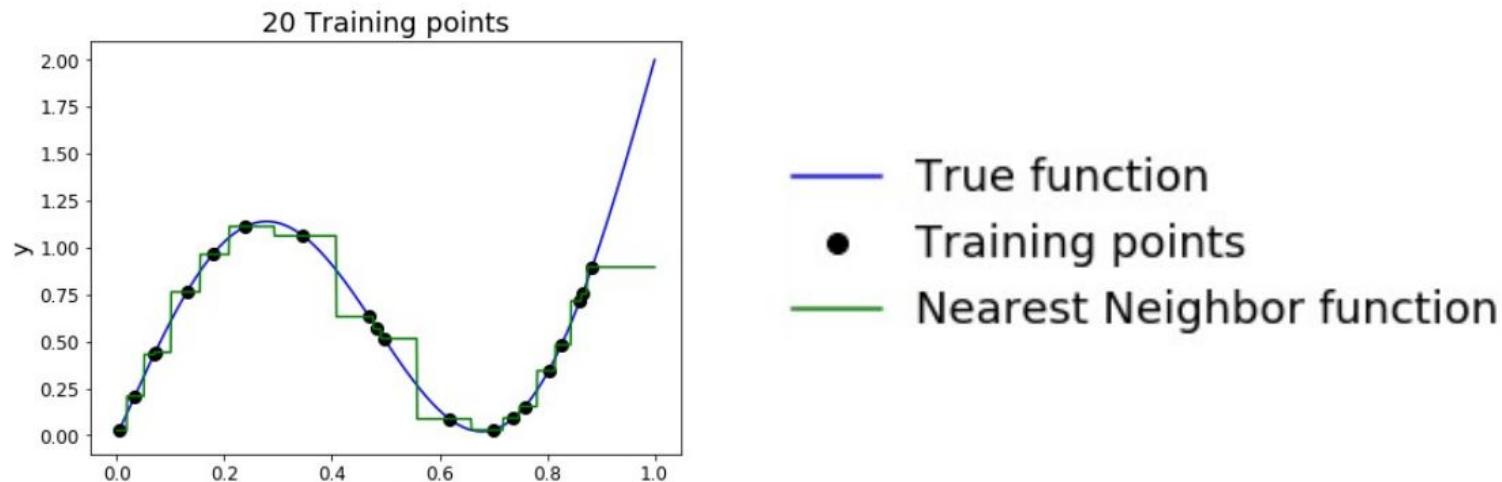
K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent any(*) function!



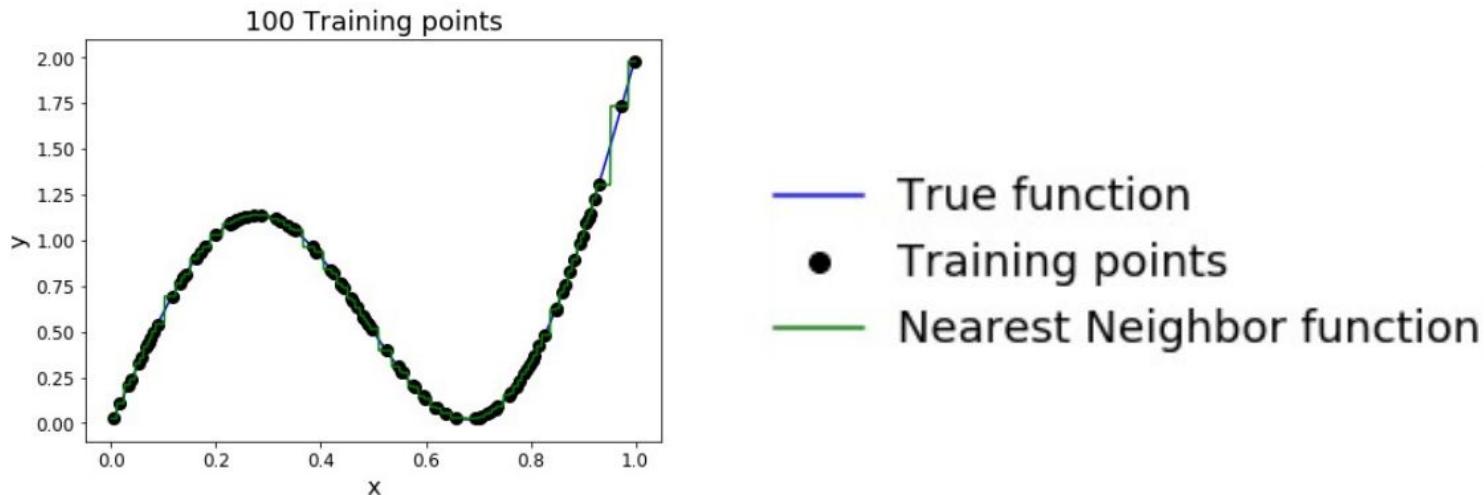
K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent any(*) function!



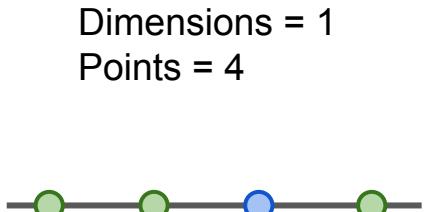
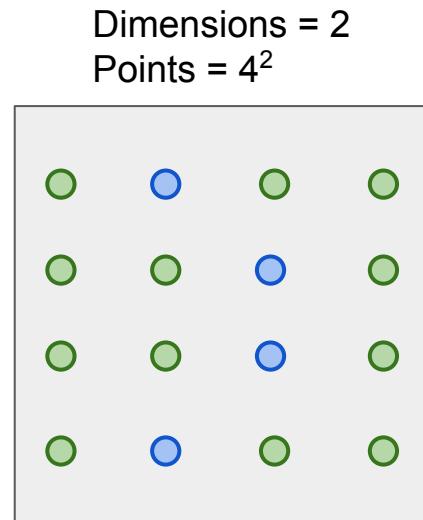
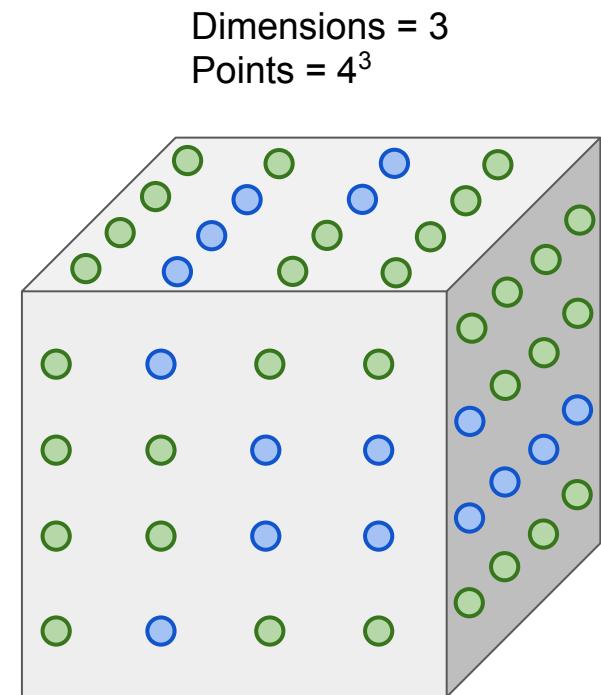
K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent any(*) function!



Problem: curse of dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension



Problem: curse of dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible 32x32 binary images:

$$2^{32 \times 32} = 10^{308}$$

Number of elementary particles in the visible universe:

$$10^{97}$$

K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Distance metric and K are **hyperparameters**

Choose hyperparameters using the **validation set**;

Only run on the test set once at the very end!

Linear Classifier

Parametric Approach

Image

Array of **32x32x3** numbers
(3072 numbers total)

$$\xrightarrow{f(x, W)}$$

W
parameters
or weights

10 numbers giving
class scores

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx$$

Array of **32x32x3** numbers
(3072 numbers total)

$$f(\mathbf{x}, \mathbf{W})$$

W
parameters
or weights

10 numbers giving
class scores

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx$$

10×1 10×3072

Array of $32 \times 32 \times 3$ numbers
(3072 numbers total)

W
parameters
or weights

3072×1

10 numbers giving
class scores

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx + b$$

3072x1
10x1 10x3072
b 10x1

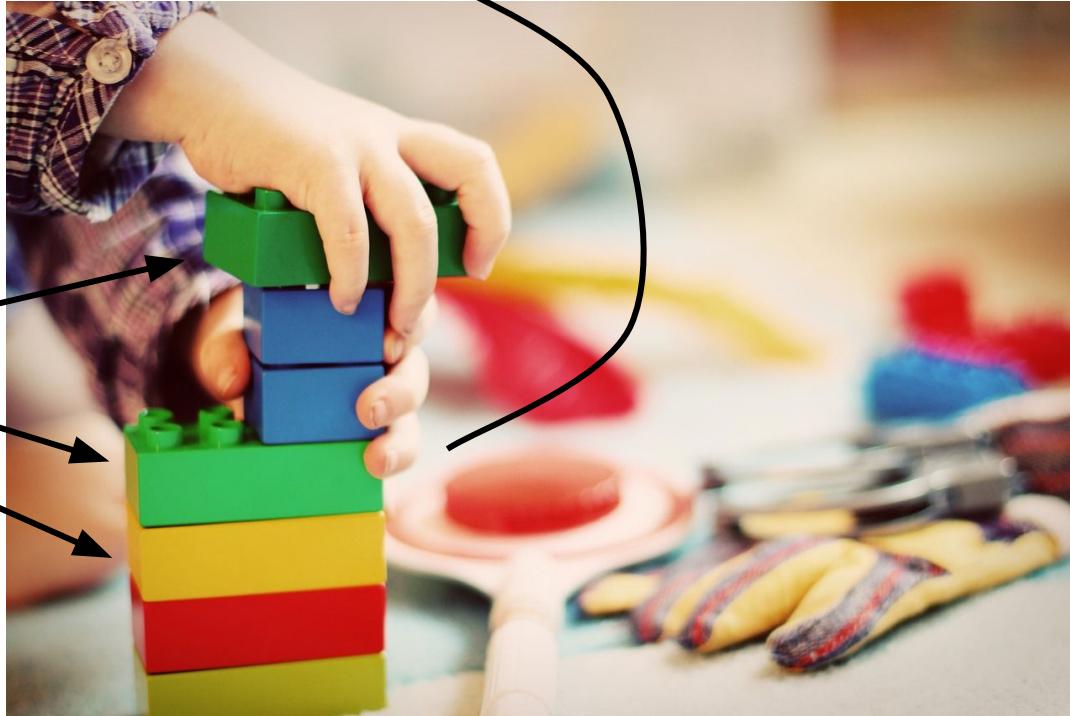
Array of **32x32x3** numbers
(3072 numbers total)

W
parameters
or weights

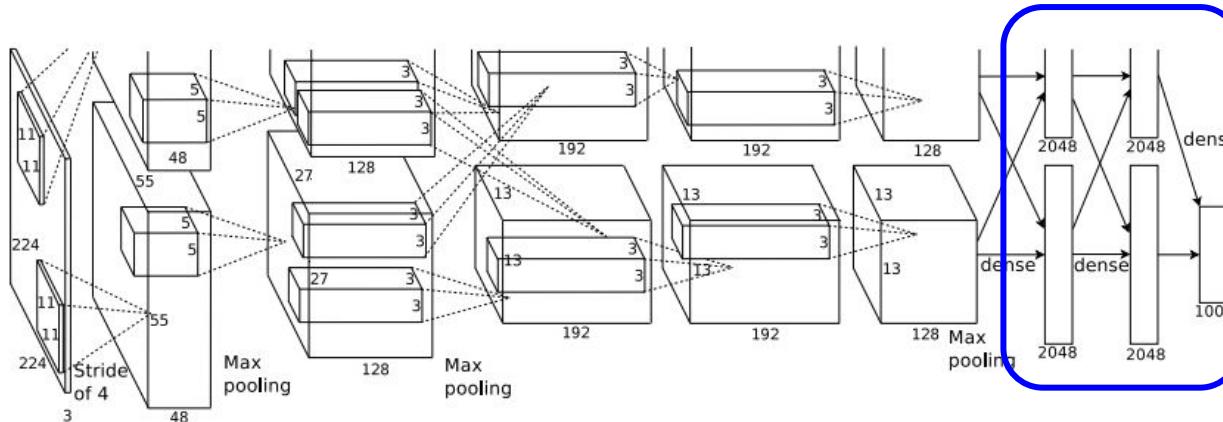
10 numbers giving
class scores

Neural Network

Linear
classifiers

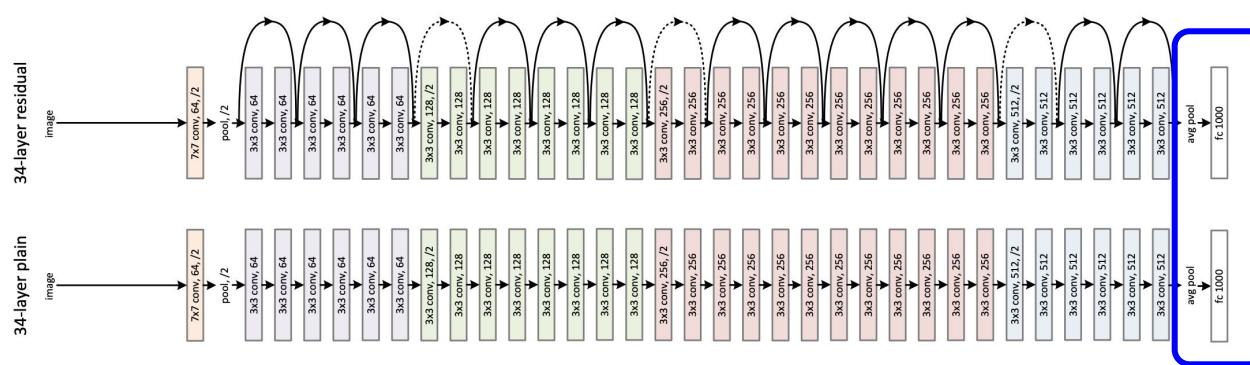


[This image](#) is [CC0 1.0](#) public domain



[Krizhevsky et al. 2012]

Linear layers



[He et al. 2015]

Recall CIFAR10

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

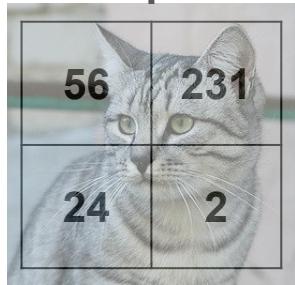
truck

50,000 training images
each image is **32x32x3**

10,000 test images.

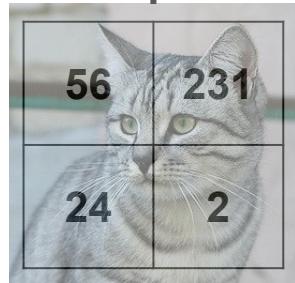
Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Input image

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3

W

56
231
24
2

+

1.1
3.2
-1.2

=

-96.8
437.9
61.95

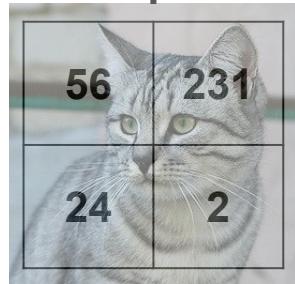
Cat score

Dog score

Ship score

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Input image

(2,2)

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3

W

(3,4)

56
231
24
2

(4,)

b

(3,)

+

1.1
3.2
-1.2

-96.8
437.9
61.95

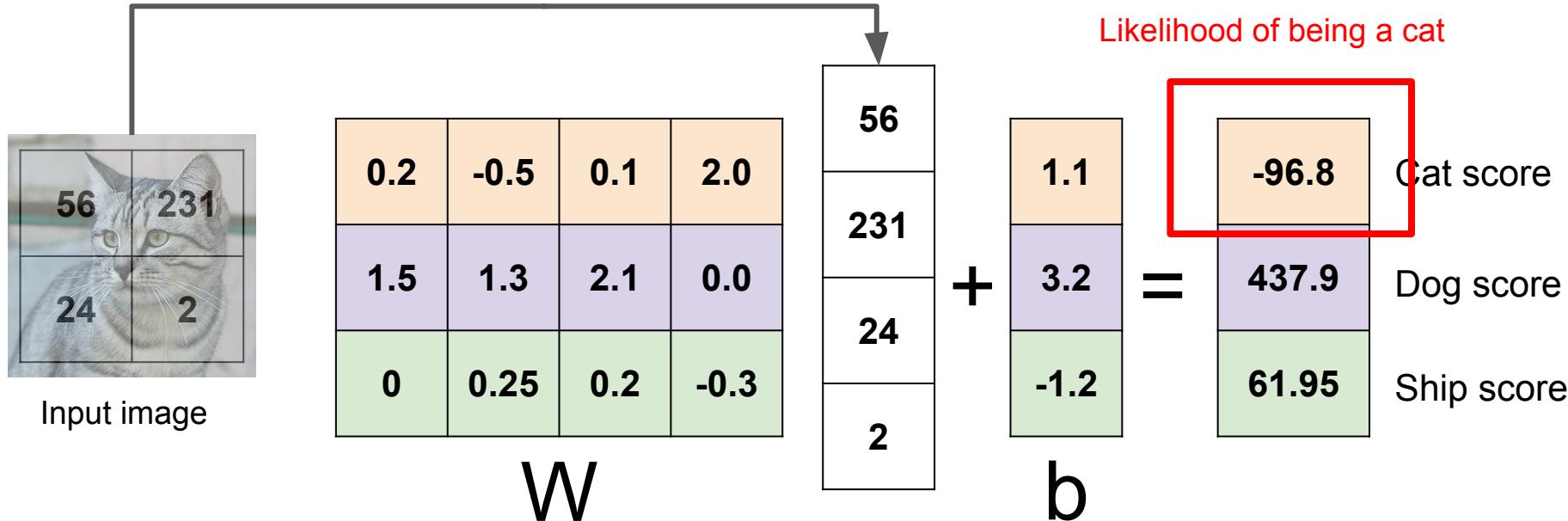
Cat score

Dog score

Ship score

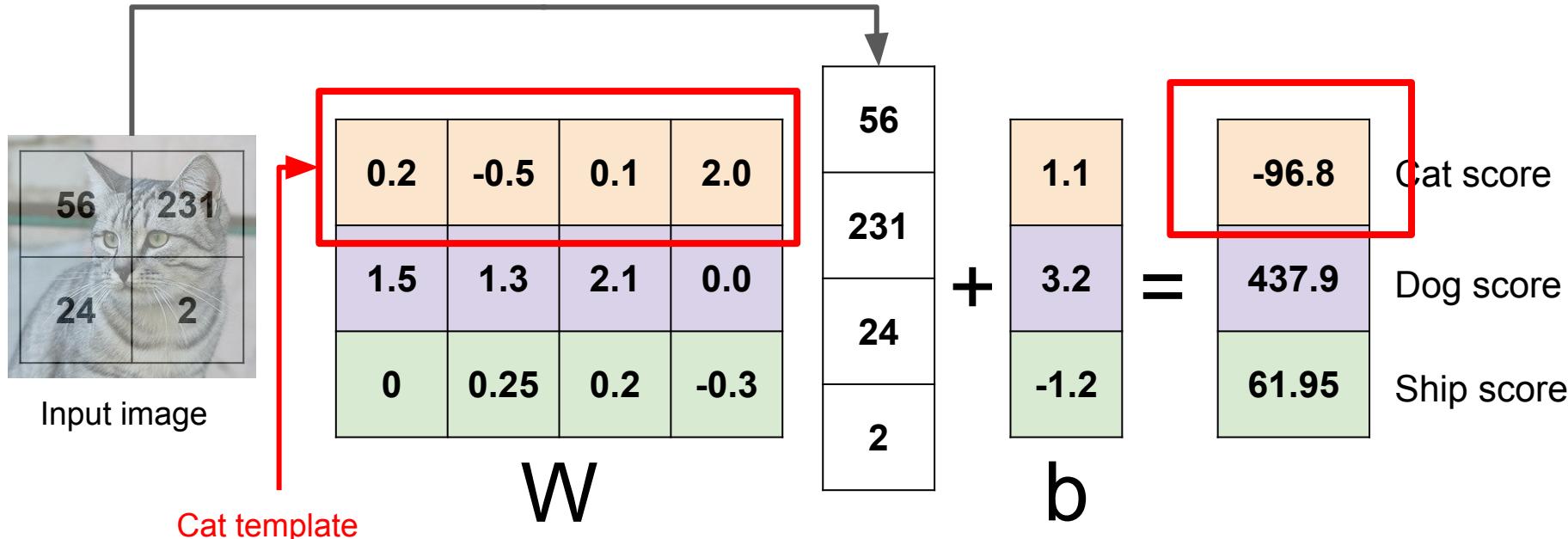
Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



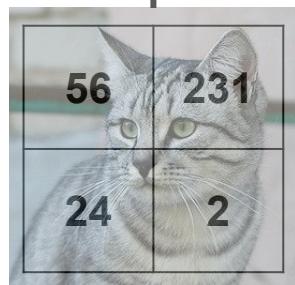
Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Algebraic viewpoint: Bias trick to simplify computation

Flatten tensors into a vector



Input image

0.2	-0.5	0.1	2.0	1.1
1.5	1.3	2.1	0.0	3.2
0	0.25	0.2	-0.3	-1.2

$W; b$

(3,5)

56
231
24
2
1

(5,)

-96.8
437.9
61.95

Cat score

Dog score

Ship score

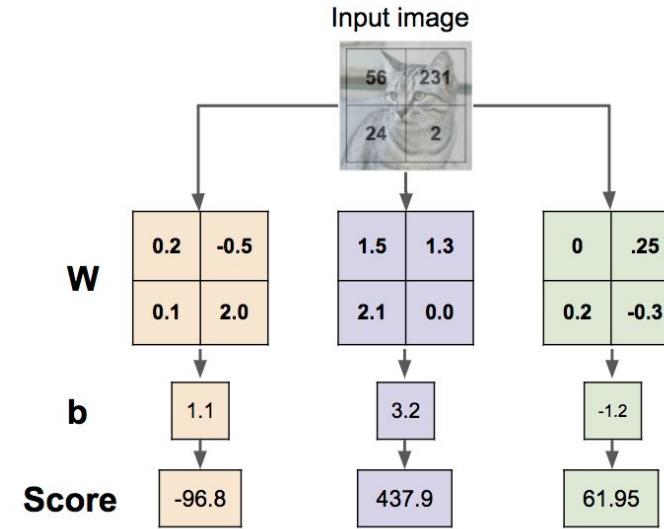
=

Visual Viewpoint: learning templates

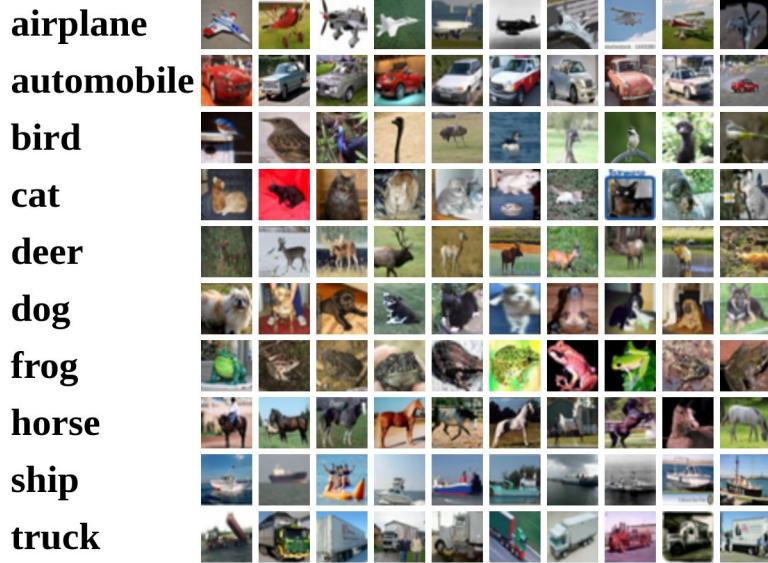
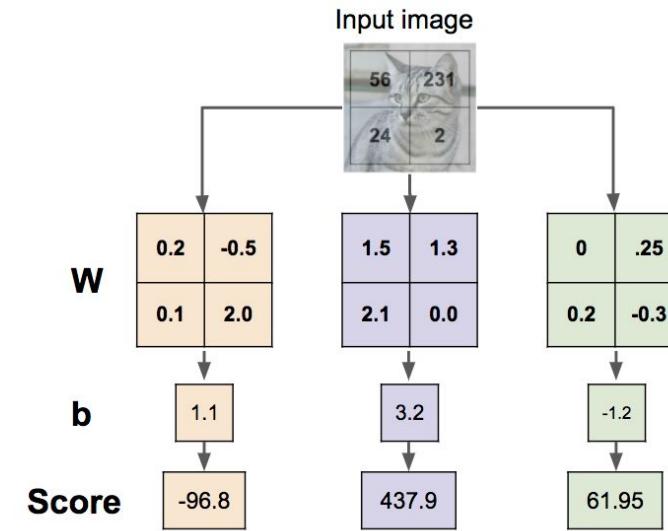
Algebraic viewpoint:

Stretch pixels into column

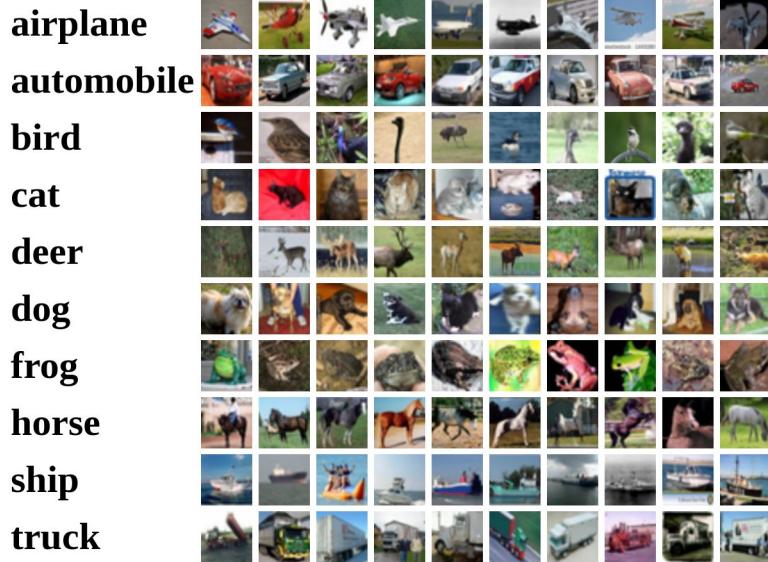
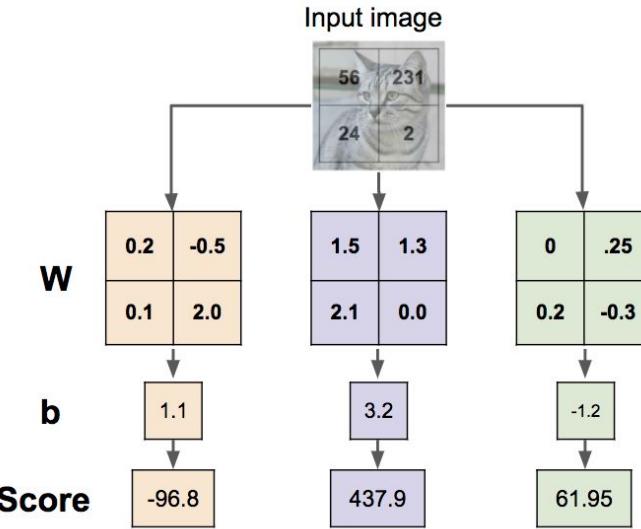
$$\text{Input image } (2,2) \quad \text{W } (3,4) \quad \text{b } (3,1)$$
$$\begin{matrix} 56 & 231 \\ 24 & 2 \end{matrix} \quad \begin{matrix} 0.2 & -0.5 & 0.1 & 2.0 \\ 1.5 & 1.3 & 2.1 & 0.0 \\ 0 & 0.25 & 0.2 & -0.3 \end{matrix} \quad + \quad \begin{matrix} 1.1 \\ 3.2 \\ -1.2 \end{matrix} = \quad \begin{matrix} -96.8 \\ 437.9 \\ 61.95 \end{matrix}$$



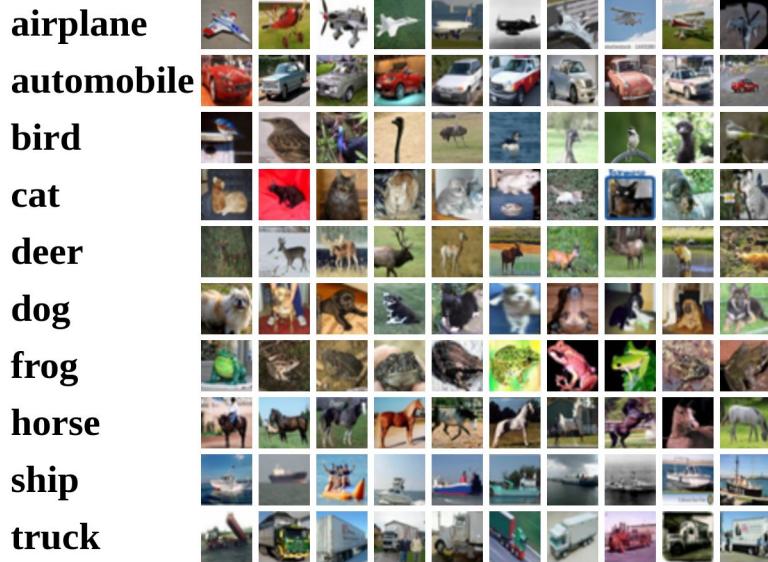
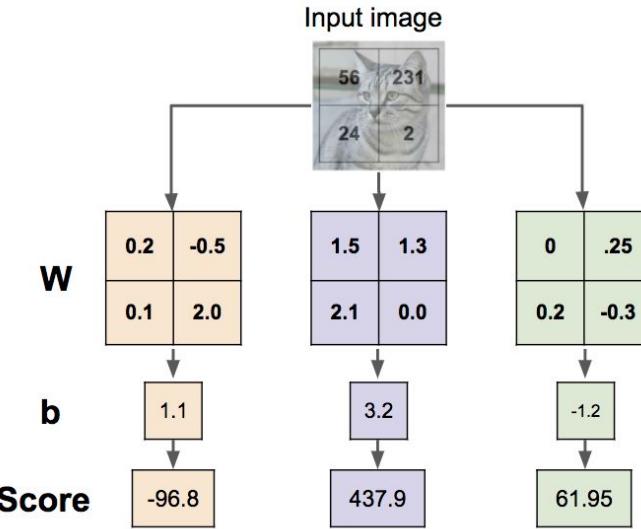
Visual Viewpoint: learning templates



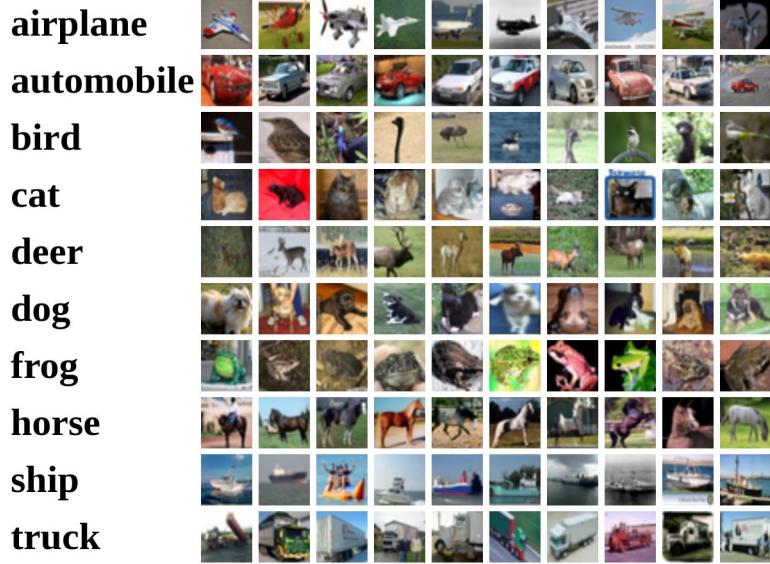
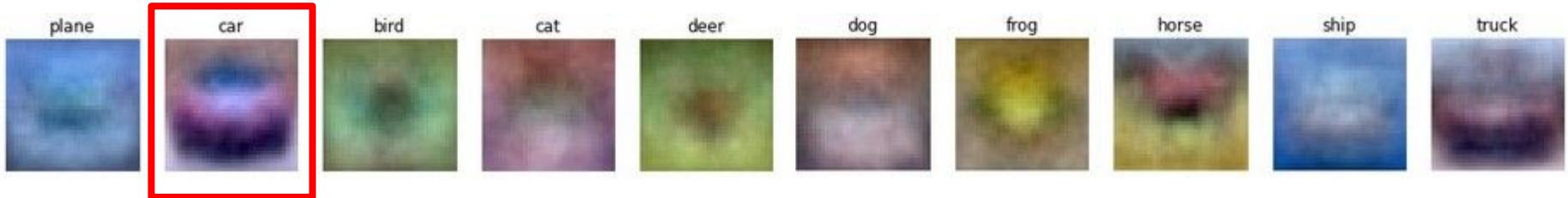
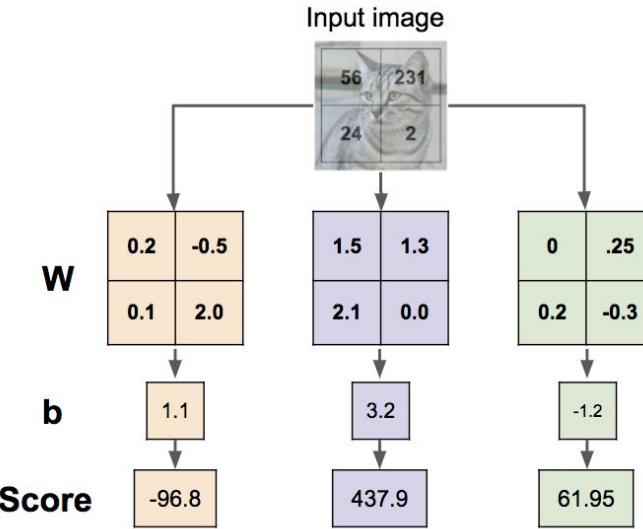
Visual Viewpoint: learning templates



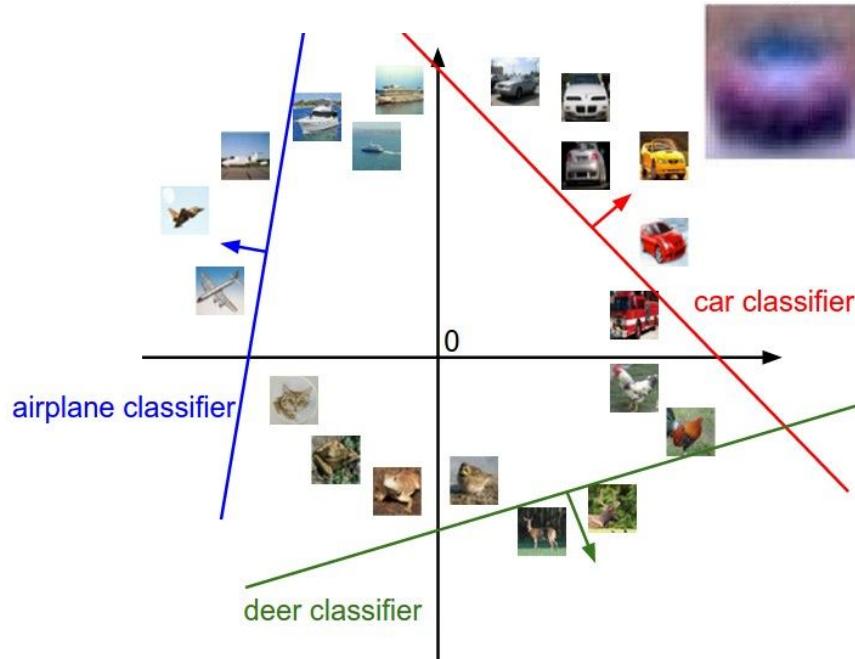
Visual Viewpoint: learning templates



Visual Viewpoint: learning templates



Geometric Viewpoint: linear decision boundaries



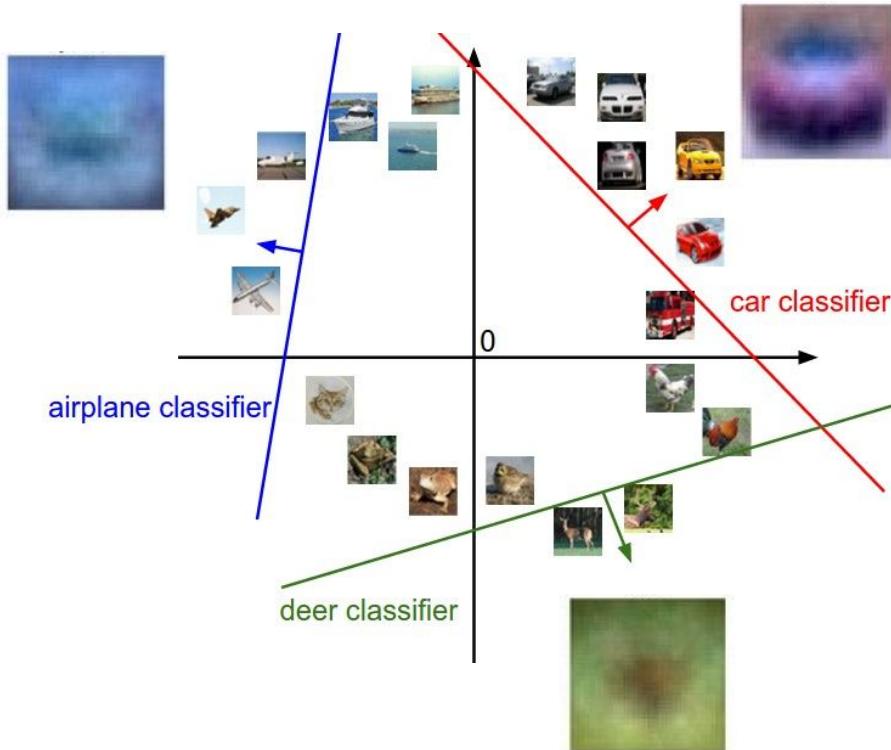
$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

Geometric Viewpoint: linear decision boundaries



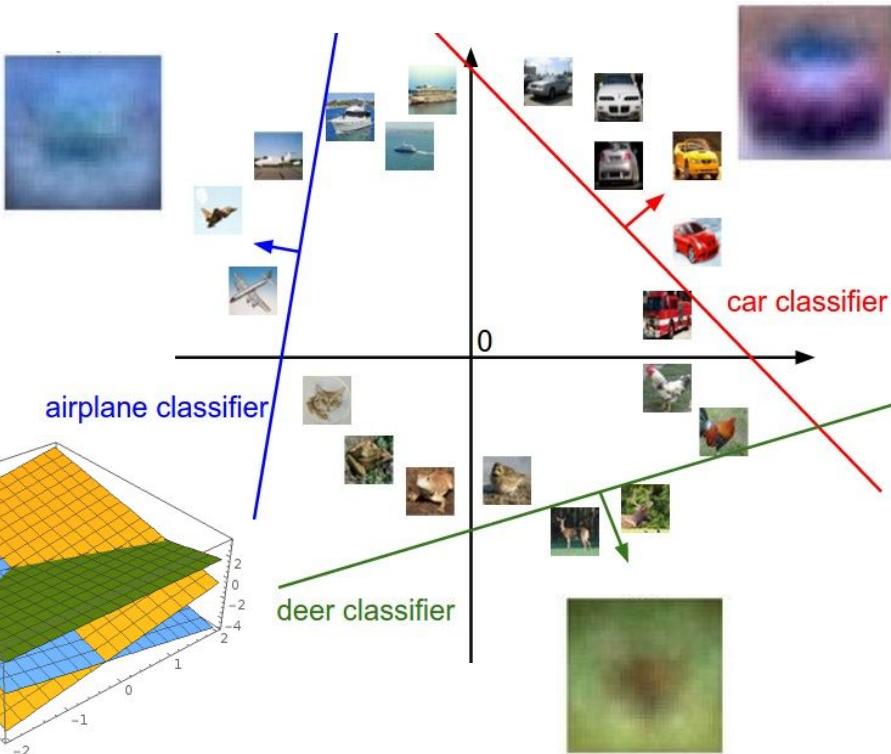
$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

Geometric Viewpoint: linear decision boundaries



$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

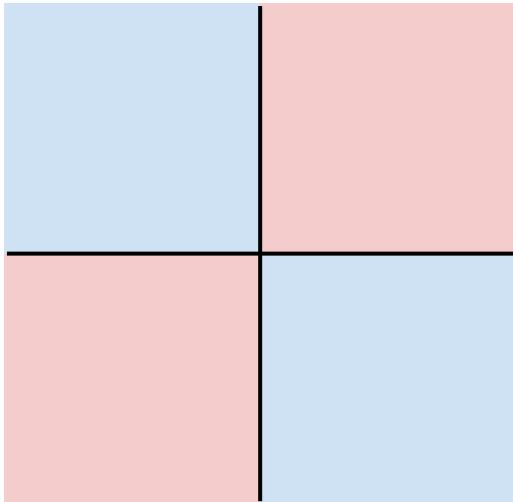
Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

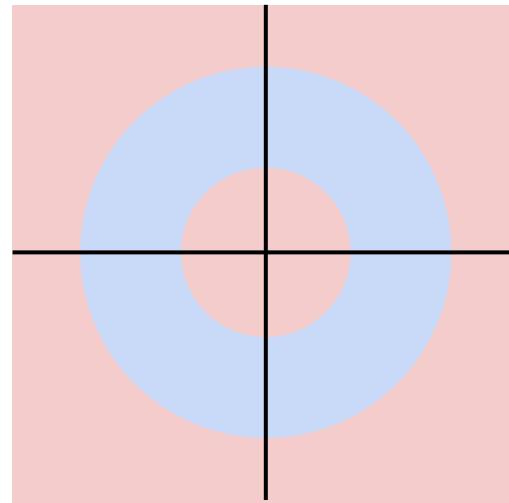


Class 1:

$1 \leq \text{L2 norm} \leq 2$

Class 2:

Everything else

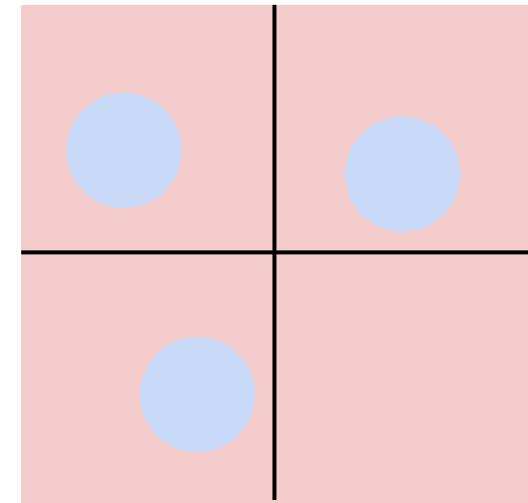


Class 1:

Three modes

Class 2:

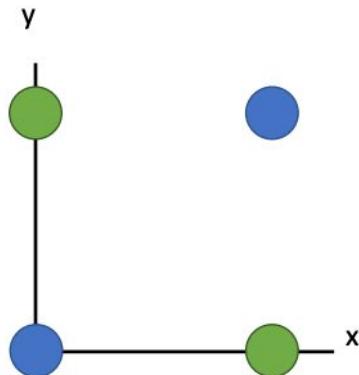
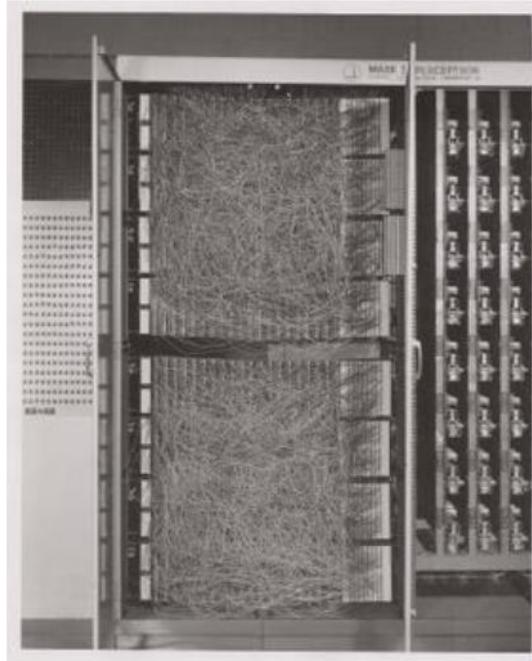
Everything else



Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

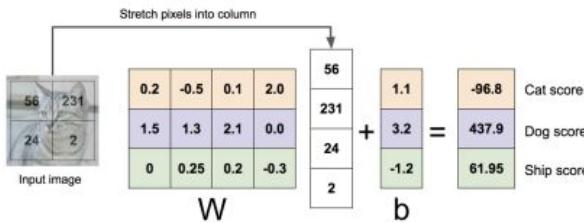
X	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0



Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint

$$f(x, W) = Wx$$

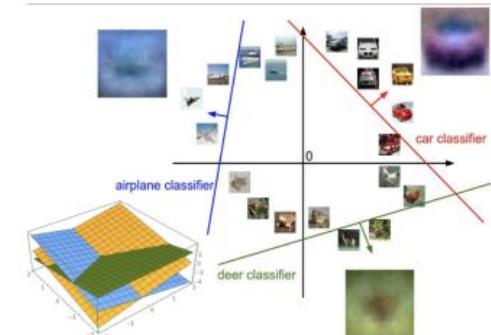


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



Coming up:

- Loss function
- Optimization
- Neural Networks

$$f(x, W) = Wx + b$$

(quantifying what it means to have a “good” W)

(start with random W and find a W that minimizes the loss)

(tweak the functional form of f)