
Verifying Security: Where We Are and Where We Should Go

Paul Vines

Jun 10, 2016

Abstract

Verification techniques are increasingly being applied to
the area of computer security. However, they vary greatly
in the tpyes of approaches and areas of security they inves-
tigate. In this paper, we attempt to systematize the current
state of verification in security and provide guidance to
where research effort could be most effectively be spent
in the future.

1 Introduction

There are many benefits of applying verification to pro-
grams, security is a large one. Security can be a difficult
property to ensure in programs for several reasons. First
and foremost, it is not actually essential to the function of
most programs. As such, many programs can ’get away’
with failing to implement security properly, and no one
will notice until much later. This means security does not
have the same level of incentive to be done right that other
aspects of most programs have, such as liveness or stabil-
ity.

Secondly, properties guaranteed by security, and the
operations required to implement those properties, can of-
ten be very subtle. In many cases security cannot be de-
termined to fail until it is attacked, so bugs can creep in
and be very difficult to detect in the development process.
This is similar to bugs emergent from the complexity of
distributed systems, where even extensive testing is often
inadequate to find all problems[19, 15].

For these reasons, security is a potentially excellent
area for applying verification techniques. In this work,
we survey the existing applications of verification to the
broadly-defined area of computer security. We provide a
classification of current works to aid in understanding the
variety of different approaches that have been taken and
attempt to provide direction for where future research ef-
forts should be focused.

2 Overview of Projects
There exist a handful of forays into verification applied to
security [11, 16, 9, 5, 2, 14]. These projects span a wide
variety of areas of what could be considered ’computer
security’, ranging from verification of implementations
from functional specifications, such as those provided by
FIPS, to proving cryptographic properties are provided
by a particular functional specification assuming correct
implementations, and projects combining both to provide
full-stack verification from cryptographic proof to assem-
bly instructions. To help breakdown the types of research
that has been done, we provide the following systemiza-
tion scheme.

2.1 Cryptographic Primitives
Projects in this space seek to provide verified implemen-
tations of the types of cryptographic primitives that serve
as the basis for secure protocols. Examples of these prim-
itives include secure hash algorithms (e.g. SHA256) and
symmetric and asymmetric encryption algorithms (e.g.
AES and RSA). These primitives are the basic blocks
upon which more complex security protocols (see below)
are built to facilitate real-world applications. The line be-
tween a primitive and a higher level protocol is not ex-
act; for example, the HMAC algorithm that provides the
ability to create a keyed message-authentication-code is
requires a secure hash algorithm to function, but we con-
sider HMAC itself to also be a cryptographic primitive
both due to its small implementation complexity and the
reliance on it by virtually all secure communication pro-
tocols.

Unlike some projects, research efforts to verify cryp-
tographic primitives are clearly examples of verification
applied to security. So far there have been several major
efforts.

2.1.1 Verified RSA [2]

The first is a verification of an implementation of the
RSA asymmetric encryption algorithm. This project



used a cryptographic verification framework called Easy-
Crypt [8] (see below) to enable verification of the crypto-
graphic properties the RSA algorithm is supposed to pro-
vide. From this cryptographic specification, a functional
specification of the algorithm is created and proved to pro-
vide the same cryptographic properties. This functional
specification is then extracted to C code, which is veri-
fiably compiled to machine instructions using the Com-
pCert verified compiler [17]. In this project the extraction
step is performed by an unverified Python script [9].

The Trusted Computing Base (TCB) of this implemen-
tation includes the EasyCrypt Framework, which relies
on Why3 and SMT solvers, as well as its own set of ax-
iomatic rules for facilitating cryptographic proofs, and the
Ocaml runtime. Extracting C-code to input into Com-
pCert from EasyCrypt’s proven version of the algorithm
also requires trusting the Python extraction code.

2.1.2 Verified SHA256 [5]

In addition to encryption algorithms, secure hashing algo-
rithms are an essentialy part of security. One of the fun-
damental properties required of a secure hash algorithm
is collision resistance. A collision resistant hash algo-
rithm has no way to find two inputs such that the out-
put of hashing them is equal, besides brute-force trying
all possible inputs. Unfortunately, this property cannot
actually be proven for currently used secure hash algo-
rithms. This unprovability limits the usefulness of veri-
fying an implementation of a secure hash function start-
ing at the cryptographic properties, since some of them
must be assumed. Nonetheless, a project used the Founda-
tional Cryptography Framework [18], build atop Coq [1],
to create an assembly implementation of the SHA256 al-
gorithm [5]. This was produced by proving properties in
FCF to provide a functional specification in Coq, then
Verifiable C [4] was used to provide a proof of equiva-
lence between this Coq specification and a C implemen-
tation, which was then compiled using CompCert.

The TCB of this implementation is the TCB of Com-
pCert and Coq’s proof checker.

2.1.3 Verified HMAC [9]

Following on the above work to create a verified im-
plementation of SHA256, a verified implementation of
the HMAC algorithm was also created. The HMAC al-
gorithm provides a keyed message-authentication-code
(MAC) that allows the receiver of a message to verify the
message was not tampered with, if the receiver and sender
both possess the same key and the sender applied the
HMAC algorithm to the message. The methodology used

in this proof was the same as that of the above SHA256
verification effort, except the proof of HMAC’s properties
must also rely on the proof of SHA256, since HMAC uses
SHA256 as a part of its implementation.

2.1.4 Functional Verification of Cryptographic
Primitives [16]

The Ironclad project took a different approach to verify-
ing an entire suite of cryptographic primitives required
as dependencies to provide verified secure communica-
tion. Specifically, it included implementations of SHA,
HMAC, and RSA. The fundamental goal of the approach
taken by Ironclad is different, however, in that they trans-
lated the FIPS functional specification of these crypto-
graphic algorithms into their verificaton language, Dafny,
and then proved these specifications were properly imple-
mented. In essense, this design trusts the previous efforts
that created the FIPS specification from desired crypto-
graphic properties, as well as the translation of that FIPS
specification into the verification specification in Dafny.

The TCB of Ironclad includes the the assembler and
linker for the compiled machine code, and the verifier to
check the correctness of BoogieX86 code.

2.1.5 Verified Timing Channel Resistance [7]

The above efforts have in common that they attempt to
prove the correctness of an implementation of crypto-
graphic primitives, to ensure the implementation provides
certain cryptographic properties (in the case of Ironclad,
based upon the assumption that the FIPS spec provides
these properties). However, there are types of attacks
against cryptographic algorithms that are not always well-
captured by the original proofs. Namely, side-channel at-
tacks compromise security properties of an algorithm by
gaining additional information not considered in the at-
tacker model. In the case of a timing side-channel, this
means an attacker that can detect differences in timing of
the execution of an algorithm, may be able to clean ex-
tra information about that algorithm’s functioning, such
as which command-flow branches were taken, or the na-
ture of values stored in the cache.

Defending against side-channels is an active area of
research outside of verification, but most of these ap-
proaches are not principled in how they are applied, and
do not contain any verifiable guarantees about defeating
side-channel attacks. A recent project [7] has provided
a methodology for providing timing-channel mitigation.
It does this my proving noninterference between the se-
cret portions of a cryptographic algorithm implementa-
tion, such as the value of the key involved, with other por-

2



tions of the implementation that could be observable by
an attacker, such as when caches or memory is accessed.
They integrate this analysis as a new layer in the Com-
pCert verified compiler to provide these guarantees in the
instructions generated by the compilation of the program.

2.2 Security Protocols

While cryptographic primitives are essential components
of computer security, in most cases a single primitive in
isolation cannot be used to achieve the goal that is desired.
For example, to securely communicate across a network
while maintaining confidentialy, integrity, and authentic-
ity of the messages between two devices, no single crypto-
graphic primitive will work. Furthermore, most protocols
require much more state, compatability negotiations, and
myriad other considerations to actually be practically use-
ful. Thus, security protocols have been created to facili-
tate these real-world uses, and leverage the various cryp-
tographic primitives we have discussed above in order to
provide strong security. Perhaps the most prevalent exam-
ple of this is the Transport-Layer-Security protocol (TLS)
that provides security for communications and is used by
many applications, such as the HTTPS protocol.

2.2.1 miTLS [11]

TLS is a large and complex protocol, encompassing au-
thenticating the server and client is connecting to, negoti-
ating which security algorithms to be used, securely ex-
changing keys, establishing a secure channel, transmit-
ting encrypted data between hosts, and securely ending
the channel. There have been many vulnerabilities dis-
covered in the TLS protocol (and its predecessor, SSL)
over the years, ranging from flaws in the cryptographic-
level specification down to the varied implementations of
the protocol [10].

miTLS is an effort to create a verified implementation
of TLS, working from the cryptographic properties the
protocol is intended to provide. Technologically, miTLS
uses a refinement typing system, F7, to implement the
TLS protocol and ensure it probabalistically meets the se-
crecy requirements. This combination of F7 and F# code
is ultimately compiled into .NET bytecode that is then run
by the .NET runtime. Unlike the cryptographic primitive
projects described above, miTLS has many trusted com-
ponents below its implementation: the .NET runtime it-
self, as well as the .NET implementations of the crypto-
graphic primitives it calls. The verification of miTLS it-
self revealed a new vulnerability built into the TLS spec-
ification. Additional work utilizing miTLS in subsequent

years revealed additional new specification vulnerabili-
ties [12] as well as a variety of errors in other implemen-
tations of the protocol [10].

The TCB of miTLS is large for a verification project, it
includes the F7 typechecker, F# compiler, .NET runtime,
and cryptographic libraries in .NET.

2.2.2 Verified SSH [14]

Another project verified an implementation of the Secure
Shell protol (SSH), using a different cryptographic ver-
ification framework, CryptoVerif [13]. CryptoVerif pro-
vides a large degree of automation for proving the security
properties of the SSH protocol. However, the project as a
whole has a large TCB, including the CryptoVerif frame-
work, a compiler from it to Ocaml, the Ocaml runtime,
and all the cryptographic primitives used in the protocol.

2.3 Secure Applications

Above we discussed the two clearest applications of ver-
ification to security: verifying cryptographic primitives
and verifying security protocols built on those primitives.
Defining what constitutes verification of secure applica-
tions is more difficult. The line between verifying an app
is secure and verifying an app functions correctly is essen-
tially just a question of how one defines bugs and whether
or not an app attempts to specify security properties for it-
self or not. In some sense, any application that is verified
and has security concerns is an application of verification
to security, because by verifying the app is functionally
correct it is also verifying the app is avoiding some class
of vulnerabilities that arise from being functionally incor-
rect. Thus, we limit our analysis of this space to a sin-
gle example, Ironclad, although almost every other project
that provides verification for an application is inherently
also providing verification of security properties of some
type as well.

2.3.1 Ironclad

As mentioned above, Ironclad provides verification of the
implementation of several cryptographic primitives from
the level of the FIPS specification down to assembly code.
Here we discuss that it also provides verification of sev-
eral example applications, such as a notary and a privacy-
preserving database. Ironclad approaches verifying appli-
cation security from the perspective of secret and public
data. By default, nothing that is defined as secret should
ever observably affect the output of an application (nonin-
terference). From there, applications can define declassi-

3



fication policies that allow specific secret-influenced out-
puts to be released.

3 Value of Verifying Primitives
Cryptographic primitives represent an attractive target for
applying verification to the security space; they are rela-
tively small, they involve proof techniques unique to their
domain (cryptography), and they form the basis for all
other security software. Despite these attractive qualities,
it is not clear that this is actually the most useful place to
apply verification effort.

Because cryptographic primitives are small and simple,
at least in terms of state, they are fairly easy to implement.
Furthermore, because they are so important, software de-
velopers implementing them tend to do so very carefully,
and a few well-written and well-tested implementations
of these critical but small algorithms are reused. Finally,
the fact that they require different proof techniques to be
supported by verification tools makes them attractive as
research contributions. However, it also means that de-
veloping tools for these proof techniques is not neces-
sarily beneficial to other areas of verification. The main
caveat to this point is that clearly cryptographers devel-
oping these cryptographic primitives need some kind of
mechanical proof assistant to help ensure their proofs are
correct. If these various frameworks developed for full
program verification, like EasyCrypt or FCF, represent the
best available tools for this, then it is certainly beneficial
to use them to at least generate the functional specifica-
tions of new cryptographic primitives.

In terms of real impact on the vulnerability of soft-
ware, current engineering practices actually appear to
be good enough at correctly implementing these crypto-
graphic primitives and effort should be focused on more
vulnerability-prone areas of security. A notable exception
is in the research of verifiable timing-channel defenses.
Recent unverified approaches to timing-channel defense
have been shown to be error-prone [3], so verification in
this area may prove helpful.

4 The Challenge of Verifying Secure
Protocols

The greater complexity of trying to verify security pro-
tocols instead of cryptographic primitives can be seen in
how much larger the trusted at-runtime TCB of miTLS
is compared to, for example, verified HMAC which runs
directly as instructons and does not require trusting ex-
ternal software. Furthermore, the fact that flaws were

quickly found in this verified implementation of TLS sug-
gests even verification approaches to improving security
protocols is on unstable ground.

Cryptographic primitives represent pervasive depen-
dencies for security, but are also overall low-risk in their
current unverified state. Higher-level security protocols
on the other hand are also widespread, but represent a
much larger portion of vulnerabilities. Therefore, of the
two categories, verification of security protocols like TLS
represents a more impactful application of verification
techniques.

Another interesting fact emerges from the saga of
TLS vulnerability research and verification. An unveri-
fied implementation of TLS, MbedTLS (then called Po-
larSSL) [6] was found to be equally bug-free as miTLS
when performing comparison-testing to find flaws in im-
plementations of the protocol. MbedTLS does not use any
verification techniques, but simply emphasizes simplicity
and other good software engineering practices in its devel-
opment. This provides evidence that, similar to the case
in cryptographic primitives, perhaps full program verifica-
tion is not actually the only solution to the plague of errors
in security protocols. Perhaps verifications from crypto-
graphic properties to a functional specification of these
protocols, followed by a well-disciplined implementation,
is actually similarly effective. In the short-term, while
verification is still decidedly difficult and raises efficiency
problems [11], it may make the most sense to proceed in
as modular an approach as possible. This could also help
provide incentives for academic research groups to work
in this area, rather than working on the more tractable but
less impactful projects verifying primitives.

5 Verifying Secure Applications
As noted in the overview of projects, verifying secu-
rity of applications is inherent in many other verification
projects. Given the current state of security and applica-
tion verification it makes the most sense to focus efforts
of security-specific verification at widely used protocols,
like TLS, rather than specific applications.

6 Conclusion
Verification in security has certainly arrived as a research
area, and recent projects have represented a relatively
wide variety of approaches. The field, however, still
seems focused on proving a certain area of security can
have verification applied to it, rather than focusing on
trying to produce useful artifacts for actual use. In par-

4



ticular, the focus on cryptographic primitives in several
projects is contrary to what would be practically useful
to obtain from verification efforts, because implementa-
tion errors in these primitives do not represent a prob-
lem area for security today. Our recommendation is that
near-term verification efforts be focused on more com-
plex, and vulnerability-prone, security protocols like TLS.
However, development of new tools for aiding verification
in all areas of security is probably a worthwhile longterm
effort.

References
[1] The coq proof assistant.

[2] J. B. Almeida, M. Barbosa, G. Barthe, and F. Du-
pressoir. Certified computer-aided cryptography:
efficient provably secure machine code from high-
level implementations. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communi-
cations security, pages 1217–1230. ACM, 2013.

[3] J. B. Almeida12, M. Barbosa13, G. Barthe, and
F. Dupressoir. Verifiable side-channel security of
cryptographic implementations: constant-time mee-
cbc.

[4] A. W. Appel. Verified software toolchain. In
Programming Languages and Systems, pages 1–17.
Springer, 2011.

[5] A. W. Appel. Verification of a cryptographic primi-
tive: Sha-256. ACM Transactions on Programming
Languages and Systems (TOPLAS), 37(2):7, 2015.

[6] ARM. mbedtls. 2015.

[7] G. Barthe, G. Betarte, J. Campo, C. Luna, and
D. Pichardie. System-level non-interference for
constant-time cryptography. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1267–1279. ACM,
2014.

[8] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz,
B. Schmidt, and P.-Y. Strub. Easycrypt: A tutorial.
In Foundations of Security Analysis and Design VII,
pages 146–166. Springer, 2014.

[9] L. Beringer, A. Petcher, Q. Y. Katherine, and
A. W. Appel. Verified correctness and security of
openssl hmac. In 24th USENIX Security Symposium
(USENIX Security 15), pages 207–221, 2015.

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub,
and J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of tls. In Se-
curity and Privacy (SP), 2015 IEEE Symposium on,
pages 535–552. IEEE, 2015.

[11] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti,
and P. Strub. Implementing tls with verified crypto-
graphic security. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 445–459. IEEE, 2013.

[12] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti,
and P. Y. Strub. Triple handshakes and cookie cut-
ters: Breaking and fixing authentication over tls. In
Security and Privacy (SP), 2014 IEEE Symposium
on, pages 98–113. IEEE, 2014.

[13] B. Blanchet and D. Pointcheval. Automated se-
curity proofs with sequences of games. In Ad-
vances in Cryptology-CRYPTO 2006, pages 537–
554. Springer, 2006.

[14] D. Cadé and B. Blanchet. From computationally-
proved protocol specifications to implementations.
In Availability, Reliability and Security (ARES),
2012 Seventh International Conference on, pages
65–74. IEEE, 2012.

[15] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
fleet: Proving practical distributed systems correct.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1–17. ACM, 2015.

[16] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps: End-
to-end security via automated full-system verifica-
tion. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), pages
165–181, 2014.

[17] X. Leroy. The compcert c verified compiler.
Documentation and users manual. INRIA Paris-
Rocquencourt, 2012.

[18] A. Petcher. A Foundational Proof Framework for
Cryptography. PhD thesis, 2015.

[19] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi:
A framework for implementing and formally verify-
ing distributed systems. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 357–368.
ACM, 2015.

5


