
ProverBot9000: Neural Networks for Proof Assistance

Joseph Redmon and Alex Sanchez-Stern

Abstract
We introduce ProverBot9000, a state-of-the-art tool for
proof automation and assistance. ProverBot9000 exam-
ines partially finished Coq proofs and proposes tactics to
make progress on the proof. It generates these tactics
using a neural network-based language model of Ltac.
ProverBot9000 is trained on human-generated proofs so
it suggests tactics that human experts are likely to use in a
given proof state. Furthermore, it can be fine-tuned for
a specific domain (e.g. distributed systems or compil-
ers) simply by adding completed proofs in that domain
to its training set. We evaluate ProverBot9000 on proofs
of peephole optimization correctness in a verified C com-
piler.

1 Introduction
Software developers working on large scale, sensitive sys-
tems face a daunting challenge. Billions of dollars and
thousands of lives depend on the correctness and stability
of their code. At NASA, developers write tens of thou-
sands of pages of specification for a new project before
a single line of code is written. It takes an average of 2
years for a new feature to go from proposal to implemen-
tation in the space shuttle program. At Boeing, software
developers read through printouts of the code and check it
against specifications by hand.

Formal verification offers an enticing alternative to this
model of development. In Coq or Dafny, program specifi-
cations are concise while machine-checked proofs guar-
antee that an implementation follows the specification.
Verification replaces the need for large-scale testing ef-
forts or manual code reviews. Developers can safely add
features and the verification engine will check if they have
unintended consequences.

Researchers already use formal verification for building
compilers, optimizers, distributed systems, and control
software. However, industrial programmers still rely on
large-scale testing over formal methods. Writing proofs
about programs, especially large systems, requires expert-
level knowledge both in that system domain and in type
theory and constructive logic.

ProverBot9000 is a proof assistant assistant designed to
bridge this knowledge gap. It learns proof engineering in
Coq by analyzing thousands of lines of expert generated
proofs. At test time, it helps novice proof engineers by
suggesting possible tactics to make progress in a proof. It
can also run in search mode where it generates and evalu-
ates possible tactics to complete proofs on its own.

2 The Model
To prove a statement in Coq, programmers apply tactics
to a proof state that either modify the proof’s goal (what
you need to show to finish the proof), or the proof’s con-
text (statements you have already proven or assumed to
be true). The tactic may depend on what tactics have been
already run, or what tactics or theorems are defined ear-
lier in the file or included files. Thus, we model proof
engineering as a function from proof goals G, contexts C,
previous tactics P , and prior definitions D, to tactics T :

(G× C × P ×D)→ T

We use a recurrent neural network (RNN) to learn
an approximation of this function from expert-generated
training samples. RNNs achieve state-of-the-art perfor-
mance on language modelling tasks. Our model uses
Gated Recurrent Units (GRUs), a type of neural network
layer that models time series data. GRUs have a mem-
ory state that they update at every time step based on the
previous time step and the current input to the layer.

Figure 1: GRU Layer from http://colah.github.
io/posts/2015-08-Understanding-LSTMs/

We use a character-level language model because it
can learn more general representations and adapts bet-
ter between tasks (say, fine-tuning for a specific domain).



Character-level language models do not tokenize the text
they are modelling but instead learn to model the text
as a stream of characters. There are a number of pros
and cons to this approach. For example, character-level
RNN’s have to learn to spell, and . However, character-
level RNN’s can learn similarities between terms based on
their spelling (for instance intro and intros) while a
token-level RNN would just see the terms as two distinct
tokens with no relationship.

3 Dataset
To model expert-level proof engineering we need expert-
generated proofs! We mine our training data from the ver-
ified C compiler CompCert and the verified peephole opti-
mizer built on top of CompCert, Peek. We script coqtop
to run the proofs and extract the proof context and goals
from partially completed proofs. This gives us 94,000
proof states and subsequent tactics for training. We leave
out two proof files for testing, the Peek proofs of Aiken5
and Aiken6. This gives us 145 test exmaples.

4 Results
As a simple baseline, we train an RNN on only proof goals
and tactics in their original form. This model can only see
the current goal, not the proof context or the rest of the
file, when predicting the next tactic to use.

We train a 4-layer network that uses 3 GRU layers of
1024 neurons, and one fully connected layer to output our
final prediction. The input and output is 256 units since
we are modelling character streams. We train the model
for 8 epochs on our training data using stochastic gradient
descent with a batch size of 128 and a time step size of
256 (gradients are only backpropagated 256 steps into the
past).

First we measure perplexity on the test set. Perplexity
measures how well the model fits the test data. We use the
standard NLP perplexity formula:

2−1/N
∑

i log q(xi)

Where N is the number of examples, and q(xi) is the
probability assigned to example xi by the model.

This baseline achieves a character-level perplexity on
the test set of 1.65 and a tactic-level perplexity of
15959.64. While our character-level perplexity is encour-
aging, the tactic-level perplexity is especially high, mostly
due to the combinatorial structure of tactics. Our model
does well on simple, one-line tactics like intros. but
does much worse on longer tactics like:

P0 _clear step_through;
P0 _clear at_code;
P0 _clear at_code_end;
P0 _clear not_after_label_in_code;
P0 _clear st_rs;
inv_state;
P0 bump val_eq;
P0 bump exec_instr_bits.

Since tactics can be strung together like this in arbitrary
ways our model can’t accurately predict all the possible
combinations. One option to deal with this is to break
these tactics up by applying the components individually
to each subgoal instead of using semicolons.

Even this basic model achieves some success. On the
test set our model generates the correct tactic 11.0% of the
time. Some success cases are:

Goal:
concrete = fnd aiken_6_defs ->

StepEquiv.rewrite

Tactic:
intros.

Goal:
(forall reg : preg,
PC = reg \/ r2 = reg \/ False ->
val_eq
(nextinstr_nf

(nextinstr_nf r3 # r1 <- (Val.sub (r3 r1) Vone)) # r2 <-
(Val.and (nextinstr_nf r3 # r1 <- (Val.sub (r3 r1) Vone) r2)

(nextinstr_nf r3 # r1 <- (Val.sub (r3 r1) Vone) r1)) reg)
(nextinstr (nextinstr (nextinstr rsr # r1 <- (Vint zero))) reg))
/MemEq.mem_eq a ml x4

Tactic:
split.

Goal:
StepEquiv.step_through_equiv_live (fnd aiken_5_defs)
(rpl aiken_5_defs) (lv_in aiken_5_defs) (lv_out aiken_5_defs)

Tactic:
prep_l.

Goal:
val_eq
(Val.and (nextinstr rsl # r1 <- (Val.of_optbool None) r2)

(Val.sub (nextinstr rsl # r1 <- (Val.of_optbool None) r1) Vone))
(nextinstr (nextinstr rsr # r1 <- (Vint zero)) r2)

Tactic:
preg_simpl.

Goal:
val_eq (Val.add (Val.add (Val.add (rsl PC) Vone) Vone) Vone)
(Val.add (Val.add (Val.add (rsr PC) Vone) Vone) Vone)

Tactic:
repeat find_rewrite_goal.

Some of the failures are only a few characters different
while others are way off base:

Goal:
Vint (Int.and i0 Int.mone) = rsr r2

Truth:
rewrite <- H0.

Prediction:
repeat break_match_hyp; try congruence.

2



Goal:
exists (rsr’ : regset) (mr’ : Memory.Mem.mem),
step_through z (Pmov_ri r1 seven :: Psub_rr r1 r2 :: Pnop :: nil)
(env tprog) (State_bits rsr mr md’) Events.E0
(State_bits rsr’ mr’ md’) / (forall reg : preg,

PC = reg \/ r2 = reg \/ False -> val_eq (rsl’ reg) (rsr’ reg)) / MemEq.mem_eq md’ ml’ mr’

Truth:
do 3 step_r.

Prediction:
step_r.

Goal:
val_eq (Val.and (rsl r2) Vundef) Vundef

Truth:
unfold Val.and.

Prediction:
unfold Val.loword.

To improve the performance of Proverbot9000, we
break down the larger, composed tactics into single atomic
tactics, with goals in between. We have a heuristic pro-
cess which rearranges and duplicates tactics which are
composed via semi-colon to produce more straightfor-
ward proofs which operate on each proof branch inde-
pendently. Because existential variables in Coq can cause
cross-effects between branches of a proof, it is not always
possible to do this well, and in some cases we have to
leave semi-colons in the proofs. But we were able to re-
move them from the majority of our data. Once we did
so, we were able to get much better performance from
Proverbot9000.

We trained Proverbot9000 on three different data sets,
to determine which information was most useful for gen-
erating new tactics:

1. Just the goal to be proven

2. Just the three most recent tactics in the proof

3. The goal to be proved, followed by the most recent
tactic in the proof

Proverbot9000 was able to produce a tactic identical to
the one written by a human in 21.1% of cases when it was
given just the goal to be proven. When given the three
most recent tactics, it was only able to predict the next
tactic in 8.5% of cases. When given first the goal, and
then the most recent tactic, it was successful in 16% of
cases.

It may seem surprising that the accuracy was lower
when given the goal and the previous tactic than it was
when given just the goal. But here the ordering is impor-
tant. In this setup, the goal was farther back in Prover-
bot9000’s memory than it was when it was given just the
goal. As a result, it informed the internal state less, and
produced weaker results.

These results seem to indicate that the goal is very use-
ful in determining which tactic should be executed next,

while previous tactics are less informative. The proof con-
text and information about other names in scope probably
also carries a lot of information about what tactic should
next be executed, but we have not yet been able to find a
good way to integrate such large bodies of text into our
character based model.

It’s important to note that these results measure how
well Proverbot9000 could duplicate exactly the tactics ex-
ecuted by a human, not how well it could advance the
proof. It’s often the case that there are multiple ways to
solve a proof, some of them very similar, that would all
work equally well. It may be that Proverbot9000 some-
times predicts a tactic that, while not the one the human
had chosen next, works equally well, and may have been
chosen by a different human. Unfortunately this is hard
to evaluate, since we have not yet attempted to generate
entire proofs with Proverbot9000, and it is difficult to say
when a proof has ”progressed.”

5 Future Work
We believe the results thus far in predicting tactics with
Proverbot9000 have only scratched the surface of what is
possible in this space. We hope to in the future be able
to add much more structure and domain knowledge into
our model, and vastly improve our results. In particular,
we’d like to design a multi-stream RNN where a separate
input stream is processed for the context, goal, and global
(file) context and fed into a single output RNN that pre-
dicts the tactic. Or we may find some other tricky way of
modelling these 3 disparate components. We also may im-
prove our character based model to integrate tokenization
to some extent which mitigates the burden of learning to
spell, and provides improved memory as we can fit more
information into fewer tokens.

We would also like to evaluate ProverBot9000 in stan-
dalone mode where it searches for full proofs on it’s own,
and responds to feedback from the Coq prover process.
One could imagine a Proverbot9000 which tries one tac-
tic, and if it receives an error from coqtop, backtracks
and tries another.

3


