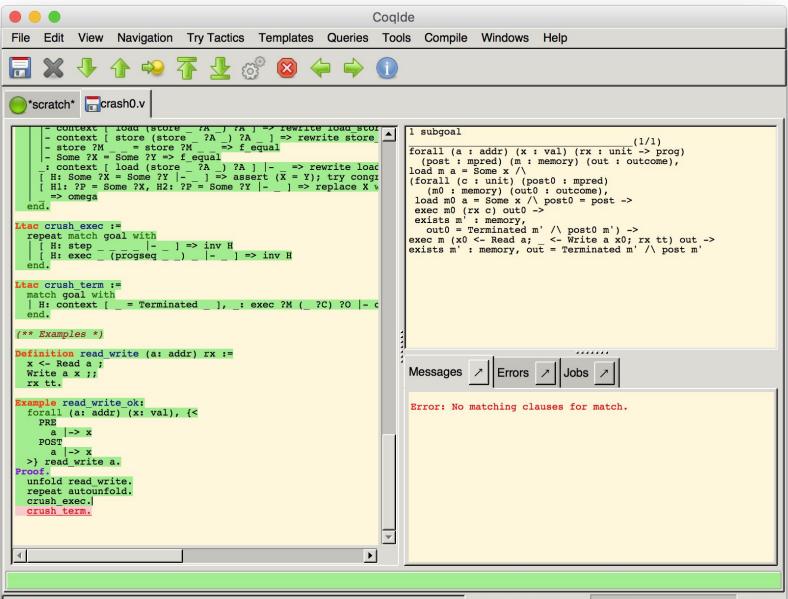
ProverBot9000

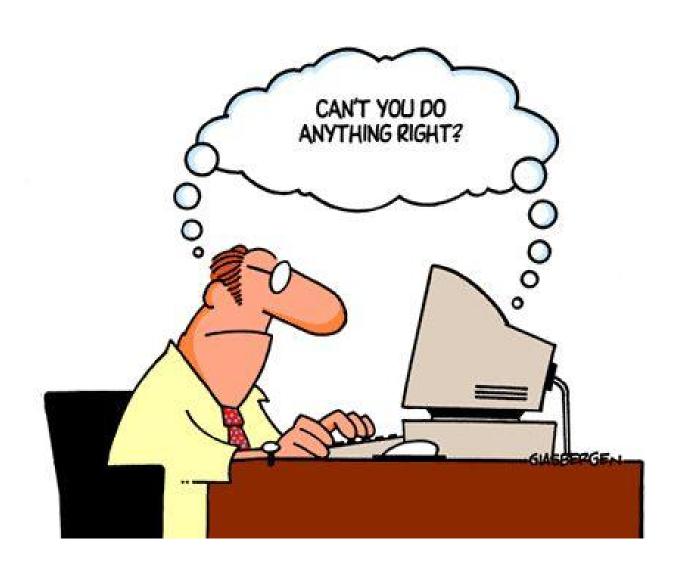
A proof assistant assistant

Proofs are hard

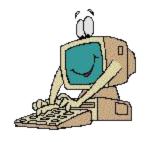


Autosaved Line: 168 Char: 14 Coq is ready 0 / 0

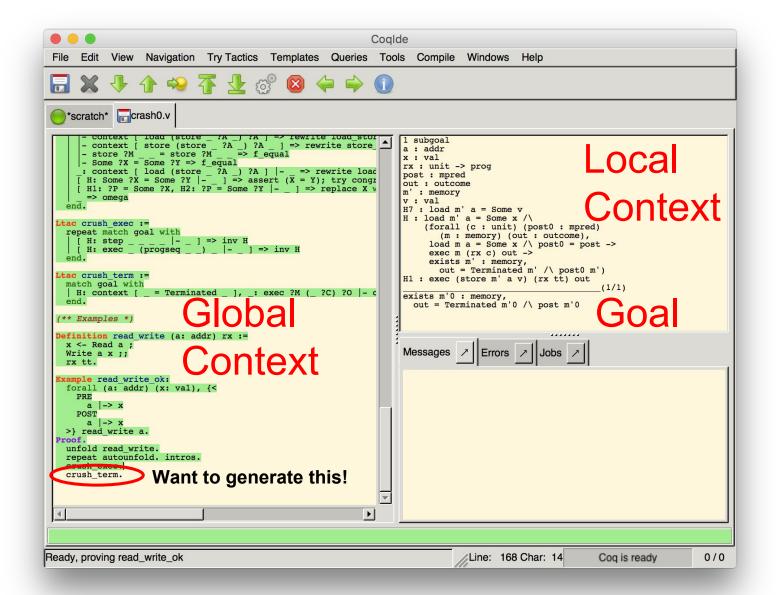
Proof assistants are hard



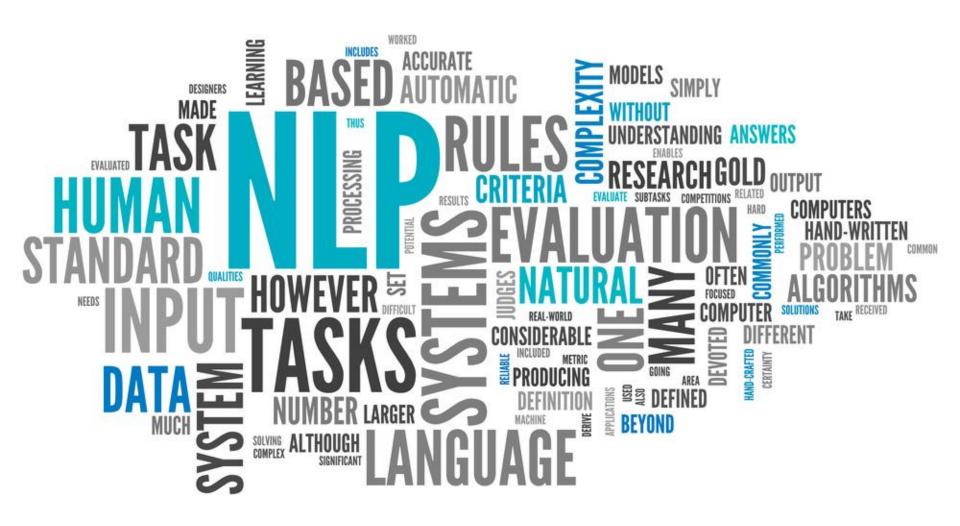
Big Idea: Proofs are hard, make computers do them



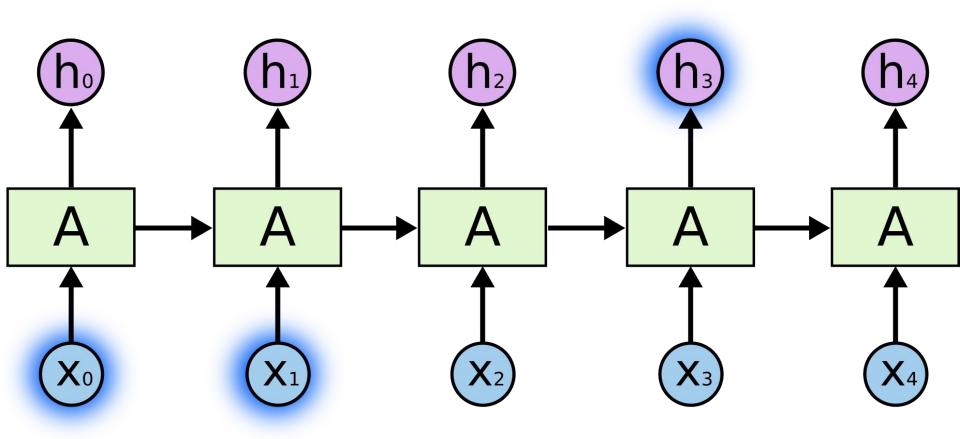
Proofs are just language with lots of structure



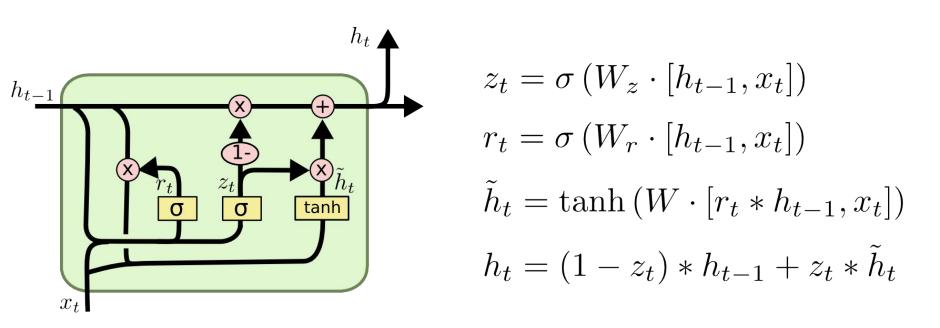
NLP techniques are good at modelling language



We use RNNs to model the "language" of proofs



We use GRUs for internal state updates



Probably good idea: Tokenize proofs "smartly"

Works well with english:

"The quick brown robot reaches for Doug's neck..."

->

<tk9> <tk20> <tk36> <UNK> <tk849> <tk3>

Custom proof names and tactics make this hard:

AppendEntriesRequestLeaderLogs

OneLeaderLogPerTerm

LeaderLogsSorted

RefinedLogMatchingLemmas

AppendEntriesRequestsCameFromLeaders

AllEntriesLog

LeaderSublog

Easy, bad idea: Model proofs char by char

Pros:

Very general, can model arbitrary strings

No "smart" pre-processing needed

Cons:

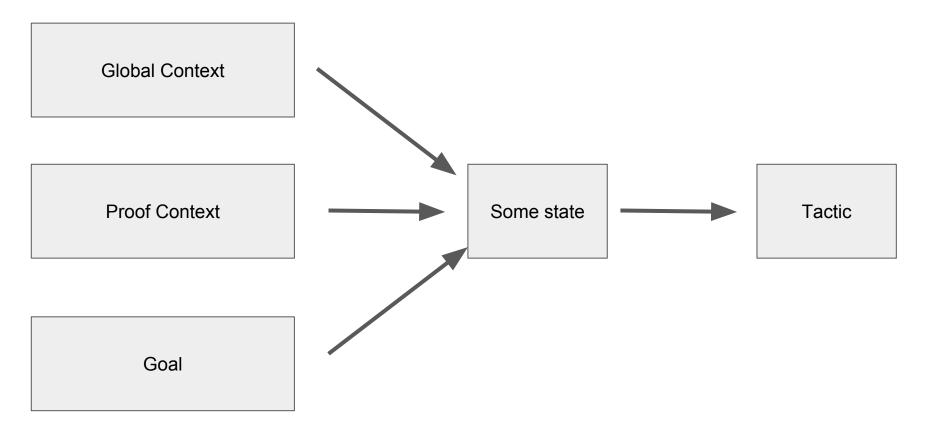
Need to learn to spell

Need bigger models to handle generality

Need more training data to avoid overfitting

Longer-term dependencies are harder, terms are separated by more "stuff"

Probably good idea: multi-stream models



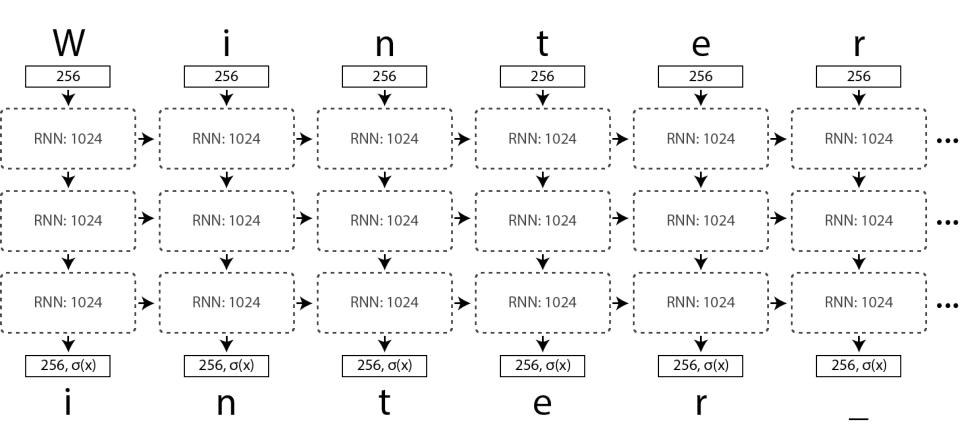
Problem: during training, have to bound number of unrolled time steps. The contexts can get much larger than the space that we have to unroll time steps

Our problem formulation, one unified stream

```
%%%%%%
                                       Start tokens
                                       Previous tactics
name peep_aiken_6 p.
unfold aiken 6 defs in p.
simpl in p.
specialize (p c).
do 3 set_code_cons c.
set_code_nil c.
set_instr_eq i 0%nat aiken_6_example.
set_instr_eq i0 1%nat aiken_6_example.
set_instr_eq i1 2%nat aiken_6_example.
set_int_eq n eight.
                                       Dividing tokens
+++++
                                       Current goal
option StepEquiv.rewrite
****
                                       Dividing tokens
                                       Next tactic
set_ireg_eq rd rd0.
```

.

Our full model



Data Extraction

- Proverbot9000 predicts tactics based on the just current goal (for now)
- Proverbot900 is trained on the Peek/Compcert codebase.
- 657 lines of python code to drive Coqtop and extract proof state
- Subgoal focusing and semicolons make proof structure more variable and complex
- We have systems which remove subgoal focusing, and

```
Lemma k: forall n: nat, (S n) > n.
                                                        from the proofs
Proof.
  induction n ; [try reflexivity | idtac ; try intro].
 - assert (1 = 1); auto.
  - omega.
0ed
                                            Lemma k : forall n: nat, (S n) > n.
                                            Proof.
                                            induction n.
                                            try reflexivity.
                                            assert (1 = 1).
                                            auto.
                                            auto.
                                            idtac.
                                            try intro.
                                            omega.
                                            Oed.
```

```
forall n : nat, S n > n
induction n.
%%%%%
1 > 0
try reflexivity.
%%%%%
1 > 0
****
assert (1 = 1).
%%%%%
 = 1
****
auto.
%%%%%
1 > 0
****
auto.
%%%%%
S(Sn) > Sn
****
idtac.
%%%%%
S (S n) > S n
****
try intro.
%%%%%
S (S n) > S n
****
omega.
%%%%%
```

Evaluation

Our current model gets 21% accuracy on a held out set of 175 goal-tactic combinations in Peek, (aiken 5 and 6)

Interface

Partially complete a proof

Run proverbot

Get a new tactic!

```
Lemma k : forall n: nat, (S n) > n.
Proof.
  induction n ; [try reflexivity | idtac ; try intro].
  assert (1 = 1); auto.
      ns/proverbot9000 $ ./predict.py simple-proof.v
    Lemma k : forall n: nat, (S n) > n.
    Proof.
      induction n ; [try reflexivity | idtac ; try intro].
     assert (1 = 1) ; auto.
    auto.
```

No subgoals left!

