
ProverBot9000
A proof assistant assistant

Proofs are hard

Proof assistants are hard

Big Idea: Proofs are hard, make computers do them

Proofs are just language with lots of structure

Local
Context

GoalGlobal
Context

Want to generate this!

NLP techniques are good at modelling language

We use RNNs to model the “language” of proofs

We use GRUs for internal state updates

Probably good idea: Tokenize proofs “smartly”

Works well with english:

“The quick brown robot reaches for Doug’s neck…”

->

<tk9> <tk20> <tk36> <UNK> <tk849> <tk3> ….

Custom proof names and tactics make this hard:

AppendEntriesRequestLeaderLogs
OneLeaderLogPerTerm
LeaderLogsSorted
RefinedLogMatchingLemmas
AppendEntriesRequestsCameFromLeaders
AllEntriesLog
LeaderSublog
LeadersHaveLeaderLogsStrong

Easy, bad idea: Model proofs char by char

Pros:

Very general, can model arbitrary strings

No “smart” pre-processing needed

Cons:

Need to learn to spell

Need bigger models to handle generality

Need more training data to avoid overfitting

Longer-term dependencies are harder, terms are separated by more “stuff”

Probably good idea: multi-stream models

Global Context

Proof Context

Goal

Some state Tactic

Problem: during training, have to bound number of unrolled time steps. The contexts can get much larger
than the space that we have to unroll time steps

Our problem formulation, one unified stream

%%%%%
name peep_aiken_6 p.
unfold aiken_6_defs in p.
simpl in p.
specialize (p c).
do 3 set_code_cons c.
set_code_nil c.
set_instr_eq i 0%nat aiken_6_example.
set_instr_eq i0 1%nat aiken_6_example.
set_instr_eq i1 2%nat aiken_6_example.
set_int_eq n eight.
+++++
option StepEquiv.rewrite

set_ireg_eq rd rd0.

……….

Start tokens
Previous tactics

Dividing tokens
Current goal
Dividing tokens
Next tactic

Our full model

Data Extraction
● Proverbot9000 predicts tactics based on the just

current goal (for now)
● Proverbot900 is trained on the Peek/Compcert

codebase.
● 657 lines of python code to drive Coqtop and extract

proof state
● Subgoal focusing and semicolons make proof structure

more variable and complex
● We have systems which remove subgoal focusing, and

heuristics which remove semicolons from the proofs

Evaluation

Our current model gets 21% accuracy on a held out set of 175 goal-tactic
combinations in Peek, (aiken 5 and 6)

Interface

● Partially complete a proof

● Run proverbot

● Get a new tactic!

No subgoals left!

DEMO

