
Cheerios

Keith Simmons

Abstract
Computer scientists use formal verification to attempt to
provide guarentees to the users of software about the run
time characteristics of a given program. Verification tech-
niques today often require a TCB or Trusted Code Base
which due to time or effort constraints, the authors were
not able to prove correct. When bugs occure in these
pieces, they break down the strong guarentees of formal
verification and devalue the extra time spent to complete
it. In many cases, the verification of such a component
could be reused in other projects, but not many mecha-
nisms are in place to do so, especially when it comes to
sharing libraries in coq beyond the standard library.

We present Cheerios, a formally verified library for se-
rializing coq data types and writing serializers for custom
types to be stored or sent over the wire. Cheerios uses
modern software development practices to ensure it is eas-
ily readable and understandable. It also has a clear path
for extending its standard library of serializable types with
proof tactics which make proving the correctness of the
new serializers relatively simple and provides the needed
lemmas for users of Cheerios to immediately get up and
running quickly with their project.

The verdi project has been critisized for not having a
verified serializer and deserializer. [6, 5] To demonstrate
Cheerios’ utility we integrated it with the verdi project re-
placing the current usage of Ocaml’s standard library mar-
shalling functions with Cheerios and developed a vst for
distributed systems in verdi which uses Cheerios to allow
system creators to develop their own serializers instead of
relying on the Ocaml marshalling library.

1 Introduction
Serialization is used to send or store complex data in the
form of binary. Often, modern standard libraries will have
serialization functionality built in [4, 3, 2], but do not have
strict guarentees about the characteristics of the serializa-
tion. The OCaml serialization library, Marshal, currently
has open bugs that could effect the runtime characteristics
of formally verified software. [1] By reducing the size
of the TCB for the verdi project, we improve the chances

that verdi is bug free and reduce the surface area within
which problems are able to occure. Other projects will
also be able to drop Cheerios into their source and use it
with relative ease.

Currently Cheerios does not serialize all of the base
types in the coq standard library. This means that some
basic serializers may be needed if a project uses the more
obscure types. Cheerios does provide simple tools for
writing those serializers though, so the burden should not
be too high on the developer. Cheerios also only serializes
to linked lists of booleans at this point. There are plans
to allow all Cheerios serializers to be parameterized over
their output types, but this is left for future work. Some
forms of recursive data structures can be difficult to prove
the serialize deserialize id property for. We would like to
explore this particular case further so that we can provide
better tactics or guidelines in the future. Cheerios also has
no guarentees about how much memory or how large of a
stream it will deserialize is. In the future we would like
to provide layers on top of the existing type classes which
do enforce these requirements so that one can be confi-
dent that Cheerios will not crash due to a stack overflow
or similar issue.

The Cheerios project’s TCB includes the Coq proof as-
sistent and standard library. All other dependencies are
verified in Coq.

Cheerios provides a clean interface for producing and
using serializers in Coq. It describes a Serializer type
class with serialize and deserialize functions, provides
combinators for serializing complex data types, provides
a deserialization monad which makes writing the deseri-
alizers simple and clean, and provides tactics for proving
the serializer and deserializer functions correct for a given
Serializer.

2 Overview

All Cheerios serializers are built with 4 components: A
type to serialize and deserialize, a serialize function which
takes an object of the above type and returns a list of
booleans, a deserialize function which takes a list of
booleans and returns an option of the above type and list

∀ a bin,
deserialize ((serialize a) ++ bin)

= Some (a, bin)

Figure 1: serialize deserialize id property

@serialize nat nat_Serializer 42
vs
serialize 42

Figure 2: By using type classes, the user does not have
to specify which Serializer instance they are using. The
compiler automatically locates the necessary parameters.
This becomes especially useful when Serializers are pa-
rameterized over a base type as with combinators. The
combinators can be chained without increasing the com-
plexity of the calling code.

of booleans, and a proof that serializing is reversible.

2.1 Serializer Property
The reversibility property called serial-

ize deserialize id nil says that any serialized object,
when deserialized yields the original object. This is a
simplified version of the full serialize spec, shown in
figure 1, which forces any binary added to the serialized
object’s list to be preserved after deserialization. By
preserving binary not needed in the deserialization of an
object, Cheerios allows users to send streams of data to
the deserializer and just take off the bits needed in the
deserialization of the first type.

One might wonder why we chose serialize reversibil-
ity instead of deserialize reversibility for our correctness
property. When using a serializer, one requires that the
object returned from disk or the network when deserial-
ized is equal to the object serialized in the first place. If we
had required binary be preserved, a user could create a se-
rializer which serializes all data types to a single boolean
which would satisfy the requirement. This way, no re-
quirement is placed on the binary which is produced. You
could concieve of a serializer being written which dese-
rializes the same binary in two different ways depending
on the type it is paramaterized over. This is completely
allowed in the current version of Cheerios.

2.2 Type Class
Cheerios Serializers are instances of the Serializer type

class. By using the type class functionality in Coq, a user
does not need to specify the exact version of the serializer
needed for serializing a given object. The type system will
locate the correct instance if it has been defined or send an

Definition option_deserialize :
deserializer (option A) :=

b <- deserialize ;;
match b with
true => Some <$> deserialize
false => ret None
end.

Figure 3: Deserializer monad syntax removes unneces-
sary match statements created by the need for deserializ-
ers to fail.

error message if it does not yet exist. This works great in
practice because one can define serializers for all of the
data types for a project in one place and then just call seri-
alize and deserialize to utilize the serialization code. This
does cause issues on occasion when insufficient type in-
formation is provided for the serializer. In such a case,
one needs to directly anotate what they expect the deseri-
alizer to return or else it will fall back on defaults based on
serializer instance ordering which is probably not desired.

Another benifit of using Coq type classes for serializers
is that we get parameterization over types for free. The
definition for serializing option types depends on the ex-
istance of a serializer for the base type, but is identical
for any base type. Once a combinator is written, it will
work for any serializer already defined. This reduces the
need to write specialized serializers for a project if they
use common data structures to represent their data.

2.3 Deserializer Monad
In order for serializers to be effective, there must be the

ability for deserializing an arbitrary binary string to fail
if formatted incorrectly. In such a case, instead of caus-
ing the program to crash we use an option return type.
When building these combinators over many serialization
types, it is not uncommon to have many layers of match
statements in order to peel away the nested option objects.
To ease the burden on the user, we developed a deserial-
ization monad which removes the need for nested match
statements. The arrow syntax indicates binding the value
of deserializing to whatever is on the left or returns None
if the deserialization fails. We provide fmap and sequence
syntaxes to simplify applying functions to deserialized as
shown in Figure 3.

2.4 serialize deserialize id crush
We have also simplified the effort required to prove

that a given serializer is reversible by providing the seri-
alize deserialize id crush tactic shown in Figure 4 which

2

Ltac deserializer_unfold :=
unfold

sequence,
fmap,
fail,
put,
get,
bind,
ret

in *.

Ltac serialize_deserialize_id_crush :=
intros; deserializer_unfold;
repeat rewrite

?app_assoc_reverse,
?serialize_deserialize_id;
auto

Figure 4: The proof tactic for automating the serial-
ize deserialize id proof.

unfolds any deserializer monad functions present, and
solves most proofs automatically.

We found that many serializers and combinators can be
simplified by using more basic serializers to encode pieces
of the new type. Lists are serialized by first encoding the
length of the list and then the individual elements. Instead
of encoding our own version of a number serializer, we
were able to reuse the serializer for nats. Since the seri-
alize deserialize id crush tactic rewrites using the serial-
ize deserialize id lemma, the proof goes through without
any added complexity.

In some cases especially when serializers are recur-
sive as we find in the list serializer, some care needs
to be taken in the order you destruct and call seri-
alize deserialize id crush. Because of the brute force
method of unfolding monad functions, it is possible to un-
fold too much and get stuck. Looking into improving this
experience is future work.

3 Use Case
We developed a Verified System Transformer using
Verdi’s toolkit to allow systems written in Verdi to seri-
alize the message and data types to list bools. After the
future work of improving the extraction functionality for
Cheerios is complete we will apply the VST to the ex-
isting verdi systems in order to remove the dependence
on Marshal. During the development of the VST the vast
majority of the engineering effort was expended working
with Verdi’s code. Little to no work was needed to inte-

grate Cheerios beyond what all VSTs require. We were
able to parameterize the VST over the Serializer types for
the message and input/output types so that applying it to a
given system will be as simple as writing a basic serializer
for each of the types and completing the equality proof.

4 Conclusion
This paper presented Cheerios, a formally verified serial-
ization library. Cheerios uses Coq’s type system and type
classes to make using it as simple as possible while still
allowing extension of the supported types efficient. Chee-
rios provides a solution to using unverified software for
serializing objects and can be dropped in to projects to
reduce their TCB and prevent common serialization bugs.

Cheerios can serve as an example of how to take a small
piece of a common trusted component in verified systems
and break it into a reusable library that eases the difficulty
of building more complex systems. As more libraries are
created to solve similar problems, the gap between the
time it takes to produce verified software and the time it
takes to produce software with traditional methods will
decrease allowing more people to benifit from it.

References
[1] Bugs in ocaml marshal. http://caml.inria.

fr/mantis/view.php?id=7238. Accessed:
2016-6-10.

[2] Java objectinputstream. http://docs.oracle.
com/javase/7/docs/api/java/io/
ObjectInputStream.html. Accessed:
2016-6-10.

[3] .net xmlserializer. https://msdn.microsoft.
com/en-us/library/system.xml.
serialization.xmlserializer.aspx.
Accessed: 2016-6-10.

[4] Ocaml marshaling. http://caml.inria.
fr/pub/docs/manual-ocaml/libref/
Marshal.html. Accessed: 2016-6-10.

[5] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
fleet: Proving practical distributed systems correct.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1–17. ACM, 2015.

[6] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi:

3

http://caml.inria.fr/mantis/view.php?id=7238
http://caml.inria.fr/mantis/view.php?id=7238
http://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
http://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
http://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlserializer.aspx
https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlserializer.aspx
https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlserializer.aspx
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html

A framework for implementing and formally verify-
ing distributed systems. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 357–368.
ACM, 2015.

4

	Introduction
	Overview
	Serializer Property
	Type Class
	Deserializer Monad
	serialize_deserialize_id_crush

	Use Case
	Conclusion

