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Example

SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30

Think of this query as being issued during query optimization:
Optimizer wants to find out the size of a subplan

Assume |R| = 1,000,000,000
Can’t scan R. Will use statistics instead



Histograms to the Rescue !

R.A= e 9 10 11
count = 100,000,000
R.B = e 19 20 21
count = 200,000,000
R.C = e 29 30 31

count = 250,000,000




[Guha’2002]

Histogram Basics

* Main goal: estimate the size of range
queries:

SELECT *
FROM R
WHERE vl <R.Aand R A<v2

* Special case: v=R.A



[Guha’2002]

Histogram Basics

* (Given: an array A[1,n] of non-negative reals
* Define: Afla,b] = (A[a]+...+A[b])/(b-a+1)

Definition. A histogram of array A[1,n] using
B buckets 1s specified by B+1 integers
OSbIS LS bB_H:n.

[b+1, b.. ] 1s called a “bucket”; its value is A[b.+1, b, ]
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[Guha’2002]

Answering Range Queries

Definition. A range query 1s R;; and its answer 1s:
s. =A[1] + ... tA[j]

1]

The answer §;; to a range query R; using a histogram
i1s computed by using the “uniformity assumption”.
[Formula on the white board]

Definition. The error of R is (§;; - s;)?




[Guha’2002]

Optimal Histograms

* G1ven:
— A workload W of range queries R;
— A weight w;; for each query

* Compute a histogram that minimizes

2 Wi (85 - Sij)2




Optimal Histograms

* V-optimal histograms:
— Single point queries: W={R,, ..., R}
— All weights are equal
— Computing V-optimal histogram [IN CLASS]

* Optimal histograms for hierarchical queries

— Workload forms a hierarchy
— Computable in PTIME




Multidimensional Histograms

e Main goal: estimate the size of multi-range
queries:

SELECT *

FROM R

WHERE ul £ R.Aand R.A<vl
and u2 <R.B and R.B <v2
and ...
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Multidimensional Histograms

Two 1ssues:
e Which dimensions to choose ?

 How do we compute the optimal histogram ?

— NP-hard for 2 dimensions [S. Muthukrishnan, V.
Poosala, and T. Suel, ICDT 1999]

Will discuss only issue 1
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|Getoor’2001 |

Which Dimensions to Choose

» Use graphical models and exploit conditional
independences
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|Getoor’2001 |

Probabilistic Model of a Histogram

* R(A,, ..., A, = relation with n attributes

— Duplicates possible, €.g. there are more attrs

» The joint probability distribution is:

P(aj, ...,a )= |GA1=a1,...,An=an(R)| / |R]

* Queries are now point queries

Q(ay, ...,a)=P(a, ...,a) * R
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|Getoor’2001 |

Conditional Independences

Person(Name, Education, Income, Home-owner)
Education = high-school, college, MS
Income = low, medium, high
Home-owner = false, true

Assumption:

P(H|E,T)=PH |I)

Then the point query becomes:

Q(H, E, ) =P(H | ) * P() * R ;




[Getoor’2001 |

(E 1T H|PW&LH) ]
h 1 f 0.27
h 1 t 0.03
h m f 0.105
h m ¢t 0.045
h h f 0.005
h h t 0.045
c 1 f 0.135
c 1 t 0.015
¢c m f 0.063
¢c m t 0.027
¢ h f 0.006
¢ h t 0.054
a 1 f 0.018
a 1 t 0.002
a m f 0.042
a m ¢t 0.018
a h f 0012
a h t 0.108

(@)

Histograms

LE | P(E) |

h 0.5

c 03

a 0.2

| I E[PUE)]
1 h 0.6
m h 0.3
h h 0.1
1 c 0.5
m c 0.3
h ¢ 0.2
1 a 0.1
m a 0.3
h a 0.6

(b)

| H I | P(H | I) |
t 1 0.1
f 1 09
t m 03
f m 0.7
t h 09
f h 0.1

Conditional Independence =2

LE [ P(E) |
h 05
c 03
a 02

L I[P ]
1 047
m | 0.30
h 0.23

| H [ P(H) |
t 0.344
f 0.656
(c)

15




[Getoor’2001 |

Bayesian Networks




Discussion

Multidimensional histograms remain difficult
to use:

* Conditional independences may not hold
 Difficult to learn the BN

* Computing buckets remains expensive
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[Mark1’2005]

Consistent Estimation Problem

Recall: histogram entries are probabilities

SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30

R.A= 10
$; = 0.1
R.B= 20
S, = 0.2
R.C= 30
Sy = 0.25

What’s your
estimate ?
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[Mark1’2005]

Consistent Estimation Problem

SELECT count(*)

FROM R
WHERE R.A=10 and R.B=20 and R.C=30

R.A= 10

$; = 0.1
R.B= 20

S, = 0.2
R.C= 30

Sy = 0.25
R.AB 10,20
Sip = 0.05
R.BC 20,30
S13 = 0.03

What’s your
estimate now ?
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[Markl’2005]

Problem Statement

* (31ven
— Multivariate Statistics, MVS
— Query q

» Estimate q from the MVS

e [ssue:
— Many ways to use the MVS

— Inconsistent answers

20



[Markl’2005]

Example

Relation: R(A,B,C)
MVS: P(A), P(B), P(C), P(A,B), P(B,C)

Estimate query size: 6,_, gy, o= (R)

Equivalently: compute P(a,b,c)

No Unique Solution !
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[Markl’2005]

The Consistency Problem

Different possible answers:

* P(a,b,c) = P(a,b) * P(c)

* P(a,b,c) = P(a) * P(b,c)

* P(a,b,c) = P(a) * P(b) * P(c)

* P(a,b,c) = P(a,b) * P(b,c)/ P(b)

Which independence(s) does each formula assume ?
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[Markl’2005]

Simplify Probabilities

* New probability space on

{(x,y,2) | (x,y,2) €{0,1}3} defined by:
 Randomly select a tuple t from R

— x=1 1ff t.A=10

_ y=1 iff t B=20

— z=1 11 t.C=30

 E.g. P(1,0,1) = P(A=a, B#b, C=c¢)

23



[Markl’2005]

Modeling Histograms as ProbDB

* There are eight possible worlds, need their probs
» The five histograms lead to 5+1 = 6 constraints:

P X000 X001 X010 X011 X100 X101 X 110X 11— 1

X y zZ
0 [0 [0 | X100 X101 X1 101X = P(a)

0 10 |1 |Xeo X010 X1 TX1107X11,= P(b)

0 |1 [0 |[xy0 X001 X011 X 101X 1= P(C)

0 |1 |1 |x X1107X111= P(a,b)

1[0 |0 |x Xo111X1,= P(b,c)

1|0 |1 |xy .
L1 |0 |xu But underdetermined.
1 |1 |1

How do we choose ?




Entropy Maximization Principle

* Let x=(X;,X,, ...) be a probability
distribution

* The entropy 1s:

H(x) = — (x; log(x,) + X, log(x,)*...)

* The ME principle 1s:
“among multiple probability distributions,
choose the one with maximum entropy”
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Solving ME

* In our example: find X, ..., X;{; S.t.:

Po=Xgpg T +-- T Xy —1=0

Pa = X100 T X101 T Xy10 + X4y — P(a) =0
Pb = Xo10  Xo11 T X410 T X1y —P(b) =0
Pe = Xoo1 T Xo11 T Xy01 T X33 — P(¢) =0
Pab = X110 T X4 — P(a,b) =0

Poe = Xo11 T X511 — P(b,c) =0

maximize(H)

where H = —(X90 102(Xg00) T--- T X171 l0g(X411))




Solving ME

» The Lagrange multipliers: define a constant
A, for every constraint p,, then define:

f(Xg00 5 ---» X111 ) = 2 A ps—H

» Solve the following:
of / 0Xyp9 = 0

of/ 0x,;;, =0
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Solving ME

* The system becomes:

Vtin {0,1}3: X c, A, +log(x)+1=0

* In our example, this is:

t=000: A, +log(Xpp) +1=0

t=001: A, + A, +10og(Xyy) +1=0

t=010: A, + A, +1og(xy0) T1=0

t=011: A, + A, + A, + A Flog(Xy;) +1=0




Solving ME

* The solution has the following form:

Vtin {0,1}°: x, = Il ., a,

* Here a, are parameters: one parameter for
ecach MVS

* To solve for the parameters =» nonlinear
system of equations

29



Solving ME

* In our example, this1s: <« Next, need to solve a

nonlinear system

X000 — Oz

B « [WHICH ONE ?]
Roro— & ab * Good luck solving 1t !
X011 — OlgO, 0Oy '
X100 — Uy
X101 = 0,000
X110 — OpOly 0 0lyy
X111 = Op0ly Ol O Oy Ol 30




Summary of Histograms

* Naive probabilistic model:

— Select randomly a tuple from the relation R
* Limited objective:

— Estimate range queries

— But they do this pretty well
* Widely used 1n practice
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A Much Simpler Approach:

Sampling

* R has N=1,000,000,000 tuples
* Compute (offline) a sample of size n =500

SELECT count(*)
FROM R

WH

HRE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample =» 8 tuples




[Chaudhuri’99]

Sampling from Databases

Two usages:
* For query size estimation:

— Keep a random sample, use it to estimate
queries

* Approximate query answering:

— Answer a query by sampling from the database
and computing the query only on the sample
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[Chaudhur1’99]

Sampling from Databases

SAMPLE(R, f), where f € [0,1], and |R|=n
Three semantics:
* Sampling with replacement WR

— Sample fn elements from R, each independently
* Sampling without replacement WoR

— Sample a subset of size fn from R

* Bernoulli sample, or coin flip CF

— For each element in R, tlip a coin with prob t



Random Sampling from Databases

* Given arelation R = {t,, ..., t }

 Compute a sample S of R

35



Random Sample of Size 1

* Given arelation R = {t,, ..., t }
* Compute random element s of R

Q: What 1s the probability space ?

36



Random Sample of Size 1

* Given arelation R = {t,, ..., t }
* Compute random element s of R

Q: What 1s the probability space ?

A: Atomic events: t,, ..., t

.., n,

Probabilities: 1/n, 1/n, ..., I/n

37



Random Sample of Size 1

Sample(R) {
r = random number(0..232-1);
n=|[R};
s = “the (r % n)’th element of R”
return s;

j
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Random Sample of Size 1

Sequential scan

Sample(R) {
forall x in R do {

r = random number(0..1);
if (r <?7?)s=x;

j

return S;

j
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Random Sample of Size 1

Sequential scan

Sample(R) { k=1;
forall x in R do {
r =random number(0..1);
if (r< 1/k++) s = x;

j

return S;

j

Note: need to scan R fully. How can we stop early ?
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Random Sample of Size 1

Sequential scan: use the size of R

Sample(R) { k= 0;
forall x in R do { k++;
r = random number(0..1);
if (r< 1/(n -k +1) return x;

j

return s;

j

41



Binomial Sample or Coin Flip

In practice we want a sample > 1

Sample(R) { S = emptyset;
forall x in R do {
r =random number(0..1);
if (r< p) msert(S,x);
return S;

j

What 1s the problem with binomial sample ?

42



Binomial Sample

* The size of the sample S 1s not fixed

e Instead 1t 1s a random binomial variable of
expected size pn

 In practice we want a guarantee on the
sample size, 1.e. we want the sample size =
m

43



Fixed Size Sample WoR

Problem:
 (G1ven relation R with n elements
e Givenm >0

* Sample m distinct values from R

What 1s the probability space ?

44



Fixed Size Sample WoR

Problem:
 (G1ven relation R with n elements
e Givenm >0

* Sample m distinct values from R

What 1s the probability space ?

A: all subsets of R of size m, each has
probability 1/(" ) "



Reservoir Sampling: known
population size

Here we want a sample S of fixed size m
from a set R of known size n

Sample(R) { S =emptyset; k = 0;
forall x in R do { k++;
p = (m-|S[)/(n-k+1)
r =random number(0..1);
if (r<p) sert(S,x);
return S;

j
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Reservoir Sampling: unknown
population size

Sample(R) { S = emptyset; k= 0;

forall x in R do
p = |S|/k++
r =random number(0..1);
if (r<p) { 1f (|S|=m) remove a random

element from S;
isert(S,x);}
return S;

j
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Question

* What 1s the disadvantage of not knowing
the population size ?
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Example: Using Samples

R has N=1,000,000,000 tuples

Compute (offline) a sample X of size n =500

SELECT count(*)
FROM R

WH

HRE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample =» 8 tuples
Thus E[p] = 8/500 =0.0016
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The Join Sampling Problem

« SAMPLE(R, = R,, ) without computing the
jomJ =R, =R,
« Example:

R (A,B) = {(a;,by), (a,,b), ..., (a,,b))}
R,(A,C) = {(ay,¢p), (as,by), ..., (a;,b )}

* A random sample of J cannot be obtained

from a uniform random sample on R1 and
on R2

50



Sampling over Joins

* Solution: use weighted sampling
« [IN CLASS]
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Join Synopses

Acharya et al, SIGMOD’99]

Idea: compute maximal key-foreign key
joins

Compute a sample S

Then we can obtain a sample for any sub-
join by projecting S
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Example

R(Aa B9 C)a S(Ba Da J)a T(ga Ea F)9 U(Qa Ga H)
Join synopsis: sample X of R =< S>=T>U

SELECT count(*)
FROM S, U
WHERE S.D =U.D and S.J=‘a’ and U.G=*b’

Compute 2° = Il py g 5(Z)
This 1s an unbiased sample of S < U [WHY ??77]

Evaluate query on X’ =¥ 12 tuples
Estimate query size: 12 * |2’ |/ |S| [WHY ?7%}




Example

R has N=1,000,000,000 tuples

Compute (offline) a sample X of size n =500

SELECT count(*)
FROM R

WH

HRE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample =» 8 tuples
Thus E[p] = 8/500 =0.0016
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[Babock et al. SIGMOD’2005]

Robust Query Optimization

Traditional optimization:
* Plan 1: use index

* Plan 2: sequential scan

* The choice between 1 and 2
depends on the estimated selectivity

 E.g. for p <0.26 the Plan 1 is better
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[Babock et al. SIGMOD’2005]

Robust Query Optimization

The performance/predictability tradeoft:

* Plan 1: use index
— If it is right = ©
— If it is wrong = ® MUST AVOID THIS !!

 Plan 2: sequential scan = ©

Optimizing performance may result in
significant penalty, with some probabililty
56




[Babock et al. SIGMOD’2005]

Query Plan Cost

50 - 08
:2 | o [\ ------ Plan 1
| > 06 Plan 2
5 35 ;
3 30 - ; g 0
§ 25 - Z04-
3 R )
g 20 - Plan 1 § 03 -
15 - Plan 2 £ oo
104
5] 0.1
0 ‘ T T T T O vvvvv g . — s
20 25 30 35 40 45
0% 20% 40% 60% 80% 100% i
Query Selectivity Execution Cost
Figure 1: Execution Costs for Two Hypothetical Plans Figure 2: Probability Density Function for Execution Cost
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[Babock et al. SIGMOD’2005]

Cumulative Distribution

User chooses confidence level T%.

100%

90% .
B0% = =-mmmmmmmemmmmimm e L — -
70% "

ek Plan 2
N MR 4 e —— -

40% -
30%
20%
10%

0%

Cumulative Probability

20 25 30 35 40
Execution Cost

T%=50% =» plans are chosen by expected cost;
T%=80% =» plans chosen by their cost at cumulative prob of 8095



[Babock et al. SIGMOD’2005]

The Probabilistic Database

R has N=1,000,000,000 tuples
Compute (offline) a sample X of size n =500

SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample =» 8 tuples
Thus E[p] = 8/500 =0.0016

@t is the distribution@ 59




[Babock et al. SIGMOD’2005]

The Probabilistic Database

R has N=1,000,000,000 tuples

Compute (offline) a sample X of size n =500
A fraction k = 8 of X satisfy the predicate
An unknown fraction p of R satisty the pred.
Denote (z) = density function for p:

Pri(a <p < b)|X] = [, f(2|1X)dz.
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[Babock et al. SIGMOD’2005]

The Probabilistic Database

Bayes’ rule:

f(:: ‘\') — lpr[‘){l — ~]f(3)
| Pr(X|p = v]f(y)dy

Next, compute each term (in class)
What 1s Pr[ X | p=z] ? Assume X= w/ replacement
Whas is “the prior” {(z) ?
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[Babock et al. SIGMOD’2005]

The Probabilistic Database

zk—lf‘.?(l . z)n—k—l/‘.?

z| X) =
f( I ) f()l yk_l/g(_y L 3)“—k-1./'2d'y
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[Babock et al. SIGMOD’2005]

The Probabilistic Database

(8]
o
]

Jeffreys Prior

N
(&)
]

------ Uniform Prior

N
o
]

Probability Density
o

10% 15% 20%
Selectivity

Figure 4: Sample Size Matters, Prior Doesn’t
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