Topics in Probabilistic and Statistical Databases

Lecture 8: Implicit Probabilistic Data

Dan Suciu University of Washington

Equivalences

- Let $A, B \in STRUCT[\sigma]$
- They are *elementary equivalent*, A ≡ B,
 if ∀ φ, A ⊨ φ iff B ⊨ φ
- They are *isomorphic*, $A \cong B$, if there exists a isomorphism $f : A \to B$

Equivalences

- If $A \cong B$, then $A \equiv B$ [why?]
- There are A, B s.t. A ≡ B and not A ≅ B
 [give examples in class]
- If A is finite and A = B then $A \cong B$ [why ?]

Partial Isomorphism

- Let $\underline{\mathbf{c}} = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ be the constants in σ
- Let A, B be two structures in STRUCT[σ]

Definition A partial isomorphism is given by $\underline{a} = (a_1, ..., a_m)$ and $\underline{b} = (b_1, ..., b_m)$ s.t. the structures ($\underline{a}, \underline{c}$) and ($\underline{b}, \underline{c}$) are isomorphic.

Ehrenfeucht-Fraisse Games

Given two structures A, B Two players: **spoiler** and **duplicator** play k rounds

Round i (i = 1, ..., k):

- 1. Spoiler picks a structure A or B
- 2. Spoiler picks an element in that structure $a_i \in A$ or $b_i \in B$
- 3. Duplicator responds by picking an element in the other structure, $b_i \in B$ or $a_i \in A$

Duplicator wins if \underline{a} , \underline{b} is a partial isomorphism

Ehrenfeucht-Fraisse Games

- If duplicator has a winning strategy in k rounds then we write A ≡_k B
- Note: if $A \equiv_n B$ and k < n then $A \equiv_k B$

Quantifier Rank

The *quantifier rank* of a formula φ is defined inductively:

$$qr(t_1 = t_2) = qr(R(t_1, \dots, t_n)) = 0$$

$$qr(\phi_1 \land \phi_2) = max(qr(\phi_1), qr(\phi_2))$$

$$qr(\exists x.\phi) = 1 + qr(\phi)$$

etc

• $FO[k] = all \text{ formula } \phi \text{ s.t. } qr(\phi) \le k$

Ehrenfeucht-Fraisse Games

Theorem The following two are equivalent:

- A and B agree on FO[k]
- $A \equiv_k B$

We omit the proof

For now, let's start playing the game !

Games on Sets

• Let $\sigma = \emptyset$ (i.e. no relation names, no constants), and assume $|A| \ge k$, $|B| \ge k$.

Theorem
$$A \equiv_k B$$
. [why ?]

Corollary EVEN is not expressible in FO when $\sigma = \emptyset$

Games on Linear Orders

Theorem Let k > 0 and L_1 , L_2 be linear orders of length $\ge 2^k$. Then $L_1 =_k L_2$.

Proof 1

Define:

- $a_{-1} = \min(L_1), \ a_0 = \max(L_1)$
- $b_{-1} = \min(L_2), \ b_0 = \max(L_2)$

Let $\underline{a} = (a_{1}, a_{0}, a_{1}, \dots, a_{i}), \quad \underline{b} = (b_{1}, b_{0}, b_{1}, \dots, b_{i})$ Duplicator plays such that $\forall j, l$:

- If $d(a_j, a_l) < 2^{k-i}$ then $d(a_j, a_l) = d(b_j, b_l)$
- If $d(a_j, a_l) \ge 2^{k-i}$ then $d(b_j, b_l) \ge 2^{k-i}$
- $\bullet \ a_j \leq a_l \text{ iff } b_j \leq b_l \\$

Why can the duplicator play like that?¹¹

Proof 2

Remark: if $L_1 \equiv_k L_2$ then the duplicator has a winning strategy where it responds with $\underline{\min}(L_2)$ to $\underline{\min}(L_1)$, and with $\underline{\max}(L_2)$ to $\underline{\max}(L_1)$, and vice versa. [why ?]

Lemma If
$$L_1 \leq a \equiv_k L_2 \leq b$$
 and $L_1 \geq a \equiv_k L_2 \geq b$
then $(L_1, a) \equiv_k (L_2, b)$

[how does this help us prove the theorem ?]

EVEN

Corollary EVEN is not expressible in FO(<)

[why ?]

Corollary Finite graph connectivity (CONN) is not expressible in FO

[proof in class]

Random Graphs

- J. Spencer, *The Strange Logic of Random Graphs*
- Binary relation R
 - Classical random graphs: R = undirected
 - We: R = directed (this is standard in databases)

Random Graphs

- Let n > 0, and p = p(n) a number in [0,1]
 Examples: p(n) = ¹/₂, or p(n) = 1/n² or, p(n) = 1/n
- G(n,p) = probability space over graphs with:
 Nodes = {1,2,...,n}
 - Each edge has probability p(n)
- Main problem: study $\lim_{n\to\infty}\mu_n(A)$

Example

- Let A = "the graph R has a triangle"
- Equivalently: $A = \exists x. \exists y. \exists z. R(x,y), R(y,z), R(z,x)$
- Question: What is $\lim_{n\to\infty}\mu_n(A)$?

Example

- Let A = "the graph R has a triangle"
- Equivalently: A = ∃x.∃y.∃z.R(x,y),R(y,z),R(z,x)
- Question: What is $\lim_{n\to\infty}\mu_n(A)$?
- Answer: 0 if $p \ll 1/n$, and 1 if $p \gg 1/n$

Erdos and Reny's Random Graphs

Now let p = p(n) be a function of n

Theorem [Erdos&Reniy:1959] For any monotone A, \exists a threshold function t(n) s.t.: if p(n) \ll t(n) then $\lim_{n\to\infty}\mu_n(A)=0$ if p(n) \gg t(n) then $\lim_{n\to\infty}\mu_n(A)=1$

0/1 Laws

• FO has a 0/1 law on G(n,p) if for any sentence A, $\lim_{n\to\infty} \mu_n(A)=0$ or 1

0/1 Laws

- If G(n,p) has a 0/1 law, denote T its *theory*: $-T = \{A \mid \lim_{n \to \infty} \mu_n(A) = 1\}$
- T is a complete theory [WHY ???]
- T has no finite models [WHY ???]
- Goals:
 - Axiomatize T
 - Describe its countable model(s)

Example

- Consider $p = \frac{1}{2}$, hence $G(n, \frac{1}{2})$. - T = {A | $\lim_{n \to \infty} \mu_n(A) = 1$ }
- Q: What is a finite axiomatization of T?
- Q: What are its countable models ?

Example

- Consider $p = \frac{1}{2}$, hence $G(n, \frac{1}{2})$. - T = {A | $\lim_{n \to \infty} \mu_n(A) = 1$ }
- Q: What is a finite axiomatization of T?
- A: the extension axioms [Alice's restaurant]
- Q: What are its countable models ?
- A: only one, the Rado graph (random graph)

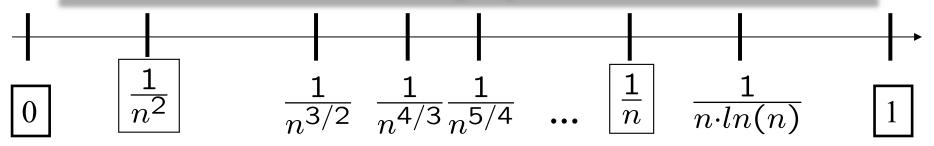
Threshold Functions v.s. 0/1 Law

- Now consider properties A that are in FO
- Suppose p(n) is such that:
 - For every FO formula A, $\lim_{n\to\infty} \mu_n(A)$ exists
 - For every monotone A, p(n) is not its threshold
- Then: the positive part of FO has 0/1 law
- What to expect:
 - FO admits 0/1 laws *except* at threshold functions

[Erdos&Reny:1959; Spencer:2001]

The Evoluation of Random Graphs

The tuple probability p(n) "grows" from 0 to 1. How does the random graph evolve ?

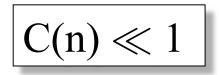


Remark: $C(n) = E[Size(R)] \simeq n^2 p(n)$

The expected size C(n) "grows" from 0 to n^2 . How does the random graph evolve ?

The Void

$$p(n) \ll 1/n^2$$



Contains almost surely	Does not contain almost surely
(nothing)	

The graph is empty

0/1 Law holds

The Void

• Q: what is the theory T?

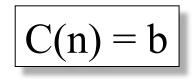
• Q: what are the countable models ?

The Void

- Q: what is the theory T?
 - For every k: "there exists k vertices"
 - $\forall x. \forall y. not(R(x,y))$
- Q: what are the countable models ?
 - The graph with countable nodes, empty edges
 - Aleph0-categorical !

First Threshold Function

$$\mathbf{p}(\mathbf{n}) = \mathbf{b}/\mathbf{n}^2$$

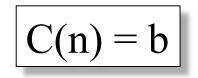


Q: threshold function for which A?

No 0/1 Law

First Threshold Function

$$\mathbf{p}(\mathbf{n}) = \mathbf{b}/\mathbf{n}^2$$



Q: threshold function for which A?

A: $\exists x. \exists y. R(x,y)$

No 0/1 Law

On the k'th Day

$1/n^{1+1/(k-1)} \ll p(n) \ll 1/n^{1+1/k}$	$n^{1-1/(k-1)} \ll C(n) \ll n^{1-1/k}$
Contains almost surely	Does not contain almost surely
trees with \leq k edges	trees > k edges
	cycles

The graph is disconnected 0/1 Law holds 30

On the k'th Day

• Q: what is the theory T?

• Q: what are the countable models ?

On the k'th Day

- Q: what is the theory T?
 - Every tree with at most k+1 vertices occurs at least r (> 0) times
 - No cycle of size s, for all s > 2
 - No connected components with > k+1 vertices- [WRITE ALL THIS IN FO !!]
- Q: what are the countable models ?
 - Infinite copies of each tree with $\leq k+1$ vertices
 - Aleph0-categorical !

k'th hreshold Function

 $p(n) = b/n^{1+1/k}$

$$C(n) = b*n^{1-1/k}$$

Q: threshold function for which A?

No 0/1 Law

k'th hreshold Function

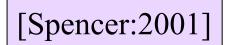
$$p(n) = b/n^{1+1/k}$$

$$C(n) = b^{n_{1-1/k}}$$

Q: threshold function for which A?

A:
$$\exists x_0 \dots \exists x_k$$
. $R(x_0, x_1), \dots, R(x_{k-1}, x_k)$

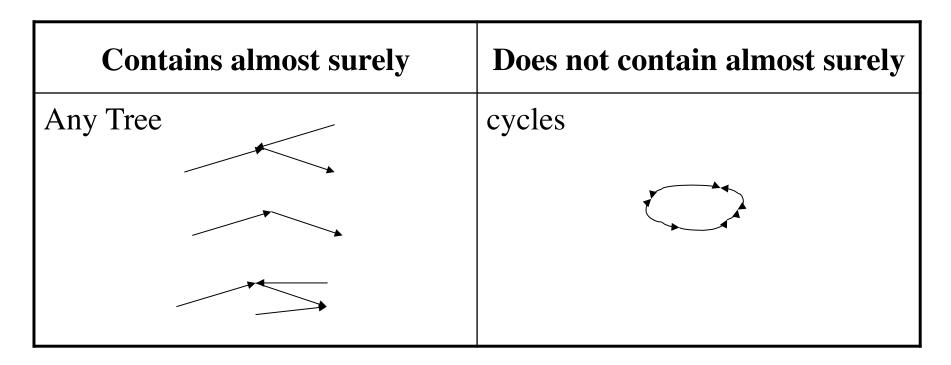
No 0/1 Law



On Day ω

$$1/n^{1+\epsilon} \ll p(n) \ll 1/n, \quad \forall \epsilon > 0$$

$$n^{1-\varepsilon} \ll C(n) \ll n, \quad \forall \ \varepsilon > 0$$



The graph is disconnected 0/1 Law holds 35

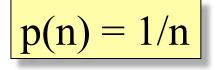
On Day ω

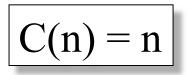
• Q: what is the theory T?

- No cycles

- Any finite tree occurs at least r (> 0) times
- Q: what are the countable models ?
 - Infinite copies of each tree with $\leq k+1$ vertices
 - May or may not have infinite trees !
 - No longer Aleph0-categorical !
 - But any two models are *elementary equivalent*

ω 'th hreshold Function



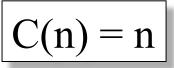


Q: threshold function for which A?

No 0/1 Law

ω'th hreshold Function





Q: threshold function for which A?

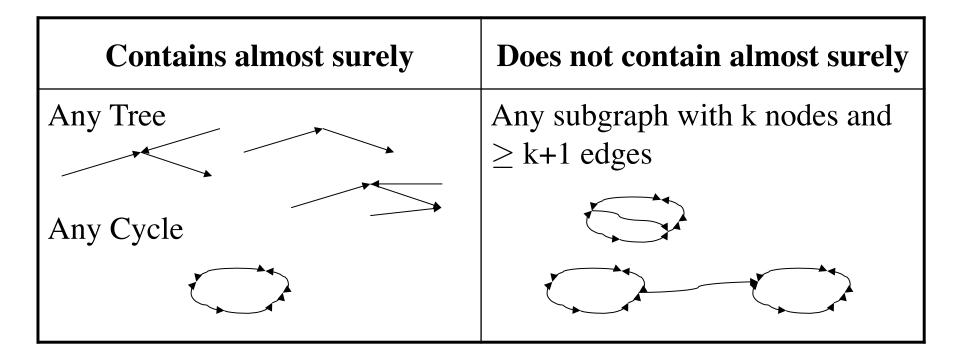
A: e.g. triangle: $\exists x. \exists y. \exists z. R(x,y), R(y,z), R(z,x)$

No 0/1 Law

Past the Double Jump (1/n)

 $1/n \ll p(n) \ll \ln(n)/n$

 $n \ll C(n) \ll n \ln(n)$



The graph is disconnected 0/1 Law holds ³⁹

Past the Double Jump (1/n)

- The theory T:
 - Forall k, r: at least r cycles of length k
 - Forall r, finite tree t: at least r copies of t
 - Forall k: no k vertices with k+1 edges
 - Forall k, d, s: not (exists cycle of length k, node x at distance s from the cycle, with degree < d)
- Countable models:
 - Countable copies of each finite tree
 - Countable copies of: cycle k + infinite tree
 - May or may not have infinite trees

The threshold of connectivity

$$p(n) = \ln(n)/n + c/n$$

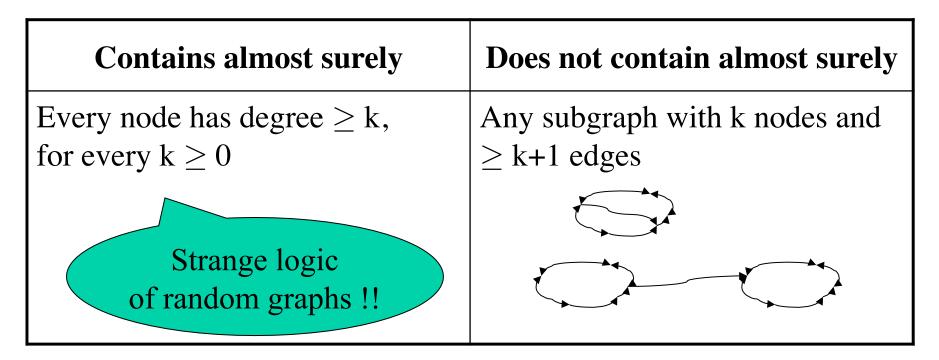
Theorem [Erdos&Renyi] lim Pr[G(n,p) is connected] = exp(-exp(-c))

No 0/1 Law

Past Connectivity

 $\ln(n)/n \ll p(n) \ll 1/n^{1-\epsilon}, \forall \epsilon$

 $n \ln(n) \ll C(n) \ll n^{1+\epsilon}, \forall \ \epsilon$



The graph is connected ! 0/1 Law holds 42

Past Connectivity

- The theory T:
 - For every k: there do not exists k verifices with at least k+1 edges
 - All vertices have at least d neighbors
 - For all r, k: there are at least r copies of a cycle of length k
- The countable models:
 - Unicycles followed by infinite trees
 - May or may not have infinite trees

Big Graphs

$$p(n) = 1/n^{\alpha}, \ \alpha \in (0,1)$$

$$C(n) = n^{2-\alpha}, \alpha \in (0,1)$$

 α is irrational \Rightarrow

0/1 Law holds

 α is rational \Rightarrow

0/1 Law does not hold

Fagin's framework: $\alpha = 0$

p(n) = O(1)

0/1 Law holds

$$C(n) = O(n^2)$$

44