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Inversion-Free Queries

Stronger: there exists a polynomial size expression
with + and * computing p(q)




Hierarchical Queries with Inversions

HO — R(X),S(X,Y),S(X,,y,),T(Y’)

o

There 1s an “inversion’:
sg(x) D sg(y), sg(x’) C sg(y’) and S(x,y) unifies with S(x’,y’)
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X1Y1 VX Y1 VX Y3 V...

q = R(x),5(x,y) v S(x",y"), T(y")

Proof

Reduction from POSITIVE-PARTITIONED 2DNF

Let ¢, = #satisfying assignments where exactly k clauses are false

The problem 1s to compute ¢, +¢; + ... + ¢,
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OPEN: if S has
probabilities 0.5

|

1-p(q) = c; 1727 (1-v) + ¢, 1/20 (1-v)2 + ... + ¢, 1/27 (1-v)™

Chose m different values for v; solve Vandermonde system




Longer Inversions

H, =
R(X), So(x,y),
So(up,v1),S1(uy,vy),
S1(U2,v),5,(Uy,V5),....
Sie1 (W Vi), S (U, V),

Sk(X,9y9)9 T(Y’)

Proof: more involved, but same main i1dea



Unifications

Let g, g’ be two subgoals.
Rename variables s.t. Vars(g) M Vars(g’) =0

Don’t

unif}/ \ M /{nAify

Don’t

R(x), S(x,y,a), S(y,b,x),S(u,c,v)




Simple Fact

Proof: g and q’ are independent probabilistic events

q=R(x.y).S(y:a)  q =T(u,v),5(v,b)
49" = R(x,y).5(y,a),T(u,v),S(V,b)



Inclusion/Exclusion Formula

q= dx. {(x)

Here f(X) i1s a query, and x
1s one of its variables

Here {(T) means {(a,), f(a,), ..., f(a,), if T={a,, a,, ..., a_}

How does this generalize to q =3 x,. f(x,), Ix,. {(x,), ...
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Example

Compute P(q), where:

q = R(x), 5(x), S(y), T(y) = f(x), g(y)

We would like to commute p with f,g, but they are dependent. ..,




Example

Idea: For each T1, T2, define U3=T1 N T2, UI=T1-U3, U2=T1-U3

() ™
R s

Where f(x) = R(x),5(x), g(y) =S(y),T(y), h(z) =R(2), S(2), T(z)




Sums (1/2)

* We have ensured that all factors are independent

 Hence terms of the form:
p(fi(T)E(T,)...)
become
Hizl,k IL.e T, g:(a)
where: gi(x) = p(f;(x))
 Now we examine how to compute sums of such

terms, when Ty, ..., T, range over subsets of A,
and are subject to predicates
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Sums (2/2)

Exercise: t
ACTCISE. COMpULe 21,1..1, 81(T)) &(T5) g5(T5)

Answer | [T,ea (1+g,@)(1+ gy@)(1 + gy(a))

ETI T T3:T, NT;=2 2:(T)) 8,(T,) g5(T5)

[loea (I +g/(a)+ gy(a) + gs(a))

ETl NT,=2,Ty N T3=2, T, C ,81(T1) 8(T,) g5(T5) g4(T,)

[laea (1 +gi(a) + gy(a) + gy(a)g,(a) + g;(a) + g,(a)g;(a))




Challenge

 Sums are difficult

— They are in PTIME, but they are so complex
that we can’t do on paper even the simplest
examples

* Moreover: mismatch with relational algebra

What is a better abstraction to compute
inversion free queries ? 13



Quiz

* Compute the following query (up to sum
eXpressions):

q = R(x), S(x,y), S(x7,y"), T(X")

* Does this work for the following too ?

q = R(x), S(x,y), S(x7y"), T(y')
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Where we are (1/2)

+ Query q =f,(x,), ..., f(x;)
* Each x11s a root (in the sg-ordering) variable in
fi (WHY DO WE NEED ?)

 Whenever a subgoal 1n fi unifies with one in fj,
that unification results in x1=x] (WHERE DO
WE NEED ?)
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Where we are

» Then p(q) = big sum over (HOW MANY?) Ut’s

Now p(f(U,)...) 1s a probability of independent events;

hence: = p(f,(2,))* p(f,(ay)* . ..
Need to compute a sum.

For each constant a, fj(a;) 1s another query: recurs. g



Coverage

q = R(x,b),R(a,y)

We have a problem, because x does not unify with y, but with

a constant

We don’t like that in the summation: it makes the
transition from the T1’s to the Uj’s too difficut.
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Coverage

q = R(x,b),R(a,y)

Add predicates x=a v x=a and also x=a v x=a

q=R(a,b) v f, =R(a,b)
R(X,b),R(a,b),X;ﬁa \Y fl(X) — R(X,b),X?ﬁa
R(a,y).y=b v f,(y) = R(a.y).y=b

R(x,b), R(a,y), x=a,y=b

q-= flfz v fofz v fofl v fO WHAT NEXT for p(q) ?,



Coverage

« How i1s the root variable here ?

q = R(x,y), R(y,X), S(X,y)




Coverage

* Add predicates x<y, x=y, x>y
* Break ties using <

q = R(x,y), R(y.x), S(X,y) /Rogt —
fO(X) - R(X,X), S(X,X) :
£ (%,Y) = ROGY)L.R(%,X), S(x,y), X<y~ Rootvar=x
B00Y) = REGYLRG:X), SO6Y), Y = gvar=y
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Coverage

* The last thing we don’t like:
q = R(x,x,y), R(u,v,v)

 When we unify there 1s a “side-effect”: x=y

* Easy to avoid: add predicates x=y, x#y etc.
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General Algorithm (1/2)

* Add predicates =#, or <, =, >
* Query 1s now “covered”:

—q=clv c2v ...

— Each ci = several “factors” (connected
components)

* Each unifier:
— maps variables only to variables (not constants)
—1s 1-to-1
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Inversions

Construct the graph:
* Nodes: (f, x, y) with f €E F, x, y € Vars(f)

« Edges: (f,x,y) —= (f’, X’, y’) s.t. there exists an
MGU mapping x = x’andy =y’

o(y)2 sg(z)
sg(x) C sg(y) >




General Algorithm (2/2)

 [If there are no inversions, pick a unique root
variable 1n each factor

* We have what we asked for: every unifier
maps root variable to root variable

e Do summation...
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R(z)S1(z,v,v)

S1(u, v, w), Sa(u, v, w)
52 (_li_, xla y_l)a T(y,)

qci

qca

R(z),S1(z,y,y),x # v,

S1(u,v,v), 52(u,v,v),u # v
Sa(z',2",y), T(¥), 2" # ¥
R(l‘), 51($,y,y),l‘ # Y

Sl(ﬁa usy)s SQ(E’ ’U-,!), u 7é w
Sa(2o 2 ¥ T(W) 2 #

[llustrates the need for
a strict coverage. The
unification path form-
ing an inversion in g in
the trivial cover (which
1S non-strict) is inter-
rupted when we add #
predicates to make the
cover strict.
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R(IL’I, l‘?.), S(ﬂa CCQ,E, y
S(xl,xla$2a :L'Q)
Szl 2"y, v), T(Y)

§
A

qc

R(z,z),5(z,z,y,9),
S(z,z,z,z),z ;Zy

Sl 2",y ¥).T(), 2" #v
R(z,z),S(z,z,z,x),

Sz, 2"y, v), T(y). 2" # vy

This illustrates the need
to minimize covers.
The inversion disap-
pears after minimizing
gc.
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R(z1,22),5(21, 22,9,y
S(z1, 22,71, 22)

S(z’, 2", v, v2), T (y1. 4

gqci

) gea

R(z,z), S(z,7,3,9),% # Y
Sl 2",y v), T, v). 2" #9
S(z,z,z,x)

R(z,z), S(z,z,z, ),

Sz, 2",y ¥), T, y). 2" #

This shows that we
should not consider
redundant coverages.
There i1s an inversion
in gcy, but this cover is
contained in gca so it
is redundant and after
we remove gcp from
the coverage there is no
INOre inversion.,
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