Topics in Probabilistic and Statistical Databases

Lecture 4: Dicthotomy Theorems

Dan Suciu University of Washington

1

Before we start...

• Kate will give an update on OWA

TABLE II EXAMPLE OF MISSING PROBABILITIES				
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES	
Jon Smith	Тоу	0.3 [Great yes] 0.4 [Good yes] 0.2 [Fair *] 0.1 [* *]	0.3 [\$30–34K] 0.5 [\$35–39K] 0.2 [*]	

TADLE U

TABLE III Relation for Project Examples

NAME	DIV PRICE	RATING
P.J.	0.3 [10 200]	0.9 [AAA]
	0.2 [20 250]	0.1 [AA]
	0.2 [10 250]	
	0.1 [0 *]	
	0.1 [* 100]	
	0.1 [* *]	
CONTI	1.0 [0 50]	0.5 [BBB]
		0.5 [CCC]

Brief review...

- What are the three different definitions for the complexity of the query evaluation problem ?
- What is #P ?

A Probabilistic Database Design Quiz

- You need to store data extracted from conference Websites
- Extractor has two phases:
 - A classifier checks if the Webpage is about a conference, and returns a confidence c in (0,1]
 - A conference-name extractor, returns a name with confidence p
 - A pc-chair extractor, returns a person name, with confidence q

A Probabilistic Database Design Quiz

URL	Conf	Р	URL	Chair	Р
U1	SIGMOD	cl*pl	U1	Kossman	c1*q1
U1	SIGCOM	c1*p2	U2	Gehrke	c2*q2
U2	VLDB	c2*p3	U2	Milo	c2*q3

There are correlations ! Represent them with I/D-tables only. $_{7}$

Problem Statement

- Given:
 - A disjoint/independent probdb PDB
 - A Boolean conjunctive query Q
- Compute the probability Q(PDB)

Three Theorems

- Case 1: CQ¹ on independent databases
 - Review: Hierarchical \rightarrow PTIME, non-h \rightarrow #P-hard
 - Today: extensions to FDs, deterministic relations
- Case 2: CQ^1 on D/I databases
 - Today in class
- Case 3: CQ on independent databases
 - Start today, continue next time

Case 1: CQ¹+independent

- Review hierarchical queries, safe plans in class
- Review the expression-algorithm

FDs: Worlds v.s. Representation $Product^p$

prod	price	color	shape	р
Gizmo	20	red	oval	$p_1 = 0.25$
		blue	square	$p_2 = 0.75$
Camera	80	green	oval	$p_3 = 0.3$
		red	round	$p_4 = 0.3$
		blue	oval	$p_5 = 0.2$
IPod	300	white	square	$p_6 = 0.8$
		black	square	$p_7 = 0.2$

In each possible world: prod \rightarrow price, color, shape

In the representation: $\text{prod} \rightarrow \text{price}$

11

FDs at the Representation Level

q := R(x), S(x,y), T(y)

Suppose $x \rightarrow y$ in S(x,y) in the representation

What is the complexity of this query ?

[Dalvi&S'VLDBJ'2007, Olteanu'ICDE2009]

FDs at the Representation Level

q := R(x), S(x,y), T(y)

Suppose $x \rightarrow y$ in S(x,y) in the representation

"Reduce" R(x) to R(x,y)

$$q := R(x,y), S(x,y), T(y)$$

Now it is hierarchical

[Dalvi&S'VLDBJ'2007, Olteanu'ICDE2009]

FDs at the Representation Level

q(x) := R(y), S(x,y,z), T(z)

Suppose $x \rightarrow y$ in S(x,y) in the representation

What is the complexity now?

FDs at the Representation Level

Theorem Let q be a query over a schema with FDs at the representation level. Let q' be the "reduced" query (chase ?). Then the evaluation problem of q is reducible in PTIME to the evaluation problem of q', and vice versa.

Proof in class. How does this give us a dichotomy theorem ?

Deterministic Relations

- Now add deterministic relations (in class)
 Notation: R^p = probabilistic, R=deterministic
- What is the complexity of the following queries ? Give theorem in class

q :- $R^{p}(x)$, S1(x,u), S2(u,v), S3(v,y), $T^{p}(y,z)$

q :- $R^{p}(z,x)$, S1(x,u), S2(u,z),S3(z,v), S4(v,y), $T^{p}(y)$

q :- $R^{p}(z,x)$, S1(x,u), S2(u,z), S3(z,v), S4(v,y), $T^{p}(z,y)$

16

Case 2: CQ¹+Disjoint/independent

- Dichotomy: in [Dalvi et al.'06,Dalvi&S'07]
- Some safe plans also in [Andritsos'2006]
- CQ¹ (conjunctive queries, no self-joins)
- Independent/independent tables are OK

```
Theorem Forall q \in CQ^1
q has a safe plan and is in PTIME, OR
q is #P-hard
```

Finding Safe Plans

Algorithm: fi	ind a Safe P	lan
---------------	--------------	-----

- 1. Root variable $u \rightarrow \Pi^{i}_{-u}$
- 2. Variable u occurs in a subgoal with constant keys $\rightarrow \Pi^{D}_{-u}$
- 3. Connected components \rightarrow Join
- 4. Single subgoal \rightarrow Leaf node

 $q(y) := R(\mathbf{x}, y, z)$

У	Р			
b	1-(1-p1-p2)(1-p3-p4)			
x	y P			
a1	b	p1+p2		
a2	b	p3+p4		

<u>x</u>	у	Z	Р
a1	b	c1	p1
	b	c2	p2
a2	b	c1	р3
	b	c2	p4

18

Definitions (in class)

- q :- g₁, ..., g_k
- $Sg(q) = \{g_1, ..., g_k\}$
- Vars(g_i) = all variables of gi
- KVars(g_i) = all variables in key positions

Algorithm Safe-Eval

- From [Dalvi&S'2007]
- Show on the whiteboard

- Call a query safe is the algorithm succeeds
- What are the *unsafe* queries ?

Some Unsafe Queries

$$hd1 = R(\underline{\mathbf{x}}), S(\underline{\mathbf{x}}, \underline{\mathbf{y}}), T(\underline{\mathbf{y}})$$

$$hd2 = R(\mathbf{x}, y), S(\mathbf{y})$$

hd3 = R(
$$\underline{\mathbf{x}}$$
,y), S(x, $\underline{\mathbf{y}}$)

Variants: hd2⁺, hd3⁺ (on the whiteboard)

Plan for Proving Dichotomy

Step 1:

• Show that hd1, hd2, hd3 are #P-hard

Step 2:

• Show that every unsafe query can be "rewritten" to hd1, hd2, or hd3

• Show (review) in class the hardness of

hd1 = R(
$$\underline{\mathbf{x}}$$
), S($\underline{\mathbf{x}}, \underline{\mathbf{y}}$), T($\underline{\mathbf{y}}$)

• Show in class the hardness of

$$hd2 = R(\mathbf{x}, y), S(\mathbf{y})$$

Then show $hd2^+$

Show in class the hardness of

hd3 = R($\underline{\mathbf{x}}$,y), S(x, $\underline{\mathbf{y}}$)

Then show $hd3^+$

- The rewrite rule q → q' (on the whiteboard)
- q is a <u>final</u> query if forall q' s.t. q→ q', q' is safe
- Prove:
 - If q is unsafe, then $\exists q'$ final s.t. $q \rightarrow^* q'$
 - The only final queries are hd1, hd2⁺, hd3⁺
 - This completes the dichotomy (why ?)

The Complexity of the Complexity

- Deciding if a query is hierarchical is in AC⁰ (in class)
- Deciding if a query is safe is PTIME complete (in class)

Case 3: CQ, independent tables

- Allow selfjoins
- But restrict again to independent tables

Does the query have a safe plan ?

$$q(x) := R(a, x, y), R(b, x, z), S(y, z, u)$$

(a, b = constants)

Does the query have a safe plan ?

Does the query have a safe plan ? Note: no "safe plans" are known ! PTIME algorithm

Note: no "safe plans" are known ! PTIME algorithm for an inversion-free query is given in terms of expressions, not plans. Example:

q := R(a,x), R(y,b)

 $p(q) = p(R(a,b)) + (1-p(R(a,b))(1-(1-\prod_{y \in Dom, y \neq a}(1-p(R(y,b))))(1-\prod_{x \in Dom, x \neq b}(1-p(R(a,x)))))$

Open Problem: what are the natural operators that allow us to compute inversion-free queries in a database engine ?

Does the query have a safe plan ?

Find movies with high reviews from Joe and Jim:

 $\begin{array}{ll} q(x):-\operatorname{Movie}(x,y), \operatorname{Match}^p(x,r), & \operatorname{Review}(r,Joe,s), & s > 4 \\ & \operatorname{Match}^p(x,r'), & \operatorname{Review}(r',Jim,s'), & s' > 4 \end{array}$

Match^p = probabilistic, tuple independent Movie, Review = deterministic

The #P-hard Queries

Hierarchical queries with "inversions":

The **#P-hard Queries**

A query with a long inversion:

The **#P-hard Queries**

Sometimes inversions are exposed only after making a copy of the query

Case 3: CQ, independent tables

Let q be hierarchical

 $x \subseteq y$ denotes: x is above y in the hierarchy

x = y denotes: $x \subseteq y$ and $x \subseteq y$

Definition An inversion is a chain of unifications:

 $x \supset y$ with $u_1 \equiv v_1$ with ... with $u_n \equiv v_n$ with $x' \subset y'$

Theorem Forall $q \in CQ$:

If q is non-hierarchical, or has an inversion* then it is #P-hard Otherwise it is in PTIME

*without "eraser": see paper.

Query		Com- plexity	Why
R(a,x), R(y,b)	a • b	PTIME	
R(a,x), R(x,b)	a b	PTIME	
R(x,y), R(y,z)		#P	Inversion
R(x,y),R(y,z),R(z,u)		#P	Non- hierarchical
R(x,y),R(y,z),R(z,x)		#P	Non- hierarchical
R(x,y),R(y,z),R(x,z)		#P	Non- hierarchical

History

- [Graedel, Gurevitch, Hirsch'98]
 - L(x,y),R(x,z),S(y),S(z) is #P-hard
 This is non-hierarchical, with a self-join
- [Dalvi&S'2004]
 - R(x),S(x,y),T(y) is #P-hard
 This is non-hierarchical, w/o self-joins
 - Without self-joins: non-hierarchical = #P-hard, and hierarchical = PTIME
- [Dalvi&S'2007]
 - <u>All</u> non-hierarchical queries are #P-hard

Discussion

- Dichotomy theorems
 - Remaining open problems ?
 - Extensions ?
- What role (if any) do 'safe plans' in practice ?
 - Only some queries have safe plans, so why bother ?