Topics in Probabilistic and Statistical Databases

Lecture 10: Sampling and Review

Dan Suciu University of Washington

References

- Towards Estimation Error Guarantees for Distinct Values, Charikar, Chaudhuri, Motwani, Narasayya, PODS 2000
- Sampling-Based Estimation of the Number of Distinct Values of an Attribute, Haas, Naughton, Seshadri, Stokes, VLDB 1995

Distinct Values

- Problem definition:
- Data set with n tuples
- Column of interest has values {1,...,D}
- Let $n_i =$ number of times value i occurs
- $n = \sum_{i=1,D} n_i$
- Goal: estimate D, denote the estimate \check{D}
- Error is \check{D}/D , or D/\check{D} , whichever is > 1

Negative Result

Theorem [Charikar'00] Consider any (possibly adaptive and randomized) estimator Ď for the number of distinct values D that examines at most r rows in a table with n rows. Then, for any $\gamma > \exp(-r)$, there exist a choice of the input data such that with probability at least γ :

 $\operatorname{error}(\check{D}) \ge \operatorname{sqrt}((n-r)/2r * \ln(1/\gamma))$

Proof in class

Estimators

- Goodman's unbiased estimator
- Many specialized estimators from the statistics literature (won't discuss; see [Haas'95])
- GEE [Charikar'95]; will discuss because it matches the lower bound

Notations

- Select random sample of size r
- d=number of distinct values in the sample
- f_i=number of distinct values that occur exactly i times
- Thus: $d = \sum_{i=1,r} f_i$ $r = \sum_{i=1,r} i^* f_i$

Goodman's Unbiased Estimator

Goodman proved in 1949 that:

• If r ≥ max(n₁, ..., n_D) then there exists only one unbiased estimator:

$$\widehat{D}_{\text{Good}} = d + \sum_{i=1}^{n} (-1)^{i+1} \frac{(N-r+i-1)! (r-i)!}{(N-r-1)! r!} f_i$$

- If r < max(n₁, ..., n_D) then there exists no unbiased estimator
- Very unstable, with errors of 20,000%

The GEE Estimator

Definition The GEE is:
$$\check{D} = \operatorname{sqrt}(n/r) f_1 + \sum_{i=2,r} f_i$$

Theorem. Expected ratio error is O(sqrt(n/r))

Review of this Course

Three areas in Probabilistic and Statistical Databases

- Explicit probabilities
- Implicit probabilities
- Statistics

- "Classical" probabilistic databases
- Each tuple has a probability value
 - "maybe-tuple"
 - "x-tuple"
- Possible worlds semantics

- What are some key applications ?
- What is lineage and why is it important?

- Rule of thumb 1:
 - ProbDB = IncompleteDB + Probabilities
- Rule of thumb 2:
 - ProbDB = Disjoint/IndependentDB + Joins
- Rule of thumb 3:
 - GM Factorization = DB-normalization + probidentities

Query Evaluation is #P hard in general:

- General methods: Monte Carlo, OBDDs, ...
- Safe queries and safe plans
- Top k query answering

• Major Open Research Problems [IN CLASS]

- All tuples have the same probability
- What are the major differences from explicit probabilistic data ?

- Dense random graphs $- Pr(t) = \frac{1}{2}$
- Fagin's 0/1 law for FO

- For every sentence φ , lim Pr(φ) = 0 or =1

- "Theory of almost certain sentences" = ?
- "THE random graph" = ?

- Material random graphs: $- Pr(t) = \beta / n^{arity(R)}$
- Every conjunctive query has an explicit asymptotic formula:

 $- Pr(q) = C(q) / n^{exp(q)} + O(n^{exp(q)+1})$

- General Random Graphs: G(n,p) [WHAT IS THAT ?]
- Erdos and Renyi's theorem
- Random graphs $G(n, \beta/n^{\alpha})$:
 - Threshold values for α (no 0/1 laws):
 2, 1+1/2, 1+1/3, ..., 1+1/k, ... 1, [rationals], 0
 - Everywhere else: 0/1 Law for FO

• The major applications today:

• ... but great theory !

-?

• Research topics: [IN CLASS]

Data Statistics

• What is their main usage in database systems ?

Data Statistics

• Histograms

- Eqwidth, eqdepth, V-optimal

- Sampling
 - Sequential sampling techniques
 - Join synopses

Data Statistics

• Limitations of how data statistics are used today: [IN CLASS]

• Major research topics in data statistics: [IN CLASS]

Final Thoughts

- Computer Science in the past:
 Driven by better algorithms
- Computer Science today:
 - Driven by massive amounts of data
 - Processed with approximate methods
 - Data itself is often imprecise
- Computer Science tomorrow:
 - Probabilistic databases 😳