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Abstract

We review in this paper some recent yet fundamental results
on evaluating queries over probabilistic databases. While one can
see this problem as a special instance of general purpose probabilis-
tic inference, we describe in this paper two key database specific
techniques that significantly reduce the complexity of query evalu-
ation on probabilistic databases. The first is the separation of the
query and the data: we show here that by doing so, one can identify
queries whose data complexity is #P-hard, and queries whose data
complexity is in PTIME. The second is the aggressive use of pre-
viously computed query results (materialized views): in particular,
by rewriting a query in terms of views, one can reduce its complex-
ity from #P-complete to PTIME. We describe a notion of a partial
representation for views, show how to validated it based on the view
definition, then show how to use it during query evaluation.

1 Introduction

Probabilistic database are databases where the presence of a tuple, or the value
of an attribute is a probabilistic event. The major difficulty in probabilistic
database is query evaluation: the result of a SQL query over a probabilistic
database is a set of tuples together with the probability that those tuples be-
long to the output, and those probabilities turn out to be hard to compute. In
fact, computing those output probabilities is a special instance of probabilistic
inference, which is a problem that has been studied extensively by the Knowl-
edge Representation community. Unlike general purpose probabilistic inference,
in query evaluation we have a few specific techniques that we can deploy to speed
up the evaluation considerably.
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and a Gift from Microsoft.



The first is the separation between the query and the data: the query is
small, the data is large. Following Vardi [29], define the data complezity to the
be complexity of query evaluation where the query is fixed, and the complexity
is measured only in the size of the database. A number of results in query
processing over probabilistic databases have shown that for some queries the
data complexity is PTIME, while for others it is #P-hard: we review those
results in Sec. 3, following mostly [11].

The second is the ability to use materialized views. These are queries that
have been previously computed and whose results have been stored. Computing
the views could have been hard, and the system has spent considerable resources
to materialize them. However, once computed, the views can be used to answer
queries, if these queries can be answered in terms of the views [18]. Today’s
database systems routinely use materialized views on conventional databases:
indexes are a special case of materialized views, and so are join-indexes [26], and
today’s system can use arbitrary views during query processing [2]. However, in
probabilistic databases, views cannot always be materialized efficiently, because
it is difficult to represent the correlations between the tuples in the view. One
approach to represent those correlations is to use lineage [6]. However, using
a view with explicit lineage for each tuple during query evaluation does not
make the probabilistic inference problem any easier than expanding the view
definition in the query body, and then evaluating the query. The approach we
propose is to store only the marginal probabilities in the materialized view, and
compute, by static analysis of the view definition, a partial representation of
the probabilistic table defined by the view. This partial representation is at the
schema level, not at the data level, and captures sufficient information about the
correlations in the view to allow some queries to be answered from the view. We
describe this approach in Section 4. The main results in this part are from [25],
but the presentation has been changed, and some new results have been added
that shed further light on the view representation problem.

2 Definition: the Possible Worlds Data Model

We review here the definition of a probabilistic database based on possible
worlds, and of a disjoint-independent database. We restrict our discussion to
relational data over a finite domain: extensions to continuous domains [14] and
to XML [19, 1, 28] have also been considered.

We fix a relational schema R = (Ry,..., Rx), where R; is a relation name,
has a set of attributes Attr(R;), and a key Key(R;) C Attr(R;). Denote D
a finite domain of atomic values. And denote Tup the set of all typed tuples
of the form ¢t = R;(ai,...,ax), for some i = 1,k and ay,...,ar € D. We
denote Key(t) the tuple consisting of the key attributes in ¢ (hence its arity is
|Key(R;)|). A database instance is any subset I C Tup that satisfies all key
constraints.

In a probabilistic database the state of the database, i.e. the instance [ is
not known. Instead the database can be in any one of a finite number of possible



states I, I, ..., called possible worlds, each with some probability.

Definition 2.1 A probabilistic database is a probability space PDB = (W, P)
where the set of outcomes is a set of possible worlds W = {I1,...,I,}, and P
is a function P : W — (0,1] s.t. > ,c P(I) = 1.

Fig. 1 illustrates three possible worlds of a probabilistic database. The prob-
abilistic database has more worlds, and the probabilities of all worlds must sum
up to 1; the figure illustrates only three worlds. The intuition is that we have a
database with schema R(A, B,C, D), but we are not sure about the content of
the database: there are several possible contents, each with a probability.

A possible tuple for a probabilistic database PD B is a tuple that occurs in
at least one possible world; we typically denote T the set of possible tuples.

2.1 Query Semantics

Consider a query ¢ of output arity k, expressed over the relational schema R.
Recall that, when evaluated over a standard database instance I, a query returns
a relation of arity k, ¢(I) € D*. If k = 0, then we call the query a Boolean

query.

Definition 2.2 Let q be a query of arity k and PDB = (W, P) a probabilistic
database. Then q(PDB) is the following probability distribution on the query’s
outputs: q(PDB) = (W', P’) where:

W= {qI)|IeW}
P'(J) = > P
IeW:q(I)=J

That is, when applied to a probabilistic database PDB the query returns
another probabilistic database obtained by applying the query separately on
each world. The probability space ¢(PDB) is called an image probability space
in [16].

A particular case of great importance to us is when ¢ is a Boolean query.
Then ¢ defines the event {I | I |=q} over a probabilistic database, and its
marginal probability is P(q) = Z[ewmzq P(I): note that the image probability
space in this case has only two possible worlds: ¢(PDB) = ({Io, I}, P’), where
Iy=0,1; ={()}, and P'(Iy) =1 —P(q), P'(I1) = P(q). Thus, for all practical
purposes ¢(PDB) and P(q) are the same, and we will refer only to P(¢q) when
the query ¢ is boolean. A special case of a boolean query is a single tuple ¢,
and its marginal probability is P(t) = > ;e ey P(I). Note that ¢ # " and
Key(t) = Key(t') implies P(¢,t') = 0, i.e. t,¢’ are disjoint events.

2.2 Block-Independent-Disjoint Databases

In order to study query complexity on probabilistic databases we need to choose
a way to represent the input database. We could enumerate all possible worlds



Iy, I, ..., together with their probabilities p1, pa, ..., assumed to be rational
numbers. But such an enumeration is clearly infeasible in practice because it is
too verbose. A number of researchers have searched for compact representations
of probabilistic databases [12, 6, 16, 5, 4], and Green and Tannen [16] observed
a strong connection between representation systems for probabilistic databases
and for incomplete databases.

In our study we choose a representation of probabilistic databases where tu-
ples are either disjoint probabilistic events, or independent probabilistic events.

Definition 2.3 A probabilistic database PDB is block-independent-disjoint, or
BID, if Vt1,...,t, € T, Key(t;) # Key(t;) for i # j implies P(t1,...,t,) =
P(tl) e P(tn)

This justifies the I in BID: the D is justified by the fact that tuples with the
same values of the key attributes are disjoint (this holds in any probabilistic
database, not only in BIDs).

A BID specification is (T, P), where T C Tup is a set of tuples, called possible
tuples, and P : T — [0, 1] is such that, denoting K = {Key(t) | t € T'} the set
of key values, Vk € K, 3 cr gey)—r P(t) < 1.

Theorem 2.1 Let (T,Pg) be a BID specification. Then there erists a unique
BID probabilistic database PDB = (W, P) s.t. its set of possible tuples is T and
forall t € T its marginal probability P(t) is equal to Po(t).

Proof: (Sketch) Let PDB = (W,P) be a BID probabilistic database whose
marginal tuple probabilities are Py, and let I € W. Obviously I C T, and we
will show that P(I) is uniquely defined by (7', Py) and the independence assump-
tion. For any key k € K, let p, = Py(¢), if there exists ¢t € I s.t. Key(t) = k, and
pp=1-— ZteT:Key(t):k Py(t) otherwise. Then P(I) = [],cx pr- Conversely,
define the PDB = (Inst(T),P), where Inst(T) denotes the set of instances
over the tuples T, and P is defined as above: it is easy to check that this is
a probability space (3, P(I) = 1), that it is BID, and that its marginal tuple
probabilities are given by Pj. O

The size of a BID specification (T,P) is |T|; we always assume the proba-
bilities to be rational numbers. Fig. 2 illustrates a BID, which has 16 possible
worlds, three of which are shown in Fig. 1. There are seven possible tuples, each
with some probability and it is convenient to group the possible tuples by their
keys, A, B, to emphasize that at most one can be chosen in each group.

We call the database independent if Key(R;) = Attr(R;) for all relation
symbols R;, i.e. there are no disjoint tuples.



2.3 pc-Tables and Lineage

BID’s are known to be an incomplete representation system!. Several, essen-

tially equivalent, complete representation systems have been discussed in the
literature [12, 16, 6]. Here we follow the representation system described by
Green and Tannen [16] and called pc-tables, which extends the c-tables of [20].

Fix a set of variables X = {X1,..., X}, and for each variable X fix a finite
domain Dom(X;) = {0,1,...,d;}. We consider Boolean formulas ¢ consisting
of Boolean combinations of atomic predicates of the form X; = v, where v €
Dom(Xj). Define a constant c-table to be conventional relation R, where each
tuple t; is annotated with a Boolean formula ¢;, called the lineage of t. Note
that our definition is a restriction of the standard definition of c-tables [20] in
that no variables are allowed in the tuples, hence the term “constant”: we will
drop this term and refer to a constant c-table simply as a c-table in the rest of
this paper.

A valuation 6 assigns each variable X; to a value §(X;) € Dom(X;), and
we write O(R) = {t; | 0(p;) = true}.

A pc-table [16] PR is a pair (R, P), consisting of a c-table R and a set
of probability spaces (Dom(X;),P;), one for each j = 1,...,m. We denote
P the product space, i.e. where the variables X; are independent: P(f) =
[1; P;(6(X;)), for every valuation 6.

A BID database PDB = (T,P) can be expressed as pc-tables as follows.
Denote K = {ki,ka,...,kn} the set of all key values in T, and define a set of
variables X = {Xy,..., X, } (one variable for each key value). Suppose that the
key value k; occurs in d; distinct tuples in 7', call them ;1,%52,...,%jq4,: then
define Dom(X;) = {0,1,...,d;} and annotate the tuple t;; with the Boolean ex-
pression X; = 4. Finally, for each j define the probability space (Dom(X;),P;)
by setting P;(i) = P(t;;) for i > 0 and P;(0) =1 -3, P(t;i).

A fundamental result of c-tables [20] is that they are closed under relational
queries. Given a database consisting of a set of c-tables over variables X and a
relational query q of output arity k, the query’s output can also be represented
as a c-table, of arity k, where the lineage of each output tuple ¢t € D*, is some
Boolean expressions ¢g4(t) using the same variables X. We illustrate query
lineage this with a simple example.

Example 2.1 Consider the schema R(A, B), S(B), and consider seven possible

tuples, four in R and three in S':
S:|| A | B

aq b1 X1:]. T bﬁ % 1
aq b2 X1:2 L 1
by || Yo =
as bl X2=1 b Vo= 1
a9 b3 X2:2 3 3=

Here there are 3 -3 -8 = 72 possible worlds (not all 27 subsets form a world
because A must be a key in R). Consider the Boolean query he = R(z,y), S(y).

IFor example, consider three possible tuples, T = {t1,t2,t3}, and a probabilistic database
with three possible worlds, {¢1,t2}, {t1,t2}, {t2,t3}, each with probability 1/3. Then the
tuples t1,t2 are neither disjoint, nor independent.



A [B [C [D | (A [B [C [D ] (A [B [C [D |
ap | by | c | dy ap | b1 | c2 | 2 ap | by | c1 | dr
az | by | c3 | dy az | by | ca | 1 az | by | ¢y | do
az | by | ¢cq | do az | ba | ¢y | 2
P(I3) = 0.04
P(I}) = 0.06 P(L) = 0.12 (= p1(1-ps-pa-ps)ps)
(= p1p3pe) (= p2pspe)

Figure 1: A probabilistic database PDB = ({I1,Is,I3,...},P) with schema
R(A, B,C, D); we show only three possible worlds.

(A |B Jc[D |P |
ar | by || c1 | di | p1 =025
Co d2 P2 = 0.75
a9 b1 C3 d1 pP3 = 0.3
C1 d3 P4 = 0.3
Co d1 Ps = 0.2
ag b2 Cq dg P = 08
Cs dg P = 0.2

Figure 2: Representation of a BID. The seven possible tuples are grouped by
their keys, for readability. There are 16 possible worlds; three are shown in
Fig. 1.

Then @q 1s:

pg = (X1 = DAYy = DV(X] = 2)A(Ya = DV(Xa = DA(Y; = DV(Xa = 2)A(Ys = 1)

3 Query Evaluation on Probabilistic Databases

In this section we summarize the results on query evaluation from [11]. We omit
the proofs, since they are already given in [11].

We study here the following problem. Given a Boolean query ¢ and a BID
PDB = (T,P), compute ¢(PDB). In general the query is expressed in FO,
and we will study extensively the case when ¢ is a conjunctive query. We are
interested in the data complexity [29]: fix ¢, and study the complexity of P(q)
as a function of the input PDB. The probabilities are assumed to be rational
numbers.

When ¢ is expressed in FO, then its lineage ¢4 is a Boolean formula whose
size is polynomial in the size of the set of possible tuples T'. Moreover, if ¢ is a
conjunctive query, then ¢, is a DNF formula of polynomial size in T, therefore,



any upper bounds for computing the probability of a boolean formula P(¢)
become upper bounds for computing a query probability P(g). Thus:

Theorem 3.1 (1) Computing P(p) for a Boolean expression p is in #P [27].
It follows that for any query q in FO, the problem “given a BID, compute P(q)”
is in #P. (2) Computing P(p) for a DNF formula ¢ has a FPTRAS 2 [21].
It follows that for any conjunctive query q the problem “given a BID, compute
P(q)” has an FPTRAS.

The complexity class #P consists of problems of the following form: given
an NP machine, compute the number of accepting computations [23]. For a
Boolean expression @, let #¢ denote the number of satisfying assignments for .
Valiant [27] has shown that the problem: given ¢, compute #¢, is #P-complete.
The statement above “computing P(y) is in #P” means the following: there
exists a function F over the input probabilities P(X7),...,P(X,) (which are
rational numbers) s.t. (a) F can be computed in PTIME in n, and (b) the
problem “compute F' - P(p)” is in #P. For example, in the case of a uniform
distribution where P(X;) = 1/2 and all variables are independent, then we take
F =2", and 2"P(p) = #¢, hence computing F - P(¢p) is in #P.

A Dichotomy for Queries without Self-joins

We now establish the following dichotomy for conjunctive queries without self-
joins: computing P(q) is either #P-hard or is in PTIME in the size of the
database PDB = (T,P). A query ¢ is said to be without self-joins if each
relational symbol occurs at most once in the query body [9, 8]. For example
R(z,y), R(y, z) has self-joins, R(z,y), S(y, z) has not.

Theorem 3.2 For each of the queries below (where k,m > 1), computing P(q)
is #P-hard in the size of the database:

hy = R(z),S(z,y),T(y)
hi = Ri(z,y),...,Ri(z.y),S(y
h;_ = R1(£7y)7"'7Rk(£ay)7sl(l‘7g)a aSm('rvy)

The underlined positions represent the key attributes (see Sec. 2), thus, in hy
the database is tuple independent, while in A3, h;)r itisa BID. When k =m =1
then we omit the + superscript and write:

hy = R(z,y),S(y)
hs = R(z,y),S(z,y)

2FPTRAS stands for fully poly-time randomized approzimation scheme. More precisely:
there exists a randomized algorithm A with inputs ¢, €, §, which runs in polynomial time
in ||, 1/¢, and 1/§, and returns a value p s.t. Pa(|p/p — 1| > €) < §. Here P4 denotes
the probability over the random choices of the algorithm. Gréadel et al.show how to extend
this to independent probabilities, and we show in the Appendix how to extend it to disjoint-
independent probabilities




The significance of these three (classes of) queries is that the hardness of
any other conjunctive query without self-joins follows from a simple reduction
from one of these three (Lemma 3.1). By contrast, the hardness of these three
queries is shown directly (by reducing Positive Partitioned 2DNF [24] to hy, and
PERMANENT [27] to h3, h3) and these proofs are more involved.

Previously, the complexity has been studied only for independent probabilis-
tic databases. De Rougemont [13] claimed that it is is in PTIME. Grédel at
al. [13, 15] corrected this and proved that the query R(z), R(y), S1(x, 2), S2(y, )
is #P-hard, by reduction from regular (non-partitioned) 2DNF: note that this
query has a self-join (R occurs twice); h1 does not have a self-join, and was first
shown to be #P-hard in [9]; h] and h3 were first shown to be #P-hard in [11].

A PTIME Algorithm We describe here an algorithm that evaluates P(q)
in polynomial time in the size of the database, which works for some queries,
and fails for others. We need some notations. Vars(q) and Sg(q) are the set
of variables, and the set of subgoals respectively. If g € Sg(q) then Vars(g)
and KVars(g) denote all variables in g, and all variables in the key positions
in g: e.g. for g = R(z,a,y,x,2), Vars(g) = {z,y,z}, KVars(g) = {z,y}. For
z € Vars(q), let sg(z) = {9 | g € Sg(q),x € KVars(g)}. Given a database
PDB = (T,P), D is its active domain.

Algorithm 3.1 computes P(g) by recursion on the structure of ¢. If ¢ con-
sists of connected components ¢1, g2, then it returns P(q;)P(gz2): this is correct
since ¢ has no self-joins, e.g P(R(z), S(y,2),T(y)) = P(R(x))P(S(y, 2), T(y)).
If some variable z occurs in a key position in all subgoals, then it applies the
independent-project rule: e.g. P(R(z)) = 1 —[],cp(1 — P(R(a))) is the prob-
ability that R is nonempty. For another example, we apply an independent
project on z in ¢ = R(z,y),S(z,y): this is correct because g[a/x] and ¢[b/z]
are independent events whenever a # b. If there exists a subgoal g whose key
positions are constants, then it applies a disjoint project on any variable in g:
e.g. x is such a variable in ¢ = R(z,y), S(c,d,x), and any two events g[a/z],
q[b/x] are disjoint because of the S subgoal.

We illustrate the algorithm on the query below, where a is a constant, and
x,y,u are variables:




Algorithm 3.1 Safe-Eval
Input: query ¢ and database PDB = (T, P)
Output: P(q)
1. Base Case: if ¢ = R(a)
return if R(a) € T then P(R(a)) else 0
2: Join: if ¢ = q1,¢q2 and Vars(q1) N Vars(ge) =0
return P(q1)P(¢2)
3: Independent project: if sg(z) = Sg(q)
return 1 — ], (1 — P(gla/z]))
4: Disjoint project: if 3g(xz € Vars(g), KVars(g) = 0)

return ), P(q[a/z])
5. Otherwise: FAIL

q = R(&)’ S(*Ta y)7 T(g)’ U(g, y)’ V(Qa u)
P(g) =Y P(R(z),S(z,9),T(y),U(b.y),V(a,b))
beD

= Z P(R(§>7 S(JJ, y)’ T(y)’ U(b’ y)>P(V<Q7 b))
beD

= > Y P(R(x),S(x,0),T(c), U(b,¢))P(V(a,b))
beD ceD

= Y " P(R(2). S(z,0))P(T(0))P(U(b,¢)P(V(a,b))
beD ceD

= > > (- J[a=PR@)P(S(d.0)) - P(T(c)PU (b c)P(V(ab))
beD ceD deD

We call a query safe if algorithm Safe-Eval terminates successfully; other-
wise we call it unsafe. Safety is a property that depends only on the query g,
not on the database PDB, and it can be checked in PTIME in the size of ¢ by
simply running the algorithm over an active domain of size 1, D = {a}. Based
on our previous discussion, if the query is safe then the algorithm computes the
probability correctly:

Proposition 3.1 For any safe query q, the algorithm computes correctly P(q)
and runs in time O(|q| - | D|IVers@l).

We first described Safe-Eval in [8], in a format more suitable for an im-
plementation, by translating ¢ into an algebra plan using joins, independent
projects, and disjoint projects, and stated without proof the dichotomy prop-
erty. Andritsos et al. [3] describe a query evaluation algorithm for a more
restricted class of queries.

The Dichotomy Property We define below a rewrite rule ¢ = ¢’ between
two queries. Here ¢ is a conjunctive query without self-joins over a schema R,



while ¢’ is a conjunctive query without self-joins over a possibly different schema
R'. The symbols g, g’ denote subgoals below:

qg = Jqla/z] ifzeVars(q),a€e D
g = @ if ¢ =q1,q2,Vars(q) NVars(qg) =0
q = qly/x] if3g € Sg(q),r,y € Vars(g)

.9 = q if KVars(g) = Vars(g)

.9 = q4 if KVars(g') = KVars(g),

Vars(g') = Vars(g),arity(g') < arity(g)

The intuition is that if ¢ = ¢’ then evaluating P(¢’) can be reduced in
polynomial time to evaluating P(gq). The reduction is quite easy to prove in
each case. For example consider an instance of the first reduction: if g[a/z] is a
hard query, then obviously ¢ (which has no self-joins) is hard too: otherwise, we
can compute g[a/x] on a BID instance by simply removing all possible tuples
that do not have an a in the positions where x occurs. All other cases can be
checked similarly. This implies:

Lemma 3.1 If q =* ¢ and ¢’ is #P-hard, then q is #P-hard.

Thus, = gives us a convenient tool for checking if a query is hard, by trying
to rewrite it to one of the known hard queries. For example, consider the queries
q and ¢ below: Safe-Eval fails immediately on both queries, i.e. none of its
cases apply. We show that both are hard by rewriting them to h; and h;f
respectively. By abuse of notations we reuse the same relation name during the
rewriting. Strictly speaking, the relation schema in the third line should contain
new relation symbols S’, T, different from those in the second line, but we reuse
the same symbols for readability:

¢ = R(z),R(z),S(z,y,v),T(y,2Db)

=  R(z),S5(z,y,9),T(y,2,b)

=" R(z),S(z,y),T(y) =h
¢ = R(z9),Sy 2),T(z),U(y )

=  R(z,y),Sy,x),T(z,x),U(y, )

=* R(z,y),5(y,2),U(y, ) = h3

Call a query ¢ final if it is unsafe, and V¢, if ¢ = ¢’ then ¢’ is safe. Clearly
every unsafe query rewrites to a final query: simply apply = repeatedly until
all rewritings are to safe queries. We prove in [11]:

Lemma 3.2 hy, hy, h}f are the only final queries.

This implies immediately the dichotomy property:
Theorem 3.3 Let q be a query without self-joins. Then one of the following
holds:

10



e ¢ is unsafe and q rewrites to one of hq, h;r, h;{ In particular, q is #P-hard.
e ¢ is safe. In particular, it is in PTIME.

How restrictive is the assumption that the query has no self-joins 7 It is used
both in Join and in Independent project. We illustrate on ¢ = R(x,y), R(y, 2)
how, by dropping the assumption, independent projects become incorrect. Al-
though y occurs in all subgoals, we cannot apply an independent project because
the two queries g[a/y] = R(z,a), R(a, z) and q[b/y] = R(x,b), R(b, z) are not
independent: both ¢, /y] an@q[b/y@pend on the tuple R(a,b) (and also on
R(b,a)). In fact q is #P-hard [10]. The restriction to queries without self-joins is
thus significant, see. We have extended the dichotomy property to unrestricted
conjunctive queries , but only over independent probabilistic databases [10]; the
complexity of unrestricted conjunctive queries over BID probabilistic databases
is open.

The Complexity of the Complexity We complete our analysis by study-
ing the following problem: given a relational schema R and conjunctive query
q without self-joins over R, decide whether ¢ is safe?. We have seen that this
problem is in PTIME (simply run the algorithm on a PDB with one tuple per
relation and see if it gets stuck); here we establish tighter bounds.

In the case of independent databases, the key in each relation R consists
of all the attributes, Key(R) = Attr(R), hence sg(x) becomes: sg(z) = {g |
x € Vars(g)}.

Definition 3.1 A conjunctive query is hierarchical if for any two variables x, vy,
either sg(x) N sg(y) =0, or sg(x) C sg(y), or sg(y) C sg(z).

As an example, the query* ¢ = R(x), S(x,y) is hierarchical because sg(x) =
{R, S}, sg(y) = {S}, while hy = R(x),S(z,y),T(y) is not hierarchical because
sg(z) = {R, S} and sg(y) = {S,T}. SAFE-EVAL works as follows on independent
databases. When the hierarchy {sg(x) | = € Vars(q)} has a root variable z,
then it applies an independent project on x; when it has multiple connected
components, then it applies joins. One can check easily that a query is unsafe
iff it contains a sub-pattern:

R(z,...),S(x,y,...), T(y,...)

Proposition 3.2 Let SG be a binary relation name. We represent a pair R, q,
where R is a relational schema for an independent database and q a conjunctive
query without self-joins, as an instance over SG, as follows®. The constants
are R U Vars(q), and for each subgoal R of q and each variable x € Vars(R),
there is a tuple SG(R,x). Then the property “given R, q, q is unsafe” can be

expressed in FO over the vocabulary SG.

3For a fixed R there are only finitely many queries without self-joins: this is the reason
why R is part of the input.

4Since all attributes are keys we don’t underline them.

5This representation is lossy, because it ignores both the positions where the variables
occur in the subgoals in ¢, and it also ignores all constants in q.
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In fact, it is expressed by the following conjunctive query with negations,
with variables R, S, T, ,y:

SG(R,x),~SG(R,y),SG(S,x), SG(S,y),SG(T,y), SG(T, x)

In the case of BIDs, checking safety is PTIME complete. Recall the Alter-
nating Graph Accessibility Problem (AGAP): given a directed graph where the
nodes are partitioned into two sets called AND-nodes and OR-nodes, decide if
all nodes are accessible. An AND-node is accessible if all its parents are; an OR
node is accessible if at least one of its parents is. AGAP is PTIME-complete [17].
We prove in the Appendix:

Proposition 3.3 AGAP is reducible in LOGSPACE to the following problem:
given a schema R and a query q without self-joins, check if q is safe. In partic-
ular, the latter is PTIME-hard.

4 Materialized Views on Probabilistic Databases

The main results in this section are from [25], but the presentation is quite dif-
ferent, and we have added several new results to shed more light on materialized
views. In this section we include most of the proofs.

Materialized views are a widely used today to speedup query evaluation.
Early query optimizers used materialized views that were restricted to indexes
(which are simple projections on the attributes being indexed) and join in-
dexes [26]; modern query optimizers can use arbitrary materialized views [2].

Materialized views on probabilistic databases can make dramatic impact.
Suppose we need to evaluate a Boolean query ¢ on a BID probabilistic database,
and assume ¢ is unsafe. Normally, the only available technique is Luby and
Karp’s FPTRAS, and its performance is two orders of magnitudes or more
worse than a safe plan. However, by rewriting ¢ in terms of a view it may be
possible to transform it into a safe query, which can be evaluated very efficiently.
There is no magic here: we simply pay the #P cost when we materialize the
view, then evaluate the query in PTIME at runtime.

The major challenge is how to represent the view. In general the tuples in
the view may be correlated in complex ways. One possibility is to store the
lineage for each tuple ¢ (this is the approach in Trio [7]), but this makes query
evaluation on the view no more efficient than expanding the view definition in
the query.

We propose an alternative approach:

e When we materialize the view we store only the set of possible tuples and
their marginal probabilities. We do not need to store their lineage.

o We compute a partial representation for the view. This is a schema-level
(i.e. data independent) information about the independence/disjointness/correlations
of the tuples in the view, obtained from static analysis on the view defi-
nition.
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e To evaluate a query ¢ we first check if the query can be rewritten in terms
of the view (using standard techniques [18]), then we check if the rewritten
query is well defined based on the partial representation. If both are true,
then we evaluate ¢ on using the view as any base tables, with marginal
tuple probabilities.

Let e1,...,e, be n events over a probabilistic space. They are called inde-
pendent if P(ey A---Aey) =P(er) - - - P(ey); they are called 2-way independent,
or 2-independent, if forall 4, j, P(e; Aej) = P(e;)P(e;).

Definition 4.1 Let V' be a probabilistic database consisting of a single table.

o Let L C Attr(V). We say that V' is L-block independent if forall n > 1
and any tuples ty,...,t, € V with distinct values for the attributes L (i.e.
t;. L #t;.L, forall i # j) are independent.

o Let K C Attr(V). We say that V is K block disjoint if for any two tuples
t,t', if t. K =t .K then t,t' are disjoint (i.e. P(t At') =0). Equivalently,
K is a key in each possible world of V.

Obviously, if V' is L-block independent and L O L’ then V is also L’-block
independent, and any V is #-block independent. Our objective is to find a large
set L s.t. V is L-block independent. Similarly, if V' is K-block disjoint and
K C K’ then V is also K’'-block independent (a superset of a key is also a key).
In particular, by increasing® K we can always ensure that L C K.

Definition 4.2 Let V' a probabilistic database consisting of a single table. A
partial representation for V' consists of a pair (L,K) s.t. L C K C Attr(V)
and V' is L-block independent and K -block disjoint. If L = K then we call it a
total representation, or a representation for short.

Thus, our goal is to find a “good” partial representation for V', i.e. with a
large L and a small K. As we shall see, it is always possible to find a largest
L, but not always possible to find a smallest K, since in general there may be
several minimal keys. In that case we will keep several partial representations,
(L,Ky), (L,K3), .... One should think of partial representations as being
similar to functional dependencies: we collect all we can, and use them to
statically analyze a query that refers to V.

6By increasing K we do change the partial representation, while if we decreased L then we
would make it a strictly weaker representation. To see the former, note that whenever V' is L-
block independent and K-block disjoint, then the functional dependency K — L holds on the
set of possible tuples in T, because if t,t’ € T are such that t. K = t'.K then they are disjoint,
hence cannot also be independent (assuming the tuples in 7" have non-zero probability), hence
t.L =t'.L. Tt follows that the set of pairs of tuples ¢,t’ for which ¢t. K = t'.K is the same as the
set of pairs of tuples for which ¢t.(LUK) = #'.(LUK). Thus, the partial representation (L, K)
makes exactly the same statements on the possible tuples 7' as the partial representation
(L,L U K). In contrast, if we decrease L to L N K, then we lose information about the
independence of certain tuples.
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Note that V' is a BID table iff it has a total representation: in this case
Key(V)=L=K.

We start with a negative result: with our current definition, there is no
largest L. This can be shown from the following example.

Example 4.1 Consider a probabilistic table V (A, B,C) with four possible tu-
ples:

T:|A|B|C
a |b |c |t
a | b |c |ty
a |V | |t
and four possible worlds: I} = 0, I = {t1,t2}, I = {to,t3}, I3 = {t1,t3},
each with probability 1/4. Any two tuples are independent: indeed P(t1) =
P(tg) = P(tg) = 1/2 and P(tﬂfz) = P(tltg) = P(tgtg) = 1/4 V is AB-
block independent: this is because the only sets of tuples that differ on AB are
{t1,t2} and {t1,t3}, and they are independent. Similarly, V is also AC-block
independent. But 'V is not ABC-block independent, because any two tuples in set
{t1,t2,t3} differ on ABC, yet the entire set is not independent: P(t1tats) = 0.
This shows that there is no largest set L: both AB and AC' are maximal.

Thus, for a general probabilistic databases we cannot hope to have a best
partial representation. However, we can prove the following weaker result, which
we will use later:

Lemma 4.1 For a set L C Attr(V) we say that V is L-block 2-independent if
any two tuples t1,to s.t. t1.L # to.L are independent. Then, any probabilistic
table V' has a largest set L s.t. V is L-block 2-independent.

Proof: It suffices to prove the following. Let L1, Ly C Attr(V) be s.it. V is
L;-block 2-independent for each ¢ = 1,2: then, denoting L = L U Lo, V is
L-block 2-independent. Indeed, let t1,t2 be two tuples s.t. ¢1.L # to.L. Then
either ¢1.L1 # to.Lq or t1.Lo # to.Lo, hence t1,ts are independent tuples. a

Continuing Example 4.1 we note that V' is ABC-block 2-independent, since
any two of the tuples ¢1,ts,t3 are independent.

4.1 Materialized Views Expressed by c-Tables

Despite Example 4.1, it turns out that c-tables do admit a largest set L, for
an appropriate definition of L-block independence. Recall that a pc-table V
consists of two parts: V = (CV,P), where CV is a c-table and P a product
probability space on the set of variables X.

Definition 4.3 Let C'V be a c-table of arity k.

o Let L C Attr(CV). We say that CV is L-block independent if for any
pe-table V= (CV,P), V is L-block independent.
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o Let K C Attr(CV). We say that CV is K block disjoint if for any pc-table
V =(CV,P), V is K-block disjoint.

In general there is no smallest set K s.t. V is K-block disjoint: see Exam-
ple 4.4 below. On the other hand, we prove the following in this section:

Theorem 4.1 For any c-table CV there exists a largest set of attributes L C
Attr(CV) s.t. CV is L-block independent.

It is easy to see that every c-table C'V has a largest set of attributes L s.t.
CV is L-block 2-independent: the proof is similar to that of Lemma 4.1. We
need to prove, however, that C'V is also L-block independent.

To prove this, we establish a few simple results. First, consider a Boolean

formula ¢ over variables X = {Xj,...,X,,}: the atomic formulas in ¢ are
expressions X; = v, where v € Dom(X;). A wvaluation is a function § : X —
[[ Dom(X;), and we denote with [f] the truth value of the formula ¢ under
the valuation 6.

Let ¢1,...,, be n formulas over the same sets of variables X. We say
that they are independent if for any product probability space P the events
©1,--.,pn are independent. Similarly, we say that they are 2-way independent
if for any probability spaces for its variables, they are 2-way independent events.
Theorem 4.1 obviously follows from the following:

Proposition 4.1 A set of formulas @1, ...,e, is independent iff it is 2-way
independent.

Let’s see first how this implies Theorem 4.1: if L is the largest set of at-
tributes s.t. V' is L-block 2-independent: then the proposition implies that V' is
also L-block independent, and L is obviously the largest such set.

To prove the proposition we give an alternative characterization of indepen-
dence in terms of critical variables.

Definition 4.4 A variable X; is called a critical variable for ¢ if there exists
a valuation 0 for the variables X — {X;} and two values v',v" € Dom(Xj) s.t.

ol U {(X;,0")}] # [0 U{(X;,0")}].

In other words X is a critical variable if there is a choice of values for the
other variables for which X; makes a difference: when X; changes v to v”/, then
o changes from false to true. If the expression ¢ does not mention the variable
X; at all, then it is obviously not a critical variable. Conversely, if X; is not
a critical variable for ¢ then one can rewrite ¢ as an expression that does not
mention X;. For example, consider ¢ = X1 V (X1 A X3) (where the variables
are assumed to be Boolean). Here X; is a critical variable, but X5 is not: in
fact ¢ can be rewritten as ¢ = X;. In general:

Proposition 4.2 Deciding whether X; is a critical variable for ¢ is NP-complete.
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Membership in NP follows by definition, while hardness follows from the fact
that if 1 is a Boolean expression that does not mention X, then X is critical
for ¢ A X iff 1 is satisfiable.

The connection between independence and critical variables is the following:

Theorem 4.2 Let p, 1 be two Boolean formulas over the same set of variables
X. Then ¢, are independent iff they have no common critical variables.

The “if” direction is trivial: if ¢, use disjoint sets of variables, then they
are clearly independent. Before we prove the “only if” direction, we note that
the theorem immediately implies Proposition 4.1: if the formulas are 2-way
independent, then each ¢; uses a set of variables that is disjoint for the variables
used by any other ¢;, hence they are independent.

Proof: (“Ounly if” of Theorem 4.2). The “only if” direction was shown in [22]
for the case when all variables X; are Boolean, i.e. |Dom(X;)| = 2. We briefly
review the proof here. Given a probability spaces (Dom(X;),P;), denote x; =
P;(X; = 1), hence P(X; = 0) = 1 — z;. Then P(y) is a polynomial in the
variables 1, ..., x,, where each variable has degree < 1. (For example, if ¢ =
—(X; ® X2 ® X3) (exclusive or) then P(¢) = z122(1 — z3) + 21(1 — x2)zs +
(1 —z1)z2z3 + (1 — 21)(1 — 22)(1 — x3), which is a polynomial of degree 1 in
x1,Ta,23.) The identity P(¢)P(¢) = P(p A ) must hold for any values of
Z1,...,%m. If X; is a common critical variable for ¢ and 1 then the left hand
side is a polynomial of degree 2 in x;, while the right hand side has degree 1,
which is a contradiction.

We now extend this proof to non-Boolean domains. In this case a variable
X, may take values 0,1,...,d;, for d; > 1. Define the variables z;; to be
Tij ZP(Xj =1), for i = 1,...,d;, thus P(Xj =0)= 1 -2 — 25 — = Zd,j-
As before P(¢) is a polynomial of degree 1 in the variables z;; with the additional
property that if i; # is then x;,; and x;,; cannot appear in the same monomial.
We still have the identity P(pv¢) = P(¢)P(¢), for all values of the variables x;;
(since the identity holds on the open set a;; > 0 forall 4, j, and >, x;; < 1, forall
j). If X, is a critical variable for ¢ then P(y) must have a monomial containing
some x;, ;; if it is also critical for ¢, then P(¢) has a monomial containing ;, .
Hence their product contains x;, ; - #;,;, contradiction. ]

4.2 Materialized Views Expressed by Conjunctive Queries

The conjunctive queries that we consider in this section may have self-joins,
unless we explicitly say that they don’t have self-joins. We fix the schema R
of a BID database, and consider the case when V' is defined by a conjunctive
query over R. That is, V : —v, where V is the name of the view, and v is the
conjunctive query defining it.

Definition 4.5 o Let L C Attr(V): V is L-block independent if for any
input BID database PDB, the probabilistic table v(PDB) is L-block inde-
pendent.
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o Let K C Attr(V): V is K-block independent if for any input BID database
PDB, the the probabilistic table v(PDB) is K-block disjoint.

We illustrate with three examples.

Example 4.2 Consider the relational schema R(C,A), S(C,A,B), T(C,B),
and the following view:

v(z) :— R(z,x),S(zz,9),T(z7v)

Denote V(Z) the schema of the materialized view. Then V is Z-block indepen-
dent: in other words all tuples in V' are independent. Note that this query is a
hard query, since it reduces to hy from Theorem 3.2, but it is fully representable
as a table where all tuples are independent. That means that we need to pay a
high price to materialize the view V : the result is the set of all possible tuples in
V', together with their marginal probabilities. But later we can use V freely in
queries, and we know that all tuples are independent. Importantly, we can use
V' in queries that have RST as a subquery. For example consider the Boolean
query q : —R(z,x),S(z,2,v),T(z,9),U(z,v), where U(C, D) is another relation.
Then q is #P-hard, but after rewriting it as q : =V (2),U(z,v) it becomes a safe
query, i.e. it is in PTIME. Thus, by using V to evaluate ¢ we obtain a dramatic
reduction in complezity.

Example 4.3 For a second example, consider the schema R(A), S(A,B,C).,
and the query:

v(z,y,2) — R(z),S(z,y,2)

This query is safe (there are no projections), but is not fully representable.
Denoting V(X,Y, Z) the output schema, the best we can say is that V is X -block
independent, and XY -block disjoint. Thus, we know that the tuples V(a,b, c)
and V(a',b, c) are independent, and the tuples V (a,b,c), V(a,b,c) are disjoint.
But we do not know the correlation between the tuples V(a,b,c) and V(a, V', c).
In fact, we cannot answer the Boolean query ¢ = V(a,b,c),V(a,b',c) by exam-
ining only the view V : to answer q we need to expand it and answer it from the
base relations.

Example 4.4 Finally, consider the schema R(A,B,C), S(A,C,B) and the
view:

U(xayvz) P R(ﬂf,y,Z),S(ﬁ, y)

Here V' is X-block independent. In addition, V is both XY -block disjoint and
X Z-block disjoint: but it is not X-block disjoint. In practice, in this case we
will keep both partial representations (X, XY) and (X, XZ).
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Recall that a BID instance PDB is a special case of a (set of) pec-tables.
Thus, we can expressed it as PDB = (CDB,P) separating the c-tables from
the probability P. This implies that the view V = v(PDB) can be expressed
as follows: it has a c-table v(CDB), which can be computed by computing
separately the lineage of each output tuple, and it has a probability space P
on the variables X. Both the variables X and the product probability P are
the same as for PDB. From this it follows that V is L-block independent if
for any input c-tables CDB, the c-table v(CDB) is L-block independent, and
is K-block disjoint if for any input c-tables CDB, v(CDB) is K-block disjoint.
The following are immediate:

Proposition 4.3 (a) V is L-block 2-independent iff it is L-block independent.
(b) There exists a largest set L s.t. V is L-block independent.

Proof: (a) follows immediately from the corresponding fact for c-tables. (b)
for each c-table CDB, there exists a largest set Lopp s.t. v(CDB) is Lopp-
block independent. Then the largest set L s.t. V is L-block independent is
Ncps Lepp (the intersection ranges over infinitely many C'DBs). a

Thus, there exists a “best” (largest) choice for the attributes L. On the other
hand, we know that there is no “best” (smallest) choice for the K attributes,
as shown in Example 4.4.

The proof above gives no clue how to actually search for the largest set L.
To find L we can iterate over all subsets L C Attr(V), but we still need a criteria
to check if for a given set L, the view V is L-block independent. For that we
use the notion of critical tuples, introduced in [22].

Given a Boolean query ¢, a critical tuple is a ground tuple ¢ for one of the
relations R; occurring in ¢ s.t. there exists a (conventional) database instance
I st. q(I) # q(I U{t}). For a simple illustration, consider the Boolean query
q: —R(x,x),S(a,z,y), where a is a constant. Then R(b,b) (for some constant
b) is a critical tuple because q is false on the instance I = {S(a,b,¢)} but true
on the instance {R(b,b), S(a,b,c)}. On the other hand R(b,c) is not a critical
tuple. In general, if the query ¢ is a conjunctive query, then any critical tuple
must be the ground instantiation of a subgoal. The converse is not true as
the following example from [22] shows: ¢ : —R(x,y, 2, z,u), R(x,z,z,y,y). The
tuple t = R(a,a,b,b,c), which is a ground instantiation of the first subgoal, is
not a critical tuple. Indeed, if ¢ is true on I U {¢}, then only the first subgoal
can be mapped to t, and therefore the second subgoal is mapped to the ground
tuple R(a,a,a,a,a), which must be in I: but then ¢ is also true on I, hence ¢
is not critical. In general:

Theorem 4.3 [22] The problem: given q, t, check whether t is a critical tuple
for q, is XB-complete.

The problem: given two Boolean queries q,q’, check whether they have no
common critical tuples is 115 complete.

For the first statement, membership in 3% follows from the observation that
the size of I can be bounded by the number of variables occurring in ¢ plus the
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constants occurring in ¢ and ¢t. The second statement follows immediately from
the first (hardness follows by taking ¢’ = t).

There is a strong connection between critical variables of a Boolean formula
and critical tuples of a Boolean query. Let CDB be a c-table database, and let
¢ be the lineage formula for ¢(CDB). Then if X, is a critical variable for ¢,
then at least one of the tuples in C DB that is annotated with an expression
X = v is a critical tuple for g. Conversely, if ¢ is a critical tuple for ¢ then one
can find a c-table database C DB containing ¢ s.t. the variable X; annotating ¢
is a critical variable for the lineage formula for ¢(CDB).

This implies:

Proposition 4.4 Let q,q¢ be two Boolean queries over a common BID schema
R. Then the following are equivalent:

e For any input probabilistic database ¢ and ¢’ are independent.

e ¢ and ¢’ do not have any common critical tuples.

Corollary 4.4 Checking whether q,q" are independent forall BID databases is
15 -complete.

We use this to derive a necessary and sufficient condition for V' to be L-
block 2-independent, which, as we have shown, implies that V is also L-block
independent. Recall that & is the arity of V' (k = |Attr(V)]).

Proposition 4.5 Let V be a view defined by a conjunctive query over a BID
schema. For any L C Attr(V'), the following two conditions are equivalent:

e V is L-block independent.
e V is L-block 2-independent.

e For any two ground tuples t,t' € D* s.t. t.L # t'.L, the two Boolean
queries v(t) and v(t') have no common critical tuples. Here v(t) denotes
the Boolean query obtained by substituting the head variables in v with the
tuple t, and similarly v(t').

Thus, an upper bound on the complexity is IT5. It turns out that the problem
is also hard for this class, as shown in the full version of [25].

Theorem 4.5 Checking whether V is L-block independent is I15-complete.

We can now better understand the set of attributes L for which V is L-block
independent. Any such set consists only of all attributes A s.t. V is A-block
independent; and the maximal set L is precisely the set of all such attributes
A. Moreover, given an attribute A, checking whether V' is A-block independent
is precisely the safety test for an independent project on A. We have shown in
Sec. 3 that in the case of queries without self joins, this happens iff A appears
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in a key position in each subgoal of v. On the other hand, if v is allowed to have
self-joins, then checking if a safe project on A is possible is IT5-complete.
Finally, we briefly comment on how to compute the set K that describes
disjoint tuples. This is simply a key K C Attr(V), in the conventional sense,
where the relations mentioned in the query v have explicit keys. There are
standard procedures for computing the set of keys in a conjunctive query.

4.3 Querying Partially Represented Views

We now turn to an interesting question: given a partial representation (L, K)
for a materialized view V| and a query g that uses the view, check whether ¢ can
be answered from V. Notice that this is orthogonal to the query answering using
views problem [18]: there we are given a query ¢ over a conventional database
and a set of views, and we want to check if ¢ can be rewritten into an equivalent
query ¢ that uses the views. Here we assume that the rewriting has already
been done, thus ¢ already mentions the view(s). The problem is whether ¢ is
well-defined: we saw in Example 4.4 a case when the query is not well-defined,
because the partial representation (L, K) and the marginal tuple probabilities
do not uniquely define a probabilistic database for the view.

In this section we restrict the query ¢ to be over a single view V, and
mention no other relations. Thus, g can perform selections and self-joins over V'
only. Our discussion of well-definedness extends immediately to the case when
q is written over multiple views, each with its own partial representation, and
even over input BID tables (which for this purpose are views with a complete
representation), provided that all views and base tables are independent.

Definition 4.6 Let PV be a probabilistic relation of schema V. We write
PV = (L,K) if PV is L-block independent and K-block disjoint.

Definition 4.7 Let q be a Boolean query over the single relation name V. We
say that q is well-defined given the partial representation (L, K), if forall PV,
PV’ s.t. PV = (L, K), PV' =(L,k), and Vt P(t) =P'(t), P(q) =P'(q).

Thus, ¢ is well defined iff P(q) depends only on the marginal tuple probabil-
ities P(¢) (which we know), and not on the entire distribution (which we don’t
know). We will give now a necessary and sufficient condition for ¢ to be well
defined. For that we first need some background on numerical functions.

4.3.1 Numerical Functions and Differentials

Recall that we have a fixed domain D and denote Tup the set of tuples (over
a given relational schema R) that can be constructed with constants from D.
Let Inst = P(Tup) be the set of instances. A numerical function is a function
of the form f : Inst — R, where R is the set of reals. A Boolean query is a
particular numerical function: ¢(I) = 0 if the query is false at I, and ¢(I) =1
when the query is true.
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Definition 4.8 Let s € Tup be a ground tuple. The differential of f w.r.t. s

Asf(I) = f(I) = f(I—{s})

Iterating this definition gives us the differential Ag for a set of tuples S: for
s ¢ S define Aggyusf = As(Asf). Note that the differential of a monotone
Boolean query is also a Boolean query, but it is not necessarily monotone;
furthermore, the differential of a non-monotone query may take the value —1.

Definition 4.9 A set of tuples C is critical for f if 3T s.t. Acf(I) # 0.

This generalizes the previous definition of a critical tuple. Indeed, a tuple
t is critical for a query ¢ iff the set {t} is critical for the numerical function
associated to gq.

The following identities can easily be derived:

fI) = fU—{s}) + A f(I)
FI) = JUI={s1,82}) + Bs f(T = {s2}) + B, f(T = {s1}) + D15 f(T)
In order to generalize the latter formula, we introduce another definition:

Definition 4.10 Let T' C Tup be a set of tuples. The restriction of f to T 1is:
) = fUINT).

In particular f = f7“P, where Tup is the set of all tuples over the domain. If
q is a Boolean query then ¢” is also a Boolean query; if moreover ¢ is monotone,
then ¢7 is also monotone.

Proposition 4.6 For any set of tuples T':
f _ Z ASfTupf(Tfs)

SCT

In particular, by taking T = Tup we obtain f = ZSCTW Agfs.
For any set of tuples S': B

Asf = Y (=pitiyre=t

TCS

The proofs are immediate: the first equation generalizes the two identities
above, while the second equation generalizes identies like:

AfI) = f) = fI—{s})
Asiso f(I) = fI) = f(I={s1}) = F(I = {s2}) + f(I = {s1,52})

Finally, we state the following (which is easy to check):

Proposition 4.7 (1) If C is critical for Agf, then C is critical for f. (2) If
C is critical for fT, then C is critical for f.
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4.3.2 The Well-definedness Condition

We call two tuples t,t" intertwined if t. L = t'.L and . K # t'.K. If two tuples are
not intertwined, then they are either independent (when ¢.L # '.L), or disjoint
(when t.K = t/.K). Thus, intertwined tuples are correlated in ways that we
cannot determine.

Theorem 4.6 Let q be a monotone Boolean query over V. Then q is well
defined iff for any two intertwined tuples t,t’" the set {t,t'} is not critical for q
(in other words, Ay vq=0).

Before proving the theorem we illustrate with an example:

Example 4.5 Let V(A, B, C) have the following partial representation: L = A,
K = AB. Consider the following queries:

q1 - V(Cl,—, _)
q2 - V(_ab7 )
g3 L V(_7_7C)

Of the three, q2 is the only query that is well-defined. We first explain intuitively
why g2 is well-defined. Its value depends only on the tuples of the form (a;, b, ¢;):
these can be partitioned by a; into independent sets, while the tuples in each set
are disjoint. In other words, g2 depends only on a subset of tuples that form a
BID table. One can also see that qa has no two intertwined, critical tuples: if
t1,t2 is a critical set then each of t1, to must be critical, hence they must be of the
form (a;,b,b;): but then they are not intertwined (they are either independent
(tl.A 7£ tQA) or d’LS_]OM’Lt (tlAB = tQ.AB, but tl.C 7£ tQC)

In contrast, neither g1 nor qs are well-defined. To see this, consider a view
V' with two tuples: t; = (a,b1,c¢) and ta = (a,be, ¢); these tuples are intertwined,
i.e. the correlation of t1 and ta is unknown. Further, Plq1] = Plgs] = P[t1 V t2]
and so neither q; nor qz is well-defined. They also form a set of critical tuples:
denoting I = {t1,t2}, i(I) = u(I—{t1}) = (I ={t2}) = 1, @ (I —{t1, t2}) = 0,
hence Ay, +,q1(I) = —1; similarly for ¢s.

We now prove the theorem.

Proof: We start with the “only if” direction. Let ¢,t' be a critical set of two
intertwined tuples. By definition there exists an instance I s.t. ¢(I) — q(I —
{t}) —q(I —{t'}) + q¢(I — {t,t'}) # 0. Since ¢ is monotone we have ¢(I) = 1,
q(I = {t,¢'}) = 0, and either ¢(I — {t}) = q(I — {t'}) = 0 or (I — {t}) =
q(I — {t'}) = 1. Without loss, we assume that ¢(I — {t}) = ¢(I — {t'}) = 0.
Then we define two probabilistic databases PV = (W,P) and PV’ = (W,P’)
as follows. Each has four possible worlds: I, — {t},I—{t'},I—{¢,t'}. In PV
these worlds are assigned probability P = (0.5,0,0,0.5), respectively; here, 1
and ty are positively correlated. In PV”, all worlds are assigned probability 0.25
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i.e. tuple independence. Observe that in both cases, the marginal probability
of any tuple is the same, P[t] = P[t'] = 0.5 and all other tuples probability 1,
then P[g] = 0.5 while P’[¢] = 0.25, so the value of ¢ is not well-defined.

Next we prove the “if” part. The basic plan is this. Suppose an instance
I contains two intertwined tuples ¢,¢ (hence we don’t know their correlations).
Write ¢(I) = (I — {t,t'}) + Aeg(I — {t'}) + Apq(I — {t}) (because A; g = 0).
Thus, we can “remove” ¢ or t' or both from I and get a definition of ¢ on a
smaller instance, and by repeating this process we can eliminate all intertwined
tuples from 1. We need to make this intution formal, and we start with a lemma.
We say that a set of tuples T is non-intertwined, or NIT, if V¢,¢' € T, ¢t and t’
are not intertwined.

Lemma 4.2 Let g be a monotone, Boolean query without critical pairs of in-
tertwined tuples, and let T be a NIT set of tuples. Then the Boolean query q*
s well defined.

Proof: A minterm for ¢7 is a minimal instance J s.t. ¢?(J) is true (that is
if J C J and ¢7(J') is true then J = J’). Obviously, each minterm for ¢7
is a subset of 7. Since ¢” is monotone (because ¢ is monotone), it is uniquely
determined by the set M of all its minterms: ¢ (1) = \/ ,cy(J € I). Denoting r’
the boolean query r/(I) = (J C I), we apply the inclusion-exclusion formula to
derive P(¢") = P(\/ ey r’) = ZNCM’N#V)(—l)'N‘P(rUN). Finally, we observe
that for each N C M, the expression P(rU™) is well defined. Indeed, the set
J = J N is the union of minterms in N, thus it is a subset of T', hence it is a NIT
set. If J = {t1,ta,...}, the query 7/ simply checks for the presence of all tuples
t1,t2,...; in more familiar notation P(r/) = P(tita---). If the set J contains
two disjoint tuples (¢;.K = t;.K) then P(t1ta---) = 0. Otherwise, it contains
only independent tuples (t;.L # t;.L), hence P(tita---) = P(t1)P(t2)--- In
either cases it is well-defined and, hence, so is P(g7). O

Thus, we know that, for every NIT T, ¢7 is well defined: we need to prove
that ¢ is well defined, and for that we use the expansions above. Let PV be
a probabilistic database s.t. PV |= (L, K), and let Tup be the set of possible
tuples in PV. Then:

q = Z Arq”

TCTup

> Ard”

T is NIT

S (n)slgts

T is NIT SCT

Here we used the fact that if 7' contains any two intertwined tuples, then
Arq¢T = 0: indeed, suppose t,t' € T are two intertwined tuples, and denote
S =T — {t,t'}. Then there exists I s.t. ApqT(I) = Ay v AgqT(I) # 0, hence
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t,t are critical for Agq™: therefore they are critical for ¢”, and therefore they
are critical for ¢, contradicting our assumption. Hence if T is not NIT, then
Arg" = 0. Therefore in the second line above it suffices to iterate over NIT
sets T'. The last line is just a further expansion of Ar.

Next we apply the expectation on both sides, and use the linearity of expec-
tation plus P(q) = E[q]:

P(g)=Elg = > > (-1)¥IE[E™5

T is NIT SET

SP VD ICIELTEY

7 is NIT SCT

Finally, we use the lemma to argue that each expression P(q is well
defined. O

(q"%)

Finally, we mention without proof the complexity (the proof can be found
in the full version of [25]):

Theorem 4.7 Checking whether q is well defined w.r.t. (L, K) is II5-complete.

As a final comment, we remark that once we have determined that a query
q is well defined for a given partial representation (L, K), of a view V it is
easy to evaluate it, using e.g. the techniques from Sec. 3: for that it suffices to
pretend that V is a BID, either with Key(V) = L or with Key(V) = K: both
assumptions will lead to the same value for g because ¢ is well-defined.

5 Conclusions

At a superficial look, query evaluation on probabilistic databases seems just a
special instance of probabilistic inference, e.g. in probabilistic networks. How-
ever, there are specific concepts and techniques that have been used on con-
ventional databases for many years, and that can be depolyed to probabilistic
databases as well, to scale up query processing to large data instances. We have
presented two such techniques in this paper. The first is the separation of the
query and the data: we have shown here that by doing so, one can identify
queries whose data complexity is #P-hard, and queries whose data complexity
is in PTIME. The second is the aggressive use of materialized views (or any
previously computed query results): we have shown that by using a materizlied
view the query complexity can decrease from #P-hard to PTIME, and have
described static analysis techniques to derive a partial representation for the
view, and to further use it in query evaluation.
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