
Moden Spectral Graph Theory Winter 2022

Lecture 6: Locally Testable Codes
Lecturer: Shayan Oveis Gharan ??

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Definition 6.1 (Error Correcting Codes). An error correcting code, C, of length n over an alphabet Σ is
a subset of Σn. If Σ is a field and C is a subspace of Σn, then C is called a linear code. Unless otherwise
specified, in these lectures we study linear binary error correcting cod, namely Σ = F2 and Σ subspace of Fn2 .
The elements of C are called the codewords.

Definition 6.2 (Generator of a Code). Let C ⊆ Fn2 be a linear code of dimension k. A matrix G ∈ Fn×k
is said to be a generator matrix for C if its k columns span C. Note that the generator matrix G provides a
way to encode a message x ∈ Fk2 as the code word Gx ∈ C

Definition 6.3 (Parity Check Matrix). For any (binary) linear code C ⊆ Fn2 of dimension k there is a

matrix H ∈ F(n−k)×n
2 (of full rank) such that

C = {c ∈ Fn2 : Hc = 0},

i.e., C is the set vectors in the null-space of H. The matrix H is called the parity check matrix.

If G is the generator of C, it can be written in the standard form G =

[
Ik
P

]
. Then, H =

[
−PT | In−k

]
.

Here Ik is the k timesk identity matrix.

Definition 6.4 (Rate of a Code). For a code C ⊆ Σn, the rate of C is defined as

ρC =
log |C|
n log |Σ|

.

Thus if C is a binary linear code of dimension k, we have

ρC =
k

n
.

In words, n(1− ρC) is the amount of redundant information sent in a codeword of C.

Definition 6.5 (Distance of a Code). The distance of a code C ⊆ Σn is

δC = min
c1,c2∈C

H(c1, c2)

n

where H(c1, c2) is the Hamming distance of c1, c2, the minimum number of positions one need to change to
turn c1 into c2. The importance of this definition is that if a codeword is sent over a channel and < 1

2nδC
positions are transmitted with error, still it is possible to re-cover the original code.

For a word f ∈ Σn we write δ(f, C) to denote

δ(f, C) = min
c∈C

H(f, c)

n

the distance of f from the closest word in C.

6-1

Lecture 6: Locally Testable Codes 6-2

If C is a binary code, then H(c1, c2) = ‖c1 + c2‖1. So, in particular,

δC = min
c∈C,c 6=0

‖c‖1
n

.

This is because for any c1, c2 ∈ C, we have c1 + c2 ∈ C.

6.1 Expander Graphs

Recall that an unweighted graph G = (V,E) is a λ-expander if λ2(P) ≤ λ, where P is the transition
probability matrix of the simple random walk on G.

Lemma 6.6. Suppose that G = (V,E) is a λ-expander, i.e., for any function f : V → R such that 〈f,1〉 = 0,
we have

〈Pf, f〉π0
≤ λ〈f, f〉π0

,

where as usual the inner-products are with respect to the stationary distribution of the walk π0. For any set
T ⊆ V and f = 1T , if 〈Pf, f〉 ≥ ε〈f, f〉, then

π0(T) = 〈f, f〉 ≥ ε− λ.

Proof. Let p = π0(T) = 〈f, f〉 = 〈f,1〉. Write f = p1 + f⊥, for 〈f⊥,1〉 = 0.

p · ε ≤ 〈Pf, f〉 = 〈P (p1 + f⊥), p1 + f⊥〉 = p2 + λ〈f⊥, f⊥〉 ≤
〈f,f〉=p

p2 + λp.

So, p ≥ ε− λ as desired.

Lemma 6.7. Let G = (V,E) be a d-regular λ-expander. Let T ⊆ V be such that the induced graph G[T],
has average degree at least δd. Then |T | ≥ (δ − λ) · |V |, and the number of edges in G[T], E(T), is at least
(δ − λ)δ · |E|

Proof. Let f = 1T .

〈Pf, f〉 = Eu∼π0
[f(u)Pf(u)] = E{u,v}∼π1

[f(u)f(v)] = π1(E(T)) ≥ δ|T |d/2
nd/2

=
δ|T |
n

= δ〈f, f〉.

Now, suppose P [T] = 〈f, f〉 = p. Then, by previous lemma, π0(T) = p ≥ δ − λ, i.e., |T | ≥ (δ − λ)n. It thus
follows that

|E(T)| ≥ (δd)|T |/2 = δ(δ − λ)dn/2 = δ(δ − λ)|E|,
as desired

6.2 Expander Codes

Definition 6.8 (Expander Codes). Let G = (V,E) be a d-regular graph with n vertices, and let C0 be a
binary linear error correcting code of length d. For every vertex v ∈ G, let Xv = {e ∈ E : e ∼ v} be the set
of edges that are neighbor of v. Define, a local code

Cv = {f ∈ FXv2 : f ∈ C0}.

Now, define a global expander code C as follows:

C := {f ∈ FE2 : f |Xv ∈ Cv,∀v ∈ V }.

Lecture 6: Locally Testable Codes 6-3

Theorem 6.9 ([SS96]). Let G be a d-regular λ-expander with n vertices. Let C0 be code (of length d) with
rate ρ > 1/2 and minimum distance δ Then, the expander code C has rate at least 2ρ − 1 and minimum
distance at least δ(δ − λ).

Proof. To obtain the rate of the code C it is enough to count the number of linear restrictions imposed by
the constraints on the vertices. Since C0 has rate ρ, each vertex imposes (1 − ρ)d many linear constraints,
the total number of linear constraints is at most n(1− ρ)d. Therefore, the rate of the code is at least

ρC ≥
nd/2− n(1− ρ)d

nd/2
= 1− 2(1− ρ) = 2ρ− 1.

Next, we prove the bound on minimum distance. Let w ∈ C be a non-zero word. Recall that to bound the
minimum distance of C it is enough to lower bound the weight of w. Let F ⊆ E be the set of edges such
that we = 1; so equivalently, it is enough to show that

|F | ≥ δ(δ − λ)nd/2.

Let T be the set of vertices incident to edges in F . Since w is a valid codeword, and the base code C0 has
distance δ, every vertex in F must be adjacent to at least δ|C0| = δd edges of F , i.e., the average degree of
the induced subgraph G[T] is at least δd. So, by Lemma 6.7, |F | ≥ δ(δ − λ)nd/2 as dires.

We give a few remarks:

• There are explicit construction of λ-expander graphs with λ ≈ 1/
√
d. Using such a construction and a

given base code (which can be chosen by a random/exhaustive search) we get explicit construction of
of constant rate and distance linear binary codes of any length.

• Perhaps, the simplest way to choose the base code C0 is to choose a random (d − k)d parity check
matrix. Let h(x) := x log2 x + (1 − x) log2(1 − x) be the entropy function. For 0 < δ < 1/2, we let
k ≈ (1 − h(δ) then we get a code of distance δ and rate ≈ 1 − h(δ) with high probability. In other
words, fo sufficiently small chosen distance we can make the rate arbitrarily close to 1.

• Note that the above construction is very local in the following sense: If we use a separate base code,
C0,v for every vertex v ∈ V such that they all have rate at least ρ and distance δ, still the same
statement holds.

6.3 Locally Testable Codes

The main object of this part of the course is to study locally testable codes. We say a code C is κ-locally
testable with q queries if there is a randomized local tester that reads at most q bits from a given word w
and then accepts or rejects w, such that

• For all w ∈ C, P [accept] = 1.

• For all w /∈ C, with δ(w,C) ≥ Ω(1) we have P [reject] ≥ κ. The codes that we will construct in fact
have a stronger property that for any w /∈ C,

P [reject] ≥ κ · δ(w,C).

Lecture 6: Locally Testable Codes 6-4

Are there any family of locally testable codes? Yes, perhaps the simplest such family comes from the [BLR93]
test: Given a function h : Fn2 → F2 we say h is linear if h(x+ y) = h(x) + h(y) for any x, y ∈ Fn2 . Now given
a function h : Fn2 → F2 we wan to test whether h is linear by running only O(1) many queries.

Blum, Luby, Rubinfeld [BLR93] proposed the following test:

1. Choose x, y ∈ Fn2 uniformly at random

2. Accept if h(x) + h(y) = h(x+ y) and reject otherwise.

They proved the following theorem:

Theorem 6.10. If the function h agrees with a linear function at at least (1− ε) fraction of the inputs, then

P [BLR acceptes] ≥ 1− 6ε.

The proof is a simple Fourier Analysis argument that we skip here. But here is the consequence: Consider
the following error correcting code of length 2n: Given a (secret word) w ∈ {0, 1}n, we encode w by writing
down the image of the function hw : {0, 1}n → {0, 1} where for any x ∈ {0, 1}n, hw(x) = wx. Then, by
the above theorem such a code is locally testable. But, unfortunately, this code has a very poor rate, only
n
2n . So the main question that we are trying to address in these lectures is how to construct locally testable
codes with constant rate and distance.

Are Expander Codes Locally Testable? Can the above construction of expander codes be locally
testable? It turns out that not necessarily. Let us elaborate: Say we construct an expander code C with the
parity check matrix H. Notice every row of H essentially ensures a local parity construct for the base code
C0 around a vertex v ∈ G. Now, let h be the first row of H and let H ′ be the Parity check matrix where
the first row is removed. This simply means that we use a slightly different base code for a vertex v ∈ G.
It follows from the above proof that the new code C ′ (with parity matrix H ′) still has eesentially same rate
and the same distance.

Now, we claim that there are codewords c′ ∈ C ′ that are far from all code words of C. First notice since the
parity check matrix of C ′ has 1 less constraint, the dimension of C ′ is one more than then dimension of C.
So, there are code words c′ ∈ C ′ \ C. Fix such a codeword c′ ∈ C ′ \ C. For any codeword c ∈ C we have
that c+ c′ ∈ C ′, so ‖c+ c′‖1 ≥ δ(C ′) ≈ δC . So, δ(c′, C) ≈ δC . Now, such a word c′ /∈ C ′ \ C, notice that c′

satisfies the local constraint at every vertex of G (except the vertex v with the parity constraint on the first
row of H). So, if we choose a random vertex it is very likely that c′ satisfies every constraint that we see
even though it is very far from all codewords in C.

Are Random Codes Locally Testable? Most likely not. The reason is that a local testable a code
comes with a local tester the only looks at a few bits. In a random code, if we look at any (constant) q many
bits, most likely all possible 2q arrangements of this bits are already present in out code. So, we cannot
know whether the given word is indeed part of our random code or not. In other words, we are looking for
constant rate and distance code that is not too local as in the expander codes and too random as in random
codes.

6.4 Tensor Codes

Definition 6.11 (Tensor Codes). Given binary linear codes C1 and C2 of length n1, n2 and dimension
k1, k2 respectively. Let G1, G2 be the corresponding generator matrices of the codes. Their tensor code

Lecture 6: Locally Testable Codes 6-5

C1 ⊗ C2 ⊆ Fn1×n2
2 is a binary linear code whose code words may be viewed as n1 × n2 matrices X explicitly

given as
{G1XG

T
2 : X ∈ Fk1×k22 }

Fact 6.12. A matrix c ∈ Fn1×n2
2 is a codeword of C1 ⊗C2 if and only if every row is a codeword of C2 and

every column is a codeword of C1.

Proof. To see that notice by definition we can write c = G1XG
T
2 for some X ∈ Fk1×k22 . Now, we can write

c = G1Y , for Y ∈ Fk1×n2
2 and Y = XGT2 . So, since G1 is the generator of C1 every column of c is a word of

C1. The other case can be proven similarly.

In other words, we can write

C1 ⊗ C2 = {c ∈ Fn1×n2
2 : c(i, .) ∈ C2, c(., j) ∈ C1,∀i ∈ [n1], j ∈ [n2]}.

Exercise 6.13. We leave it an exercise to prove the converse of the above fact: Namely, if for c ∈ Fn1×n2
2

every columns is a word of C1 and every row is a word of C2 then c ∈ C1 ⊗ C2.

Lemma 6.14. If C1, C2 have dimensions k1, k2 and minimum distance δ1, δ2 respectively, then the tensor
code C1 ⊗ C2 has dimension k1 × k2 and minimum distance δ1δ2.

Proof. First notice that for any X 6= 0 and X ∈ Fk1×k22 , G1XG
T
2 6= 0. This simply implies that the dimension

statement.

Next, we argue the minimum distance. Fix arbitrary X ∈ Fk1×k22 such that X 6= 0 we show that G1XG
T
2 has

at least δ1δ2n1n2 non-zero coordinates. Since X 6= 0, at least one column of X, say Xi 6= 0. Let Y = G1X,
so Yi = GXi. Since the distance of X1 is δ1n1, ‖Yi‖1 ≥ δ1n1. Therefore, at least δ1n1 rows of Y and (δ1n1
columns of Y T) are non-zero.

Now, notice Y GT2 = (G2Y
T)T . Since C2 has distance δ2n2, for every non-zero column j of Y T , ‖(G2Y)j‖1 ≥

δ2n2. Finally, since at least δ1n1 columns of Y T are non-zero, G2Y
T has at least δ1δ2n1n1 non-zeros.

Testing Tensor Codes. Here is a natural test to see whether f ∈ Fn1×n2
2 is in C1 ⊗ C2. Randomly

choose a row or a column of f , and check whether the restriction of f to f(., j) ∈ C1 or f(i, .) ∈ C2.

For f ∈ Fn1×n2
2 , let

δcol(f, C) = δ(f, C1 ⊗ Fn2
2 , δrow(f, C) = δ(f,Fn1

2 ⊗ C2).

In words, δcol(f, C) is the minimum fraction of entries of f we need to change such that every column
becomes a word of C1 and similarly δrow(f, C) is the minimum fraction of entries of f to change such that
every row is a word of C2. We say code C = C1 ⊗ C2 is ρ-robustly testable if

β = min
f /∈C1⊗C2

1
2 (δcol(f, C) + δrow(f, C))

δ(f, C1 ⊗ C2)

Note that obviously β ≤ 1. Roughly speaking if C is robust testable, then the fraction of bits we need to
fix in f to get a codeword of C, is up to a constant factor the same as the maximum fraction of bits of f
we need to change just to make sure the rows are satisfied and the fraction we need to change to make sure
column constraints are satisfied.

Lecture 6: Locally Testable Codes 6-6

Local Testability of Tensor Codes. Suppose that C1, C2 have length n1 = n2 = n and constant rate
and distance. Then, the code C = C1⊗C2 has a constant rate and distance and length n2. Suppose further
that it has a constant robust testability, β. Now, suppose for a word f ∈ Fn×n2 , δ(f, C1 ⊗ C2) = ε. So,
1
2 (δcol(f, C) + δrow(f, C)) ≥ βε; so say δcol(f, C) ≥ βε/2. So, we get at that least εβn

2 many columns of f

are not in C1. So, if we run the the test in the previous paragraph, with probability at least εβ
4 we reject f .

Notice that such a test needs to query O(β
√

len(C)δ(f, C)) many entries to reject f . So, we don’t get the
ideal local testability but we are doing much better than expander codes or random codes as we just need
to see

√
len many coordinates as opposed to linear.

6.5 Robust Testable Tensor Codes

Robust testability of tensor codes was first studied by Ben-Sasson and Sudan [BSS06] where they prove
robust testability of 3 tensors. In this section we discuss a result of Dinur, Sudan, Widgerson [DSW06]
which gives a construction of robust testable (two) tensor codes.

Definition 6.15 (Low density parity check matrix (LDPC) Codes). Let c, d, n ∈ N. A (c, d, n)-LDPC code is
given by a (c, d)-regular bipartite graph ([n], [m], E) (called a factor graph) with n left vertices and m = nc/d
right vertices, called parity checks, such that all right vertices have degree d and all left vertices have degree
c. The code is defined to be

C =

w ∈ Fn2 : ∀j ∈ [m],
∑
{i,j}∈E

w(i) = 0 mod 2

 .

There are many ways to construct LDPC codes: A simplest way is to choose a random (c, d) regular bipartite
graph. We also remark that the expander codes we defined in section 6.2 also give LDPC codes. In particular
if the parity check matrix of the base code itself is an LDPC code then the blown-up expander code will also
be an LDPC code.

Definition 6.16 (Smooth code). Let c, d, n ∈ N and α, β, δ > 0. A (c, d, n)-LDPC code C ⊆ Fn2 is (α, β, δ)-
smooth if for every Y ⊆ [m] with |Y | ≤ α · m there is some X ⊆ [n] with |X| ≤ β · n such that the code
C(Y −)|X− has distance at least δ, where Y − = [m] \ Y and X− = [n] \X. Here the code C(Y −)|X− is the
code obtained by removing the constraints in Y and then removing the coordinates of the code in X.

It is not hard to see that expander codes are smooth. This is because given a (regular) expander graph,
say we (adversarially) delete |Y | = 0.01V vertices. Then, there is a set Ỹ ⊃ Y such that |Ỹ | ≤ 2|Y | and
the induced graph on G[V \ Ỹ] is also an expander. So, we can simply define X = E \ E(V \ Ỹ) (in the
smoothness definition).

Lemma 6.17 ([DSW06]). For any c, d,m-LDPC code C1 that is (α,
δC1

2 ,
δC1

2)-smooth and (a binary linear

code) C2 ⊆ Fn2 let C = C1 ⊗ C2. For any F /∈ C1 ⊗ C2, if 1
2 (δcol(F,C) + δrow(F,C)) ≤ min

{
α
δC2

2d2 ,
δC1

δC2

8

}
then, β(f) ≥ 1/8. Therefore,

β(C) ≥ min

{
α
δC2

2d2
,
δC1

δC2

8

}
.

Proof Sketch. Fix such a word F and let F1 ∈ C1 ⊗ Fn2
2 be the closest word to F and F2 ∈ Fn1

2 ⊗ C2 be the
closest word to F . Define (the error matrix) E = F1 − F2. Observe that

‖E‖1
n1n2

= δ(F1, F2) ≤ δrow(F) + δcol(F).

Lecture 6: Locally Testable Codes 6-7

So, the assumption of the lemma implies ‖E‖1n1n2
≤ 2 min{α δC2

2d2 ,
δC1

δC2

8 }.

Lemma 6.18. Let {i1, . . . , id} be a parity constraint of (the LDPC code) C1 (i.e., every codeword of c ∈ C1

satisfies ci1 + · · · + cid = 0). Let Ei denote the i-th row of E. Suppose ‖E
ij ‖1
n2

< δC2
/d for every j ∈ [d].

Then Ei1 + · · ·+ Eid = 0.

To put it differently, if the rows corresponding to this particular constraint of C1 in E are “sparse”, then
every column of E (and every column of F) satisfies this constraint

Proof. Recall F i1 is the i-th row of F1. Note that these rows are not necessarily codewords of any nice code -
it is only the columns of F1 that are codewords of C1). Thus, observe that F i11 + · · ·+F id1 = 0. On the other
hand, since each row of F2 is a word of C2, we have F i12 + · · ·+ F id2 is a codeword of C2. But this implies

Ei1 + · · ·+Eid = (F i11 −F2
i1)+ · · ·+(F id1 −F

id
2) = (F i11 + · · ·+F id1)−(F i12 + · · ·+F id2) = (F i12 + · · ·+F id2) ∈ C2

Now we use the fact that the Ei’s have small weight. This implies that

‖Ei1 + · · ·+ Eid‖1
n2

=

d∑
j=1

‖Eij‖1
n2

< δC2
.

But this implies that indeed we must have Ei1 + · · ·+ Eid = 0.

Having the above fact, we can divide the rows of E into two groups: Heavy group which has a fraction at
least δC2

/d many ones, and the light rows. Assuming that 1
2 (δcol(F,C) + δrow(F,C) is small, we can see

that most rows of E are sparse. We delete every constraint in the LDPC code C1 which has a heavy row.
By smoothness of C1 we can drop a small fraction of the coordinates of C1 (and equivalently, rows of E)
such that the resulting code still has distance δC1

/2. But then all column constraints code E′ and similarly
F ′2 are satisfied. So, the number of changes we need to do to correct F is at most n2 times the number of
deleted rows, plus the δrow(F)n1n2.

It turns out that for the analysis of locally testable code, we need a slightly different property of tensor codes
called agreement testability.

Definition 6.19 (Agreement Testability). Let κ > 0. Let C1 ⊆ Fn1
2 , C2 ⊆ Fn2

2 . We say that C1 ⊗ C2 is
κ-agreement testable if for every w1 ∈ C1 ⊗ Fn2

2 and w2 ∈ Fn1
2 ⊗ C2, there exists w ∈ C1 ⊗ C2 such that

κ ·
(
Pi [w1(i, .) 6= w(i, .)] + Pj [w2(., j) 6= w(., j)]

)
≤ Pi∼[n1],j∼[n2] [w1(i, j) 6= w2(i, j)]

It is not hard to see that robust testability implies agreement testability. In particular if C1⊗C2 is β-robustly
testable then C1 ⊗ C2 is κ-agreement testable, for

κ =
2βδ1δ2

δ2 + δ1(1 + 2β)
.

6.6 Intro to Group Theory

A group is a set G together with a binary “product” operations such that for any two elements a, b ∈ G,
ab ∈ G and satisfies the following properties:

Associativity For all a, b, c ∈ G, (ab)c = a(bc).

Lecture 6: Locally Testable Codes 6-8

Identity Element There exists an element e ∈ G such that ea = a for all a ∈ G.

Inverse Element For any element a ∈ G there exists an element a−1 such that aa−1 = a−1a = e.

Note that the product operations is not necessarily commutative, i.e., ab 6= ba.

Definition 6.20 (Generator of a Group). We say a set A ⊆ G is a generator of G if every element a ∈ G
can be generated by taking a product of a (finitely) many elements of A. For example G is a generator of
itself. We say A is a symmetric generator if for any a ∈ A we also have a−1 ∈ A.

Definition 6.21 (Cayley Graphs). Given a (finite) group G with a symmetric generator A, we can definite
a (Cayley) graph, Cay(G,A) with vertex set identified with elements of G, and for any vertex g ∈ G and
element a ∈ A, we have an edge {g, ag}. Note that since A is a symmetric generator, the edge {g, ag}
coincides with the edge {ag, (a−1)ag}, i.e., the graph is undirected.

In [Mor94], Morgenstern presented for every prime power q, infinitely many groups Gi = PSL2(qi) each
with a symmetric generator Ai of size q + 1 generators such that Cay(Gi, Ai) is Ramanujan, i.e., λ2 of the

simple random walk on G is at most
2
√
q

q+1 . Here, we do not provide more details; we just point out that

PSL2(qi) is the group of all 2 × 2 matrices with entries from Fqi of determinant 1 where we have quotient
out by the set of multiplies of the identity matrix in the group.

6.7 Left-Right Cayley Complex

Definition 6.22 (Left-Right Cayley Complex). Let G be a finite group with two symmetric sets of generators
A, B. We assume that the identity element of G is neither in A nor in B.

Define the Left-Right Cayley Complex X = Cay2(A,G,B) as follows

• The vertices are the elements of the group G, X(0) = G.

• The edges, X(1) = XA(1) ∪XB(1) where

XA(1) = {{g, ag} : g ∈ G, a ∈ A}, XB(1) = {{g, gb} : g ∈ G, b ∈ B}.

Note that we always multiply a on the left and b on the right. The non-commutativity of the group
plays an important role here.

• The faces of “dimension” 2 are squares

[a, g, b] := {g, ag, agb, gb}.

Note that since A,B are symmetric, this square is equivalent to the squares

[a−1, ag, b], [a−1, agb, b−1], [a, gb, b−1].

Note Cay2(G,A,B) is a 2-dimensional square complex (as we will see later in a normal 2-dimenional simplicial
complex every face of dimension 2 is a triangle).

Note that (G,XA(1)) and (G,XB(1)) are exactly the Cayley graphs we defined in the previous section.
The important point here is that a always multiplies on left and b multiples on right. This gives a local
commutativity which leads to many squares/4cycles. Namely, we can start from any g and construct a
square as explained above.

We assume that the generators A,B satisfy the total no-conjugacy condition (TNC), namely

g−1ag 6= b,∀g ∈ G, a ∈ A, b ∈ B. (TNC)

Lecture 6: Locally Testable Codes 6-9

No Parallel edges. The above condition implies that the (G,XA(1) ∪XB(1)) has no parallel edges, i.e.,
{g, ag} 6= {g′, g′b} for all g, g′ ∈ G, a ∈ A, b ∈ B. If not, either g = g′, but then (TNC) implies ag 6= gb so
we get two different edges. Or, ag = g′ but then again (TNC) implies a−1ag 6= g′b. This implies that

|X(1)| = |A|+ |B|
2

|G|. (6.1)

In addition, we can show all squares are simple 4-cycles. Pick a square {g, ag, agb, gb}. We have g 6= ag, g 6=
agb} because the identity elements are not in A,B. (TNC) implies that g 6= agb. So, we have

|X(2)| = |A| · |B|
4

|G|. (6.2)

Definition 6.23 (Links). For each g ∈ G, the link of g is Xg ⊆ X(2) is defined as {[a, g, b]|a ∈ A, b ∈ B}
the set of all squares that have g. Recall that |X(g)| = |A| · |B| by the (TNC) property.

For every edge e = {g, ag}, the link of e is denoted Xe ⊆ X(2) is defined as {[a, g, b]|b ∈ B} the set of all
squares that have the edge e. So, by (TNC), |Xe| = |B|. Similarly if e = {g, gb} we let Xe = {[a, g, b]|a ∈ A}.

Later on we will talk about simplicial complexes the above definition will be extended.

6.8 Left-Right Cayley Complex Error Correcting Code

For a group G and symmetric generators A,B with (TNC) as defined above, let CA ⊆ FA2 , CB ⊆ FB2 be
binary linear error correcting codes with rate ρA, ρB and minimum distance δA, δB respectively.

We define the code C = C[G,A,B,CA, CB] as follows: For an edge e = {g, ag} define a local code

Ce = {f ∈ FXe2 : f([a, g, .]) ∈ CB}

and similarly for e = {g, gb},
Ce = {f ∈ FXe2 : f([., g, b]) ∈ CA}.

Consequently, for any vertex g ∈ G = X(0) define the local tensor code,

Cg = {f ∈ FXg2 : f([., g, .]) ∈ Cg}.

We define the global code C,

C = {f ∈ FX(2)
2 : f |Xg ∈ Cg,∀g ∈ X(0)}

or equivalently, by Exercise 6.13,

C = {f ∈ FX(2)
2 : f |Xe ∈ Ce,∀e ∈ X(1)}.

Compare this definition with Definition 6.8. Here, we still have a local code for every vertex, but instead
of the local code being an arbitrary code, independent of all other vertices, we ask it to be a tensor code
supported on all squares that contain that vertex. So, in some sense this code is one dimension larger than
the expander codes and that extra dimension enforces a lot more consistency.

Observe that here we have a set of highly dependent linear constraints on the vertices g ∈ X(0), such that the
constraints associated with adjacent vertices have significant pairwise intersections. Specifically, for every
two neighboring vertices, g, ag the inspected |A| × |B| tensor code share |B|-entries that correspond to the
edge {g, ag}. Hence, if we have a word in which a constraint of the parity check matrix of a vertex g is
violated, it leads to violating many other (different) constraints of neighbors of g. In particular, if we define a

Lecture 6: Locally Testable Codes 6-10

“new” code by dropping few constraints from the low-density parity-check matrix of Cg, the code C remains
invariant.

It is fundamental to the proof of local testability that all A-edges have exactly the same code in their local
view. Otherwise, we would not have a tensor code on vertices.

Next, we briefly discuss rate and distance of left-right Cayley codes and in the next section we discuss their
local testability.

Rate: There are basically two ways to measure the rate of code C: To count the number of constraints
imposed by local edge codes Ce or to count the number of constraints imposed by local vertex codes Cg. We
will count the former: For every edge e = {g, ag}, there are |B|(1−ρB) constraints and for every f = {g, gb}
there are |A|(1−ρA) constraint. Also, recall the length of C is |X(2)| = |G||A||B|/4. Putting these together,

ρC ≥
|G|A||B|/4− |XA(1)||B|(1− ρB)− |XB(1)||A|(1− ρA)

|G||A||B|/4
= 2(ρA + ρB)− 3

where we used |XA(1)| = |G||A|/2 and |XB(1)| = |G||B|/2.

Distance Suppose that both Cayley graphs Cay(G,A),Cay(G,B) are λ-expanders.

Let f ∈ C be a codeword and f 6= 0. So, there must exist a vertex g0 ∈ G such that wg0 = f |Xg0 6= 0. Since

wg0 = GAY G
T
B for some matrix Y ∈ FρA|A|×ρB |B|2 , there are δB |B| nonzero columns in wg and δA|A| nonzero

rows. Let A1 be the set of non-zero rows. Fix a nonzero row a ∈ A1 and let fa({g, gb}) = fa([a, g, b]) for
any g ∈ G, b ∈ B, so fa 6= 0.

Now, consider the Cay(G,B) with the base code CB around every vertex. It follows by Theorem 6.9 that
the weight of f is at least δB(δB − λ)|B|, i.e., we can write

Pg,b [fa({g, gb} 6= 0] = Pg,b [f([a, g, b]) 6= 0] ≥ δB(δB − λ).

To bound the weight of f write

‖f‖1 = Pa,g,b [f([a, g, b]) 6= 0] = Pa [a ∈ A1]Pb,g [fa({g, gb}) 6= 0|a ∈ A1] ≥ δA · δB(δB − λ)

Roughly speaking, to choose a random square, we first choose a random a and then we choose a random
square that contains a. Following the same argument for B1 we can say

δC ≥ δAδB(max{δA, δB} − λ)

6.9 Local Testability of Left-Right Complex Error Correcting Codes

The following theorem is the main technical result of Dinur, Evra, Livne, Lubotzky, Mozes [DELLM21].

Theorem 6.24 (Main Theorem). Suppose X = Cay2(A,G,B) such that Cay(G,A),Cay(G,B) are λ-
expanders, and (TNC) holds. Further assume CA⊗CB is κ0-agreement testable. If c0 := κ0

8+κ0
·min(δA, δB) >

λ then C = C[G,A,B,CA, CB] is

min

{
1

4(1 + |A|+ |B|)
,

c0 − λ
2(|A|+ |B|)

}
=: κ

locally testable with |A| · |B| queries. For any f ∈ FX(2)
2 ,

Pg∼X(0)

[
f |Xg /∈ Cg

]
≥ κ · δ(f, C).

Lecture 6: Locally Testable Codes 6-11

In other words, here there is a simple local tester algorithm: Given a word f ∈ FX(2)
2 , choose g ∼ X(0)

uniformly at random and test if f |Xg ∈ Cg.

The above theorem should come with a decoding algorithm. Given a word f ∈ FX(w)
2 , a natural idea is to

iteratively modify f such that in each iteration we select an arbitrary 4-cycle [a, g, b] and reset f([a, g, b])
such that it satisfies a majority of the checks that look at it (i.e., we set f([a, g, b]) = σ if [a, g, b] is assigned
σ in a majority of the CA ⊗ CB tensor codes that contain this square). The decoding process terminates
when no additional modification is possible (i.e., where for each [a, g, b] ∈ X(2) the value of f([a, g, b]) equals
the majority value assigned to this square). Although it seems that this candidate decoder works well, i.e.,
correctly decodes f , when f is close to C, here, we need to show such a decoder works on any f and that is
unclear.

Local Self-Correcting Algorithm Define ζ(f) := Pg
[
f |Xg /∈ Cg

]
. Given f ∈ FX(2)

2 , the self-correcting
algorithm is supposed to find a codeword c ∈ C such that δ(f, c) ≤ O(ζ(f)).

The first step in the self-correcting algorithm of [DELLM21] is to substitute f |Xg with the closest codeword
w0
g ∈ Cg, for all g ∈ X(0). Then, comes the decoding algorithm which in steps tries to decrease the following

potential function:
∆(W) := Pe={g,g′}∼X(1) [wg|Xe 6= wg′ |Xe]

In other words, the local views of g, g′ have a common row or column in their tensor code. In this potential
function we count how many fraction of these local views disagree. Now, the algorithm at each steps replaces
wg with a new code word w ∈ Cg if that decreases the potential function.

In the following we always assume W 0 = {w0
g}g∈G is the initial substitution, while W = {wg}g∈G is the final

output of the local self-correcting algorithm. First notice ∆(f) = 0; but

∆(W 0) ≤ 2ζ(f) (6.3)

This is because f is an actual code so any two neighboring g, g′ agree on their common row/column. On
the other hand, for every dispute edge e = {g, g′} in W 0, we have either fXg /∈ Cg or fXg′ /∈ Cg′ . Therefore,
the process of choosing an edge e ∼ X(1) and then an endpoint u.a.r. will lead to a modified vertex with
probability at least ∆(W)/2 proving the above inequality.

Fact 6.25. Suppose the algorithm succeeds, ∆(W) = 0. Then,

δ(f, C) ≤ δ(f,W) ≤ 4(1 + |A|+ |B|)ζ(f)

Proof. By triangle inequality,
δ(f,W) ≤ δ(f,W0) + δ(W0,W).

To bound the latter notice that ∆(W 0) ≤ 2ζ(f) and the number of disputed edges decreases by at least one
in every iteration of the algorithm. So, the algorithm runs for at most 2ζ(f)|X(1)| many iterations and in
this process we change at most 2ζ(f)|X(1)| many wg’s. So the total number of f |Xg ’s that we change is at
most

ζ(f)(|X(0)|+ 2|X(1)|) =
(6.1)

ζ(f)(1 + |A|+ |B|)|X(0)|

Since changing a local view at g correspondings to changing |A||B| many squares,

δ(f, C) ≤ ζ(f)(1 + |A|+ |B|)|X(0)||A||B|
|X(2)|

=
(6.2)

4ζ(f)(1 + |A|+ |B|)

as desired.

Lecture 6: Locally Testable Codes 6-12

The main technical statement of the proof is the following proposition:

Proposition 6.26. If ∆(W) > 0 then, ∆(W) ≥ ε0 = c0−λ
|A|+|B| (as defined in Theorem 6.24, where c =

κ0|A|+ |B| ·min{δA, δB})

Having that, let us finish the proof of Theorem 6.24. If the self-correcting algorithm succeeds and finds
∆(W) = 0, then by Fact 6.25, δ(f, C) ≤ 4(1 + |A| + |B|)ζ(f) and we are done. Otherwise, we have
∆(W) ≥ ε0. And in this case

δ(f, C) ≤ 1 =
2

ε0
· ε0

2
≤ 2

ε0
· ∆(W)

2
≤ 2

ε0
· ∆(W 0)

2
≤

(6.3)

2(|A|+ |B|)
c0 − λ

ζ(f)

as desired.

6.10 Proof of Proposition 6.26

This is the most interesting part of the proof. So, basically, the proposition implies that there are local
optima to the ∆(.) potential function that are very far from the code C. Let D be the set of dispute edges

D = {e = {g, g′} ∈ X(1) : wg|Xe 6= wg′ |Xe}.

So, by definition, ∆(W) = |D|/|X(1), and to prove the claim we need to show (assuming D is non-empty),

|D| ≥ c0 − λ
|A|+ |B|

|X(1)| = c0 − λ
2
· |X(0)|.

The proof can be seen as a higher dimensional analogue of Theorem 6.9.

For an edge {g, ag} ∈ XA(1) let

E‖({g, ag}) = {{gb, agb} ∈ XA(1) : b ∈ B}

and similarly for an edge {g, gb} ∈ XB(1),

E‖({g, gb}) = {{ag, agb} ∈ XB(1) : a ∈ A}.

For a vertex g ∈ .G, let

EA(g) = {{g, ag} : a ∈ A}, EB(g) = {{g, gb} : b ∈ B}.

Fact 6.27. Suppose {g, ag} ∈ D, then

|D ∩ EB(g)|+ |D ∩ EB(ag)|+ |D ∩ E‖({g, ag})| ≥ δB |B|.

A similar statement holds for any edge {g, gb} ∈ D.

The above can be seen analogously to proof of Theorem 6.9; recall there we showed that if a f is a word,
then every vertex adjacent to an edge (with value 1 in f) is in fact adjacent to δC0

d many such edges. Here,
we say if g is adjacent to a dispute edge it must be adjacent (or parallel) to δB |B| many such edges.

Proof. Fix an arbitrary dispute edge, say e = {g, ag} ∈ D; so wg|Xe 6= wag|Xe . Observe that both
wg|Xe , wag|Xe are valid codewords of Ce. So, δ(wg|Xe , wag|Xe) ≥ δB , i.e., these two codewords differ in
|B|δB many squares. The observation is that for any such square say {g, ag, agb, gb}, there must be another
edge of the square along which there is also a disagreement on this square, i.e., at least two edge of such
square belong to D. The fact follows.

For the sake of these lecture notes we prove a simpler statement.

Lecture 6: Locally Testable Codes 6-13

Case 1: Assume for any e ∈ D, |D ∩ E‖(e)| ≥ δB |B|.

For every edge {g, ag} (or {g, a−1g}) we say it has label [a] = {a, a−1}. Naturally, we define Xσ(1) to denote
all edges labeled with σ. (note that assuming a 6= a−1, |Xσ(1)| = |G|.

Definition 6.28 (Parallel Random Walk). We define a random walk on the set of edges X(1) as follows.
Starting from an edge e, choose uniformly a square containing e and then move to the unique edge e′ 6= e on
that square with the same label as e.

We use P ‖ to denote the corresponding random walk operator. This operator decomposes into corresponding
random walk operators on each possible label.

P ‖f =
∑
σ

P ‖σf |Xσ(1)

where the sum is over all labels σ.

For f, h : X(1)→ R define the inner product

〈f, h〉π1 =
1

2
Ee∼XA(1)f(e)g(e) +

1

2
Ee∼XB(1)f(e)h(e).

As usual, this inner product defines another inner product π0 on the group G, 〈f, h〉π0
= Eg∼π0

f(g)h(g).

It follows from the assumption of this case that

〈P ‖1D,1D〉 ≥ Ω(1) min{δA, δB}〈1D,1D〉

Lemma 6.29. Assume both Cay(G,A) and Cay(G,B) are λ-expanders. If 〈P ‖1D,1D〉 ≥ c〈1D,1D〉, then
there exists a label σ, such that |D ∩Xσ(1)| ≥ (c− λ)|G|.

Note that in such a case we are basically done with the proof of Proposition 6.26.

Proof. We write f = 1D. First, by assumption,

c ≤ 〈P
‖f, f〉
〈f, f〉

=
EσEe∼Xσ(1)f(e)P

‖
σf(σ)

EσEe∼Xσ(1)f(e)2
≤ max

σ

Ee∼Xσ(1)f(e)P
‖
σf(e)

Ee∼Xσ(1)f(e)2

Where in Eσ the expectation is over a random label; namely with probability one have we choose a uniformly
random label from A and otherwise from B.

Wlog suppose σ = [a] = {a, a−1} is the label maximizing the ratio in the RHS. Define hσ(g) := f({g, ag})
for all g ∈ G. Let PB be the simple random walk operator on Cay(G,B). We can write

〈PBhσ, hσ〉
〈hσ, hσ〉

=
Eg∼π0

hσ(g)E{g,gb}|ghσ(gb)

Eg∼π0hσ(g)2
=

Eg∼π0
f({g, ag})E{g,gb}|gf({gb, agb})

Eg∼π0f({g, ag})2
=

Ee∼Xσ(1)f(e)P
‖
σf(e)

Ee∼Xσ(1)f(e)2

In the last identity we used that choosing a random edge e ∼ Xσ(1) can be done by choosing a random

g ∼ π0 and then choosing edge {g, ag}. But the RHS is at least c by the choice of σ. So, 〈PBhσ,hσ〉〈hσ,hσ〉 ≥ c.

Therefore, the lemma follows by Lemma 6.6, 〈hσ, hσ〉 ≥ c− λ. It follows that the number of nonzero entries
in hσ is at least |G|(c− λ). So, the number of non-zero entries of f is also at least (c− λ)|G|.

Lecture 6: Locally Testable Codes 6-14

Case 2: Assume for any e = {g, ag} ∈ D, |D ∩EB(g)|+ |D ∩EB(ag)| ≥ δB |B|. Now, we get to the more
interesting part. Note that so far we haven’t used robust testability property of the code CA ⊗ CB . This
will crucially show up in this case.

Lemma 6.30. Suppose CA ⊗ CB is κ0 agreement testable. Then, for any g ∈ G,

|D ∩ EA(g)|
|A|

+
|D ∩ EB(g)|
|B|

= Pa [{g, ag} ∈ D]+Pb [{g, gb} ∈ D] ≤ 1

κ0
Pa∈A,b∈B [{ag, agb} ∈ D or {gb, agb} ∈ D] .

Roughly speaking, this lemma shows that disagreements on edges that are incident at a vertex g translate
to a proportional number of disagreements on the edges that are in 4-cycles/squares that contain g but are
not incident to it.

Proof. Define w1, w2 ∈ FA×B2 . For any a ∈ A, b ∈ B define

w1(a, b) = wag([a
−1, ag, b]) and w2(a, b) = wgb([a, gb, b

−1]).

Observe that w1 ∈ FA2 ⊗ CB and w2 ∈ CA ⊗ FB2 . This is because the a−1-th row of w1 is the same as the
a−1-th row of wag, thus a word of CB . Similarly, b−1-th column of w2 comes from b−1-th column of wgb. The
observation is that for any a, w1(a, .) 6= wg(a, .) iff {g, ag} ∈ EA(g) is in D and similarly, w2(., b) 6= wg(., b)
iff {g, gb} ∈ EB(g) is in D.

It follows by κ0-agreement testability of CA ⊗ CB (see Definition 6.19) that, there exists a codeword w∗ ∈
CA ⊗ CB such that

Pa [w∗(a, .) 6= w1(a, .)] + Pb [w∗(., b) 6= w2(., b)] ≤ 1

κ0
Pa,b [w1(a, b) 6= w2(a, b)] .

Since w is a local optima of the self-correcting algorithm, we must have that the number of disputed edges
do not decrease if we replace wg with w∗. That means that

Pa [w∗(a, .) 6= w1(a, .)] + Pb [w∗(., b) 6= w2(., b)] ≥ Pa [wg(a, .) 6= w1(a, .)] + Pb [wg(., b) 6= w2(., b)]

= Pa [{g, ag} ∈ D] + Pb [{g, gb} ∈ D] .

Finally, notice that if w1(a, b) 6= w2(a, b) equivalently we have wag(a
−1, ag, b]) 6= wgb([a, gb, b

−1]). But this
means that (exactly) one of the two edges {ag, agb}, {gb, agb} are in D as desired.

Next, we construct a λ-expander random walk, that naturally jumps from a vertex g to edges of 4-cycles
that are not incident to g. This together with the previous lemma implies that the number of dispute edges
should be a constant fraction of |G|.

Let P0 = 1
2PA + 1

2PB , be the simple random walk operator in Cay(G,A∪B) where as usual PA, PB are the
random walk operators of Cay(G,A),Cay(G,B) respectively. Since PA, PB have the same uniform stationary
distribution, it follows that λ2(P0) ≤ λ. Consider the down uperator P ↓ : RX(1) → RX(0) and (its adjoint)
the up operator P ↑ : RX(0) → RX(1). In particular, for a function f1 ∈ RX(1),

P ↓f1(g) = Ee∼π1|gf1(e) =
1

2
Eaf1({g, ag}) +

1

2
Ebf1({g, gb}).

Similarly, for f0 : RX(0) → RX(1), and any edge e = {g1, g2} we have

P ↑f0({g1, g2}) =
1

2
f0(g1) +

1

2
f0(g2).

It turns out that these operators are adjoint of each other:

Lecture 6: Locally Testable Codes 6-15

Exercise 6.31. Show that for any function f1 ∈ RX(1)andg0 ∈ RX0

〈P ↓f1, g0〉π0
= 〈f1, P ↑g0〉π1

.

The following fact is an immediate consequence of this exercise.

Fact 6.32. Let P = P ↑P0P
↓. Then, λ2(P) ≤ λ.

Proof. Let f1 ∈ RX(1) such that 〈f1,1〉π1
= 0. Let f0 = P ↓f1. First notice

〈f0,1〉π0
= 〈P ↓f1,1〉π0

= 〈f1, P ↑1〉π1
= 〈f1,1〉π1

= 0.

Therefore,

〈Pf1, f1〉π1
= 〈P ↑P0P

↓f1, f1〉π1
= 〈P0P

↓f1, P
↓f1〉π0

= 〈P0f0, f0〉π0
≤

〈f0,1〉=0
λ2(P0)〈f0, f0〉π0

= λ‖P ↓f1‖2

The RHS is smaller than ‖f1‖2 simply because P ↓ is a stochastic operator.

Exercise 6.33. Show that for any stochastic operator P ∈ Rm×n and any function f ∈ Rn, ‖Pf‖ ≤ ‖f‖.

Lemma 6.34. Let f = 1D ∈ RX(1). Then,

〈Pf, f〉π1
≥ κ0

8
min{δA, δB}〈f, f〉π1

.

Proof. So, let us understand the LHS: Given an edge e ∈ D the LHS is the probability that one step of the
walk P = P ↑P0P

↓ jumps to another dispute edge in D. So, let us first understand this walk:

Step 1) Choose at random one of the endpoints of the edge, g1 ∈ e.

Step 2) With probability 1
2 let g2 = a1g1 for a random a1 ∈ A, and with probability 1

2 let g2 = g1b1 for a
random b1 ∈ B.

Step 3) With probability 1
2 let e′ = {g2, a2g2} for a random a2 ∈ A, and with probability 1

2 let e′ = {g2, g2b2}
for a random b2 ∈ B. Output e′.

Now, fix an edge e = {g, ag} ∈ D. By Lemma 6.30,,

Pa,b [{ag1, ag1b} ∈ D or {g1b, ag1b} ∈ D] ≥ κ0
dg1
|B|

,

where dg1 = |D∩EB(g1)|. Now, the question is what is the probability that e′ is one of the edges {ag1, ag1b}
or {g1b, ag1b}? This only happens, if in steps 2,3 we walk in alternating color, i.e., in step 2 we choose an
edge of color A adjacent to g1 then in step 3 we choose an edge of color B adjacent to g2 or vice versa.
Therefore,

P [e′ ∈ D|g1] ≥ P [A-B step, e′ ∈ D|g1]P [B-A step, e′ ∈ D|g1]

≥ 1

4
(Pa,b [{ag1, ag1b} ∈ D] + Pa,b [{g1b, ag1b} ∈ D])

≥ 1

4
κ0
dg1
|B|

Averaging over the possibilities of g1, we get

P [e′ ∈ D] ≥ κ0
4|B|

· |D ∩ E
B(g)|+ |D ∩ EB(ag)

2

But by the assumption of Case 2, the RHS is at least κ0

4|B| · δB/2 as desired.

Lecture 6: Locally Testable Codes 6-16

Finally, using Lemma 6.6, since λ2(P) ≤ λ we get

|T |
|X(1)|

= P [T] = 〈1T ,1T 〉 ≥
κ0
8

min{δA, δB} − λ.

This finishes the proof of Proposition 6.26.

References

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Dec. 1993 (cit. on p. 6-4).

[BSS06] E. Ben-Sasson and M. Sudan. “Robust locally testable codes and products of codes”. In:
Random Structures & Algorithms 28.4 (2006), pp. 387–402 (cit. on p. 6-6).

[DELLM21] I. Dinur, S. Evra, R. Livne, A. Lubotzky, and S. Mozes. “Locally Testable Codes with constant
rate, distance, and locality”. abs/2111.04808. 2021. url: https://arxiv.org/abs/2111.
04808 (cit. on pp. 6-10, 6-11).

[DSW06] I. Dinur, M. Sudan, and A. Wigderson. “Robust Local Testability of Tensor Products of LDPC
Codes”. In: APPROX. Ed. by J. Diaz, K. Jansen, J. D. P. Rolim, and U. Zwick. Vol. 4110.
Springer, 2006, pp. 304–315 (cit. on p. 6-6).

[SS96] M. Spiser and D. Spielman. Expander Codes. Nov. 1996 (cit. on p. 6-3).

https://arxiv.org/abs/2111.04808
https://arxiv.org/abs/2111.04808

	Expander Graphs
	Expander Codes
	Locally Testable Codes
	Tensor Codes
	Robust Testable Tensor Codes
	Intro to Group Theory
	Left-Right Cayley Complex
	Left-Right Cayley Complex Error Correcting Code
	Local Testability of Left-Right Complex Error Correcting Codes
	Proof of Proposition 6.26

