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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the last few lectures we introduced expander graphs. Suppose a given G with random walk matrix P
(and stationary distribution π0) is a λ-expander. This means that

λ = min
f 6=const

E(f, f)

Var(f)
= min
f 6=const

Eu∼π0E{u,v}|u(f(u)− f(v))2

Eu∼π0
Ev∼π0

(f(u)− f(v))2

Suppose we are given a (non-constant) function f that is locally correlated,

Eu∼π0E{u,v}|u(f(u)− f(v))2 ≤ η.

In other words, we can say that (on average) f assigns almost similar values to the endpoints of every edge.
Then, it must also be globally correlated, i.e., we have

Eu∼π0
Ev∼π0

(f(u)− f(v))2 ≤ η

λ
.

In other words, then (on average) the values that f assigns to any random pair of vertices is almost the
same.

Note that this property does not hold if the graph is not an expander graphs.

Lemma 5.1. For any symmetric matrix A ∈ Rn×n and B � 0, we have

A •B := Tr(AB) ≤
n∑
i=1

λi(A)λi(B).

We leave this as an exercise; the main idea of the proof is that for any set of real numbers a1, . . . , an ∈ R
and b1 ≥ b2 ≥ · · · ≥ · · · ≥ bn ≥ 0 we have

n∑
i=1

aibi ≤
n∑
i=1

aσ(i)bi,

where σ(.) is the permutation chosen such that aσ(1) ≥ · · · ≥ aσ(n).

In the following lemma we prove a generalization of this fact for low-threshold rank graphs.

Lemma 5.2. Let v1, . . . , vn ∈ Rn with Ei ‖vi‖2 = 1, Ei,j〈vi, vj〉2 ≤ 1/k where the expectations are with
respect to the uniform distribution. For C > 0, any symmetric matrix A with ‖A‖ ≤ 1 (i.e., all eigenvalues
of A are at most 1), and

Ei
∑
j

Ai,j〈vi, vj〉 ≥ 1− ε

we have λk(1−1/C)2(A) ≥ 1− Cε where λi is the i-th largest eigenvalue of A.
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Proof. First,

1 = Ei ‖vi‖2 =
1

n
Tr(V ) = Eiλi(V ) (5.1)

On the other hand, for any integer 1 ≤ k′ ≤ n, by Cauchy-Schwartz inequality we have,

1

n

k′∑
i=1

λi(V ) ≤ 1

n

√
k′

√√√√ k′∑
i=1

λi(V )2 ≤
√
k′

n
‖V ‖F =

√
k′
√

Ei,j〈vi, vj〉2 ≤
√
k′

k
(5.2)

Let k′ be the largest index such that λk′(A) ≥ 1− Cε. we need to show k′ ≥ k(1− 1/C)2.

1− ε =
1

n
A • V ≤

Lemma 5.1
Eiλi(A)λi(V )

≤
λi(A)≤1

1

n

k′∑
i=1

λi(V ) +
1

n

n∑
i=k′+1

(1− Cε)λi(V )

=
(5.1)

1− Cε

n

n∑
i=k′+1

λi(V )

Therefore,

1

C
≥ 1

n

n∑
i=k′+1

λi(V ) = 1− 1

n

k′∑
i=1

λi(V ) ≥
(5.2)

1−
√
k′/k.

Therefore,
√
k′/k ≥ 1− 1/C and k′ ≥ k(1− 1/C)2.

As a consequence we prove the following statement.

Corollary 5.3 (Local to Global Theorem). Given a graph G = (V,E) with n vertices and a distribution
π1 : E → R≥0 and let π0 be the corresponding distribution over vertex of G and P be the random walk matrix.
Furthermore, suppose we are given a set vectors v1, . . . , vn such that

Ei∼π0 ‖vi‖
2

= 1 and E{i,j}∼π1
〈vi, vj〉 ≥ ε.

Then,

Ei,j∼π0〈vi, vj〉2 ≥
ε2

4 rankε/2(P )
.

Proof. Let P̃ be the normalized Laplacian matrix of G where P̃i,j = π1({i,j})
2
√
π0(i)π0(j)

and let for any i, let

ui =
√
nπ0(i)vi. then

1− (1− ε) = ε ≤ E{i,j}∼π1
〈vi, vj〉 =

2

n

∑
{i,j}∈E

P̃i,j〈ui, uj〉 = Ei
∑
j

P̃i,j〈ui, uj〉.

Let A be the adjacency matrix of G with Ai,j = π1({i, j})/2. Then, P = Π−1
0 A and P̃ = Π

−1/2
0 AΠ

−1/2
0 so

P, P̃ have the same eigenvalues.

On the other hand,

1 ≥ Ei∼π0
‖vi‖2 = Ei∼π0

1

nπ0(i)
‖ui‖2 = Ei ‖ui‖2
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Suppose,
1

k
= Ei,j∼π0

〈vi, vj〉2 = Ei,j〈ui, uj〉2.

Then, by the above lemma, for C = (1 + ε/2) we get

1− C(1− ε) = ε/2− ε2/4 ≤ 1− ≤ λk(1−1/C)2(P̃ ) ≈ λkε2/4(P ).

So, rankε/2(P ) ≥ kε2

4 = ε2

4Ei,j〈vi,vj〉2

5.1 Approximation Algorithms for Max Cut

Let G be a graph with a distribution π1 over its edges with corresponding random walk operator P and
π0 the stationary distribution of the walk. In this section we describe a 1 + ε approximation algorithm of

[BRS11] for maxcut that runs in time nrank≥ε2/2(P )/ε4 .

Let X1, . . . , Xn be random variables in {−1,+1}. We can think of the maximum-cut as the problem of
finding a joint distribution over X1, . . . , Xn that maximizes.

maxE{i,j}∼π1
P [Xi 6= Xj ]

Now, how can we optimize over such high dimensional family of distributions? The idea is that for each vertex
i and a side s ∈ {−1,+1} we have a vector vi,s with ‖vi,+1‖2 = P [Xi = +1] and ‖vi,−1‖2 = P [Xi = −1],
and, for each pair of vertices {i, j} and s1, s2 ∈ {−1,+1} we have a vector vi,j,s1,s2 with property that

‖vi,j,s1,s2‖
2

= 〈vi,s1 , vj,s2〉 = P [Xi = s1, Xj = s2] .

Now, we can obtain all these vectors by writing a SDP relaxation. Note that the SDP solution does not give
us an actual distribution over all n variables X1, . . . , Xn; it just gives a locally consistent distribution.

Because we don’t have a joint distribution over all variables, perhaps the simplest idea to round is to run
an independent rounding: For any vertex i, put i at the −1-side with probability ‖vi,−1‖2 and put it on the
+1-side otherwise. How well does this algorithm do with respect to the objective function? The loss is at
most

E{i,j}∼π1
Psdp [Xi 6= Xj ]− Pindep [Xi 6= Xj ] ,

i.e., for every edge {i, j} the probability that i, j map to the opposite sides of the cut in the SDP solution
minus the probability that they map to opposite sides in the independent rounding solution.

Further notice,
E [XiXj ] = P [Xi = Xj ]− P [Xi 6= Xj ] = 1− 2P [Xi 6= Xj ] .

So, we can write

ALG = SDP − E{i,j}∼π1
(Psdp [Xi 6= Xj ]− Pindep [Xi 6= Xj ])

= SDP − E{i,j}∼π1
(
1

2
(1− E [XiXj ])− (P [Xi = −1]P [Xj = +1] + P [Xi = +1]P [Xj = −1])

Using 1
2 = 1

2 (P [Xi = +1] + P [Xi = −1])(P [Xj = +1] + P [Xj = −1])

= SDP − 1

2
E{i,j}∼π1

(−E [XiXj ] + (P [Xi = +1]− P [Xi = −1])(P [Xj = +1]− P [Xj = −1]))

= SDP +
1

2
E{i,j}∼π1

Cov(Xi, Xj)
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where recall that
Cov(Xi, Xj) = E [XiXj ]− E [Xi]E [Xj ] .

So, if E{i,j}∼π1
Cov(Xi, Xj) ≥ −ε we obtain a multiplicative 1 − ε approximation to max-cut. But what if

the covariance is too small? The main idea of [BRS11] is the following fundamental inequality proved in the
following lemma:

Ei∼π0
Ej∼∼π0

(EVar[Xj ]− EVar[Xj |Xi]) ≥ Ei,j∼π0
Cov(Xi, Xj)

2 1

2

(
1

Var[Xi]
+

1

Var[Xj ]

)
≥ Ei,j∼π0

Cov(Xi, Xj)
2 (5.3)

where the inequality uses that Var[Xi] ≤ EX2
i = 1 for any i.

Lemma 5.4. For any two i, j we have

EVar[Xj |Xi] ≤ Var[Xj ]−
Cov(Xi, Xj)

2

Var[Xi]

Proof. First, recall law of total variance: For any two random variables X,Y ,

Var[Y ] = EVar[Y |X] + Var[E(Y |X)]

Having that it is enough to show

Var[E(Xj |Xi)] ≥
Cov(Xi, Xj)

2

Var[Xi]

The above identity holds in general as long as Xi only takes two different values. First, notice that Variance
and Covariance are shift-invariant, so we can assume EXi = EXj = 0. So, it is enough to show

E[E(Xj |Xi)
2] =

E[XiXj ]
2

E[X2
i ]

Now, the above basically follows by Cauchy-Schwartz inequality:

E [XiXj ]
2

= E [E [XiXj |Xi]]
2

= E [XiE [Xj |Xi]]
2 ≤
Cauchy

E
[
X2
i

]
E
[
E [Xj |Xi]

2
]

as desired.

Having that, one can imagine a win-win strategy: Either E{i,j}∼π1
Cov(Xi, Xj) ≥ −ε and we get a 1 − ε

approximation to maxcut or, E{i,j}∼π1
Cov(Xi, Xj) < −ε. In the latter case, by the following fact, the

Covariance matrix is PSD. So, there are vectors u1, . . . , un such that 〈ui, uj〉 = Cov(Xi, Xj) for all i, j. Let
wi = u⊗2

i . So, by Cauchy-Schwartz inequality the aforementioned assumption implies that

ε2 ≤ E{i,j}∼π1
Cov(Xi, Xj)

2 = E{i,j}∼π1
〈ui, uj〉2 = E{i,j}∼π1

〈wi, wj〉.

Then, by Corollary 5.3, we get that

Ei,j∼π0
Cov(Xi, Xj)

2 ≥ Ei,j∼π0
〈ui, uj〉4 = Ei,j∼π0

〈wi, wj〉2 ≥
ε4

4 rankε2/2(P )
.

Plugging this in to (5.3) if we sample i ∼ π0, round Xi (to +1 or −1 with respect to its marginals) then the

expected variance of all remaining variables decrease by ε4

4 rankε2/2(P ) . But in this case we need that every

Xj to be well-defined after conditioning Xi = +1/− 1. This leads to the Lasserre/Sum-Squares hierarchy.

Fact 5.5. Given a set of vectors vi,j,s1,s2 as defined above the covariance matrix is PSD.

Proof. We just sketch the proof: The idea is to define a vector ui = vi,+1 − vi,−1 − E [Xi] where E [Xi] =

‖vi,+1‖2 − ‖vi,−1‖2 and show that the covariance matrix is just the Gram-matrix of u1, . . . , un.
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Sum of Squares Hierarchy. In the m+ 2 rounds of the sum of squares hierarchy for every set S ⊆ V of
size |S| ≤ m+ 2 and any α ∈ {+1,−1}|S| we have a vector vS,α. For any two sets S, T with |S ∪ T | ≤ m+ 2
and α ∈ {+1,−1}|S|, β ∈ {+1,−1}|T | we have

〈vS,α, vT,β〉 = P [XS = α,XT = β]

Now, this allows us to follow the same line of reasoning for m many steps, each time conditioning a variable
to be +1 or −1. Now, after O(rankε2/2(P )/ε4) many steps either we get to (conditional) variables X1, . . . , Xn

with Ei∼π0 Var[Xi] < 0 but this is impossible. So, the procedure should end in O(rankε2/2(P )/ε4) many
conditiong.

This finishes the proof of [BRS11].

Remark 5.6. It remains a fascinating open problem to design a sub-exponential time algorithm for the
max-cut problem. Based on this discussion, all we need to do is to design a (sub-exponential) time algorithm
for high threshold rank graphs, i.e., graphs where rankε(P ) ≥ nΩ(1). The byproduct of the above method is
that we only need to focus on the case where Ei,j∼π0

Cov(Xi, Xj)
2 ≤ n−c for some constant c > 0. Or, in

other words, that there are vectors v1, . . . , vn with ‖vi‖2 ≈ 1 and Ei,j∼π0
〈vi, vj〉2 < n−c. If in such a case

one can get a tight approximation for max-cut efficiently, similar to the algorithm for unique games in the
last lecture, it would lead to a sub-exponential time 1 + ε approximation algorithm.
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