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Lecture 3: Small Set Expansion Problem
Lecturer: Shayan Oveis Gharan 01/13/2022

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we introduce Cheeger’s inequality and use it together with the spectral profile theorem from
the previous lecture to design an approximation algorithm for the small set expansion problem on high
threshold rank. The materials of this lecture is based on the work of Arora, Barak and Steurer [ABS15].

3.1 Cheeger’s Inequality

Given a graph G = (V,E) with a random walk matrix P . For a set S ⊆ V define

φ(S) =
EP (1S ,1S)

π0(S)
=

1
2π1(E(S, S))

π0(S)
=

1
2Eu∼π0E{u,v}|uP [|{u, v} ∩ S| = 1]

π0(S)
= Eu∼π0(S)P{u,v}|u [v /∈ S]

where E(S, S) is the set of edges in the cut (S, S). In other words, φ(S) is the probability that a walk started
at a vertex of S chosen with probability proportional π0(.) leaves S in one step.

Lemma 3.1 (Cheeger’s Inequality). Given a graph G = (V,E), a set S ⊆ V with π0(S) ≤ 1/2. Then,

1

2
min

f :S→R≥0

E(f, f)

Var(f)
≤ min
T⊆S

φ(T ) ≤ min
f :S→R≥0

√
2E(f, f)

Var(f)

Proof. First, we prove the left side. Fix a set T ⊆ S whit minimum conductance. Let f = 1T . Then, since
π0(T ) ≤ π0(S) ≤ 1/2,

Var(1T ) = π0(T )− π0(T )2 ≥ π0(T )/2.

This proves the left inequality.

Next, we prove the harder direction. Fix a non-zero function f : S → R≥0, we find a set T ⊆ supp(f) such
that

φ(T ) ≤ 2

√
E(f, f)

Var(f)

Perhaps after renormalization, assume f ≤ 1. For a threshold t ≥ 0, define St = {v : f2(v) ≥ t}. Choose a
threshold t ∼ [0, 1] uniformly at random. Then,

Etπ1(E(St, St)) = EtE{u,v}∼π1
P
[
(f2(u) < t ∧ f2(v) > t) ∨ (f2(v) < t ∧ f2(u) > t)

]
=

1

2
E{u,v}∼π1

|f2(u)− f2(v)|

≤ 1

2
E{u,v}∼π1

|f(u)− f(v)| · |f(u) + f(v)|

≤
Cauchy−Schwarz

√
1

2
E{u,v}∼π1

(f(u)− f(v))2 ·
√

1

2
E{u,v}∼π1

(f(u) + f(v))2

≤
√
E(f, f) ·

√
E{u,v}∼π1

f(u)2 + f(v)2
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Furthermore, notice

E{u,v}∼π1
f(u)2 + f(v)2 = E{u,v}∼π1

Eu|{u,v}2f(u)2 = Eu∼π0
E{u,v}|u2f(u)2 = 2Ef2.

On the other hand,

Etπ0(St) = EtEu∼π0
P
[
t < f(u)2

]
= Ef(u)2.

Putting these together there must exist a value of t, say t∗ such that

φ(St∗) ≤
Etπ1(E(St, St)

Etπ0(St)
≤
√

2E(f, f)√
Ef2

≤

√
2E(f, f)

Var(f)

where the last inequality uses that Var(f) = Ef2 − (Ef)2 ≤ Ef2.

As an immediate consequence of the above lemma we can define a conductance/expansion profile for a graph
G, where for any 0 ≤ r < 1,

Φ(r) = inf
S:π0(S)≤r

φ(S).

Then, putting the above lemma next to the improved mixing time bound we can prove an improved mixing
time using the expansion profile, namely

8 log ε−1

log π0(u)−1∑
t=1

1

Φ2
P̃

(2−t+2)

3.2 Small Set Expansion Problem

Definition 3.2 (Small-Set Expansion Hypothesis, [RS10]). . For every constant η > 0, there exists suffi-
ciently small δ > 0 such that given a graph G it is NP-hard to distinguish the following cases,

Yes: There exists a vertex set S ⊆ V with π0(S) ≤ δ and conductance φ0(S) ≤ η,

No: For every set S ⊆ V with π0(S) ≤ δ satisfies φ(S) ≥ 1− η.

Raghavendra and Steurer in [RS10] established a reduction from the Small-Set Expansion problem to Unique
Games. More precisely, their work showed that Small-Set Expansion Hypothesis implies the Unique Games
Conjecture. This result suggests that the problem of approximating expansion of small sets lies at the
combinatorial heart of the Unique Games problem. In words, if one wants to design an algorithm for the
Unique Games it is better to start with the small set expansion problem.

In fact, this connection proved useful in the development of subexponential time algorithms for Unique
Games by Arora, Barak and Steurer [ABS15]. We remark that it was also conjectured in [RS10] that Unique
Games Conjecture is equivalent to the Small-Set Expansion Hypothesis but that is still left open.

3.3 Subexponential Time Algorithms for SSE Problem

For a graph G = (V,E) with random walk matrix P and 0 < η < 1 write

rank1−η(P ) = |{λi(P ) : λi ≥ 1− η}|
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to denote the number of eigenvalues of P that are at least 1 − η in absolute value. Recall that the first
eigenvalue of P is 1, so this rank is at least 1 and if it is equal to 1 (for a constant η), then G is an expander
graph. We say a graph G is low-threshold rank of rank1−η(P ) is “small”.

In the following lemma we prove that if G is a low-threshold rank graph (for a constant η say η = 1/2) then we
can approximate the small set expansion within a constant factor (and in time exponential in rank1−η(P )).

Putting this together with Theorem 3.4 gives a sub-exponential time algorithm for the small set expansion
problem.

Lemma 3.3 (Subspace Enumeration Algorithm). Given a graph G = (V,E), there is a exp(rank1−η(P ))-
time algorithm that given an ε > 0, if G has a set S with φ(S) ≤ ε outputs a set S′ with π0(S∆S′) ≤ 4ε/η.
So, φ(S′) ≤ O(ε/η).

Proof. The algorithm that we will discuss is called the subspace enumeration algorithm and it was first
proposed by Kolla [Kol10]. Fix a set S ⊆ V (with φ(S) ≤ ε). Let U ⊆ RV be the span of eigenvectors of P

with eigenvalue at least 1 − η (in absolute value). So, dim(U) = rank1−η(G). Note that

∥∥∥∥ 1S√
π0(S)

∥∥∥∥ = 1; we

write 1S := 1S√
π0(S)

. We write

1S =
√

1− γx+
√
γx⊥

for x ∈ U and x⊥ orthogonal to U and both are unit norm functions. It follows that

ε ≥ φ(S) =
E(1S ,1S)

π0(S)
=
〈(I − P )1S ,1S〉

π0(S)

= 1− 〈P1S ,1S〉
= 1− (1− γ)〈Px, x〉 − γ〈Px⊥, x⊥〉
≥

〈Px,x〉≤1
1− (1− γ)− γ(1− η) = γη.

In the third equality we used that Px ∈ U and thus orthogonal to x⊥ and, similarly, Px⊥ ∈ U⊥. Therefore,∥∥1S − x∥∥2
=
∥∥1S∥∥2

+ ‖x‖2 − 2〈1S , x〉 = 2− 2
√

1− γ ≈ γ ≤ ε/η.

Now, we search for the x vector by running a
√
ε/η net in the unit sphere of dimension rank1−η(P ) = dim(U)

in U . Note that the number of points in this net is no more than
√
ε/η

dim(U)
= exp(rank1−η(P ) log(ηε−1)).

To run such an exhaustive search we can start with all points in the
√
ε/η

dim(U)
grid around the origin and

project each of its points to the unit sphere. So, we find a vector y such that
∥∥1S − y∥∥2 ≤ 2ε/η.

Now, we construct a set S′ based on the vector y.

S′ :=

{
v : yv ≥

1

2
√
π0(S)

}

Observe that for any v ∈ S∆S′ we have |1S − y|v ≥ 1

2
√
π0(S)

. This is simply because every coordinate of 1S

is either zero or 1/
√
π0(S).

Therefore,

2ε/η ≥
∥∥1S − y∥∥2 ≥ π0(S∆S′)

4π0(S)
.
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So, π0(S∆S′)
π0(S) ≤ 4ε/η. So,

φ(S′) =
E(1S′ ,1S′)

π0(S′)
≤ E(1S ,1S) + π0(S∆S′)

π0(S)(1− 4ε/η)
≤ ε(1 + 4ε/η) + 5ε/η

This finishes the proof of the lemma.

Theorem 3.4. Let G = (V,E) be a graph with (at most) n vertices such that rank1−η(P ) ≥ n2η/γ . Then,
there is a polynomial time algorithm that finds a set S with π0(S) ≤ 4n−η/γ and φ(S) ≤ 4

√
γ.

Proof. Recall that P̃ = (I +P )/2 is the lazy-random walk operator. Let fv = 1v/π0(v). Then, for any t ≥ 0

Ev∼π0

∥∥∥P̃ tfv∥∥∥2

= Ev∼π0Eu∼π0 P̃
2tfv(u)fv(u) = Ev∼ππ(v)

P̃ 2t(v, v)

π(v)
· 1

π(v)
=
∑
v

P̃ 2t(v, v) = Tr(P̃ 2t)

So, for t = logn
γ

Ev∼π0

∥∥∥P̃ tfv∥∥∥2

= Tr(P̃ 2t) ≥ rank1−η(P )(1− η/2)2t ≥ n2η/γ · n−η/γ = nη/γ .

On the other hand, notice

Ev∼π0
‖fv‖2 = Ev∼π0

1

π0(v)
= n.

So, there must be a vertex u such that
‖P̃ tfu‖2
‖fu‖2

≥ Ev∼π0‖P̃ tfv‖2
Ev∼π0‖fv‖

2 = nη/γ

n . Fix such vertex u. So we have,

Var(P̃ tfu)

Var(fu)
=

∥∥∥P̃ tfu∥∥∥2

− (EP̃ tfu)2

1
π0(u) − 1

≈ nη/γ

n
.

We just ignore the −1 in the numerator and denominator. Therefore, by the proof of Theorem 2.7 (in lecture
2) for some t∗ ≤ t we have g = P̃ t

∗
fu satisfies

γ ≥ Var(g)−Var(P̃ g)

Var(g)
=
EP̃ 2(g, g)

Var(g)
≥

Corollary2.8

EP̃ (g, g)

Var(g)

This is because if for every i ≤ t, we have Var(P̃ ifu)−Var(P̃ P̃ ifu)

Var(P̃ ifu)
≥ γ then, by time t = logn

γ we should have

Var(P̃ tfu) ≤ Var(fu)/n. Note that since variance is decreasing, Var(g) ≥ Var(P̃ tfu).

Therefore, by Lemma 2.6, there is a function h : supp(g)→ R≥0 that is a level set of g such that
EP̃ (h,g)

Var(h) ≤
2
EP̃ (g,g)

Var(g) ≤ 2γ and

π(supp(h)) ≤ 4(Eg)2

Var(g)
≤ 4(EP t∗fu)2

Var(P tfu)
≤ 4

nη/γ − 1

Therefore, applying Cheeger’s inequality 3.1 to h and matrix P̃ we get a set S such that

2
√
γ ≥

√
2
EP̃ (h, h)

Var(h)
≥ φP̃ (S) =

EP̃ (1S ,1S)

π(S)
=

1
2EP (1S ,1S)

π(S)
=

1

2
φP (S)

where we used that I − P̃ = I − (I + P )/2 = 1
2 (I − P ). It follows that φP (S) ≤ 4

√
γ. Furthermore,

π(S) ≤ π(supp(h)) ≤ 4n−η/γ .
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Corollary 3.5. Let G be an n vertex graph, and ε > 0. If rank1−ε5(G) ≥ n2ε then we can find in polynomial
time a set S ⊆ V (G) with π0(S) ≤ n−ε and φ(S) ≤ O(ε2)

Proof. Instantiate Theorem 3.4 with η = ε5, γ = ε4.

We remark that after the work of [ABS15], several papers studied higher order variants of Cheeger’s inequality
and they managed to prove the following theorems:

Theorem 3.6 (Higher Order Cheeger’s Inequality, [LOT14; LRTV12] ). For any graph G and any 2 ≤ k ≤ n
if rank1−ε(G) ≥ k then G all of the following holds true:

• G has a set S with π0(S) ≤ 1/k and
φ(S) ≤ O(k2)

√
ε,

• G has a set S with φ0(S) ≤ 2/k and
φ(S) ≤ O(log k)

√
ε

• If G is planar then it has a set with φ0(S) ≤ 2/k and

φ(S) ≤ O(
√
ε).

Furthermore, such a set can be found in polynomial time.

Although above theorem have found many applications in TCS it didn’t lead to a resolution of the SSE
hypothesis. This is mainly due to the fact that, unless G is planar or low dimensional, there is a loss of
O(log k) in the conductance of the small set promised by theorem.

Theorem 3.7 (Low trace threshold rank decomposition theorem). Let G be a regular graph. There is a
polynomial time algorithm that on input a graph G and ε > 0, outputs a partition χ = (P1, . . . , Pq) of V (G)
such that

φ(χ) := E{u,v}∼π1
I
[
χ−1(u) 6= χ−1(v)

]
≤ O(ε)

and for every i ∈ [q], rank1−ε5(G[Pi]) ≤ n2ε.

Here we sketch the proof of the theorem: We start by making the graph 1/2-lazy. The idea is to use
Corollary 3.3 repeatedly. We start with a single partition V ; each time we choose a set Pj ∈ χ such
that rank1−ε5(G[Pj ]) > n2ε. Then, we use Corollary 3.3 to decompose Pj into two sets S, Pj − S with
π0(S) ≤ n−επ0(Pj). Note that, because the graph is 1/2-lazy, the stationary distribution of the walk on
G[Pj ] is almost the same as π0. So, we don’t need to worry about the updated stationary measure. Then,
we substitute Pj with S, Pj − S in χ and we charge any new edge added to the partition the smaller side,
i.e., S.

It is not hard to see that such an algorithm always terminates. Furthermore, every edge is part of a “split”
at most O(ε−1) times. This is because the measure of the smaller side always shrinks by a factor of n−ε.
So after O(ε−1) many steps we get to a set Pj with measure π0(Pj) ≤ n−(1−ε). Since G is regular, π0 is
uniform, so rank1−η(G[Pj ]) ≤ |Pj | ≤ n3ε.
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3.4 Subexponential Time algorithms for Unique Games Problem

A unique game of n variables and alphabet k is an n vertex graph G whose edges are labeled with per-
mutations on the set [k], where every edge e = (u, v) (arbitrarily oriented) is labeled with a permutation
πe : [k] → [k]. An assignment to the game is a string y = (y1, . . . , yn) ∈ [k]n, and the value of y is the
fraction of edges e = (u, v) for which yv = πe(yu). The value of the game G is the maximum value of y
over all y ∈ [k]n. Khot’s Unique Games Conjecture [Kho02] states that for every ε > 0, there is an integer
k > 0, such that given a graph G = (V,E) and permutations πe for every e ∈ E it is NP-hard to distinguish
between the following cases:

Yes: Game has value at least 1− ε, and

No: Game has value at most ε.

In this section we now show that this problem can be solved in subexponential time:

Theorem 3.8 (Subexponential Algorithm for Unique Games). There is an exp(knO(ε)) poly(n)-time algo-
rithm that on input a unique game G on n vertices and alphabet size k that has an assignment satisfying
1− ε6 of its constraints outputs an assignment satisfying 1−O(ε log ε−1) of the constraints.

We now sketch the proof of this theorem. First, it turns out that, without loss of generality, we can assume
that the unique game constraint graph G is d-regular for some (constant) d. If not, one can blow up every
vertex v with degree dv to a cloud of dv vertices each being connected to one of the neighbors of v. Then, we
connect this cloud of vertices with a constant degree expander with a trivial equality bijection on the edges
of the expander.

So, from now on, assume G is d-regular. For a unique game G = (V,E), the label extended graph of G,
denoted Ĝ, is a graph with nk vertices, where for an edge (u, v) ∈ E and i, j ∈ [k], we place an edge between
(u, i) and (u, j) in Ĝ if and only if πe(i) = j. That is, every vertex v ∈ V corresponds to the “cloud”
Cv := {(v, 1), . . . , (v, k)} in V (Ĝ).

We say that S ⊆ V (Ĝ) is conflict free if S intersects each cloud in at most one vertex, i.e., we assign at most
one label to each variable. Such a set corresponds to a partial assignment f = fS for the game G (i.e., a
partial function from V (G) to [k]). We define the value of a partial assignment f , denoted val(f), to be 2/nd
times the number of edges e = (u, v) ∈ E(G) such that both f(u) and f(v) are defined, and πe(f(i)) = f(j).
Notice that if an assignment f for the unique game has val(f) = 1− γ, then the corresponding conflict-free
set S ⊆ V (Ĝ) satisfies π0(S) = 1/k and φ(S) ≤ 2γ. Thus S is a small set with low expansion.

The main idea behind the algorithm is the fact that the subspace enumeration algorithm Lemma 3.3 discovers
(up to some error) every subset of Ĝ of small conducance. Thus, so long as the label-extended graph has low
threshold rank, we can find any almost-satisfying assignment (if one exists) in time exponential in this rank
by enumerating all nonexpanding subsets and checking if any of them correspond to a (partial) assignment
that satisfies almost all the constraints.

Of course, Ĝ does not necessarily have a low threshold rank, but we can use Theorem 3.7 to partition the
constraint graph G into low-threshold rank subsets χ = (P1, . . . , Pr) while only cutting O(ε)-fraction of
edges. Then, we compute the label-extended graph of each part, Ĝ[Pi]. It is not hard to see that if a graph
H has a low threshold rank so does its label extended version (up to an extra loss of factor k). So, we can
apply the subspace enumeration algorithm to each Ĝ[Pi] to find all small set of small conductance. We just
pay extra loss of O(ε) due to conductance of the set that we find, and the fraction of missing edges between
parts P1, . . . , Pr.
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